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Cysteine S-carboxyethylation, a novel post-translational modification (PTM),
plays a critical role in the pathogenesis of autoimmune diseases, particularly
ankylosing spondylitis. Accurate identification of S-carboxyethylation
modification sites is essential for elucidating their functional mechanisms.
Unfortunately, there are currently no computational tools that can accurately
predict these sites, posing a significant challenge to this area of research. In this
study, we developed a new deep learning model, DLBWE-Cys, which integrates
CNN, BiLSTM, Bahdanau attention mechanisms, and a fully connected neural
network (FNN), using Binary-Weight encoding specifically designed for the
accurate identification of cysteine S-carboxyethylation sites. Our experimental
results show that our model architecture outperforms other machine learning
and deep learning models in 5-fold cross-validation and independent testing.
Feature comparison experiments confirmed the superiority of our proposed
Binary-Weight encoding method over other encoding techniques. t-SNE
visualization further validated the model’s effective classification capabilities.
Additionally, we confirmed the similarity between the distribution of positional
weights in our Binary-Weight encoding and the allocation of weights in
attentional mechanisms. Further experiments proved the effectiveness of our
Binary-Weight encoding approach. Thus, this model paves the way for predicting
cysteine S-carboxyethylationmodification sites in protein sequences. The source
code of DLBWE-Cys and experiments data are available at: https://github.com/
ztLuo-bioinfo/DLBWE-Cys.
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1 Introduction

Cysteine S-carboxyethylation (Zhai et al., 2023) is a unique
post-translational modification in which the thiol group (-SH) of
cysteine residues is modified by the addition of a carboxyethyl
group (-CH2-COOH). This modification is triggered by the
metabolic product 3-HPA and represents a novel protein
modification mechanism. Researchers such as Zhai et al.
(2023) have discovered that carboxyethylated ITGA2B can
induce specific autoimmune responses by producing modified
neoantigens. They also found carboxylated ITGA2B in peripheral
blood mononuclear cells (PBMCs) from patients with
rheumatoid arthritis (RA) and systemic lupus erythematosus
(SLE). Therefore, investigating the role of cysteine
S-carboxyethylation in the aetiology of these diseases, or
whether it is merely a concomitant phenomenon, is crucial to
understanding and treating these diseases.

Although mass spectrometry and modification-specific
antibodies can identify cysteine S-carboxyethylation sites (Bern
et al., 2012; Na and Paek, 2015; Yates, 2015), these methods are
expensive and time consuming. There is an urgent need to develop
computational methods to predict potential S-carboxyethylation
sites in proteins. The advancement of machine learning and deep
learning technologies has not only made significant strides in disease
prediction and diagnosis (Zhang et al., 2023), personalized
treatment planning (Chen et al., 2023), medical image analysis
(Shen et al., 2017), and drug discovery (Drews, 2000), but also
shown tremendous potential in predicting post-translational
modification sites. This provides a solid theoretical foundation
for constructing efficient models (Dou et al., 2021; Ertelt et al.,
2024; Meng et al., 2022). Meanwhile, the use of high-throughput
sequencing technologies and specific chemical probes has
accumulated a large amount of relevant data, providing a data
foundation for building predictive models (House et al., 2017;
Rodriguez and Miller, 2014; Vanella et al., 2022). Unfortunately,
as the modification of cysteine by S-carboxyethylation has only
recently been discovered, there are currently no dedicated models
for predicting these sites, which significantly increases the difficulty
of the research.

In recent years, significant progress has been made in the
field of protein modification site prediction, particularly in the
prediction of S-palmitoylation, S-sulfenylation and
S-nitrosylation sites. For example, GPS-Palm (Ning et al.,
2021) combines CNNs with a novel graph representation
system to predict S-palmitoylation sites, fastSulf-DNN (Do
et al., 2021) uses word embeddings and deep neural networks
to predict S-sulfenylation sites, and Mul-SNO (Zhao et al., 2022)
combines BiLSTM and BERT technologies to accurately predict
S-nitrosylation sites. These studies have significantly improved
the accuracy and efficiency of predicting functional sites in
proteins, and also provide a good reference for developing
S-carboxyethylation site prediction models.

This study proposes an innovative deep learning model,
DLBWE-Cys, which is the first model capable of effectively
identifying cysteine S-carboxyethylation modification sites in
protein sequences. The model employs a binary encoding
method combined with positional weights as a feature
representation and uses convolutional neural networks

(CNNs), bidirectional long short-term memory networks
(BiLSTMs), Bahdanau attention mechanisms, and fully
connected networks for final prediction. Through this
approach, the model effectively captures local information and
enhances the recognition of key features to achieve accurate
predictions. In the experimental part, our model, DLBWE-
Cys, was compared with various machine learning and deep
learning models in 5-fold cross-validation and independent
test dataset. At the same time, we tested the impact of
different feature extraction methods on model performance
and visualised the best results using t-SNE dimensionality
reduction techniques. In addition, we investigated the
relationship between the weights assigned by the Bahdanau
attention mechanism and the positional weights in our
proposed Binary-Weight encoding. Finally, we compared the
impact of binary encoding with and without positional
weights on model performance.

2 Methods

2.1 Benchmark datasets

In the seminal study by Zhai et al. (2023), cysteine
S-carboxyethylation was first identified as a novel post-
translational modification (PTM) associated with autoimmune
arthritis. To further investigate this unique protein modification,
we carefully selected 960 sequences containing cysteine
S-carboxyethylation as our positive samples for the study. To
make our dataset more comprehensive, we also downloaded
additional amino acid sequences from the NCBI database
(https://www.ncbi.nlm.nih.gov/) to serve as negative samples,
centered around cysteine (C). Both the positive and negative
sample sequences were standardised to a length of 41 amino acids
to ensure uniformity in our dataset. To increase the accuracy of
our analysis and reduce data redundancy, we used the CD-HIT-
SET (Li and Godzik, 2006) tool to eliminate 45% of duplicate
sequences. In addition, to prevent the model from being overly
biased towards a particular class, we constructed a balanced
training set of 1,204 samples, with an equal number of
positive and negative samples. During the fivefold cross-
validation, we ensured that there were no overlapping protein
types between the validation sets, thereby increasing the model’s
ability to generalise. In addition, to better reflect real-world
application scenarios, we created an independent test set
consisting of a small number of positive samples and a larger
number of negative samples, totalling 913 sequences with a ratio
of 1:10. This independent test set was used to evaluate the
generalisation performance of the model. Further details can
be found in Table 1.

TABLE 1 Details of the datasets.

Datasets Positive:Negative Total

Training 1:1 1,204

Independent 1:10 913
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2.2 Binary-weight Encoding (BWE)

In this study, we explore the digital representation of protein
sequence information, specifically through a binary encoding
approach. It has also already been used in different types of PTM
site prediction, including malonylation (Chung et al., 2020),
acetylation (Basith et al., 2022), succinylation (Ning et al., 2018)
and formylation (Sohrawordi and Hossain, 2022), because of its
simplicity and effectiveness. Our focus is on protein sequences
containing the 20 amino acids ‘ACDEFGHIKLMNPQRSTVWY’,
assigning each amino acid a unique 20-dimensional feature vector.
For instance, alanine (A) is encoded as ‘10000000000000000000′,

cysteine (C) as ‘01000000000000000000′, and tyrosine (Y) as
‘00000000000000000001’.

To further enrich the expression of sequence information, we
introduced the concept of positional weighting, inspired by the
phenomenon of signal towers transmitting signals in a progressively
diminishing manner, akin to 1D Gaussian Noising. Imagining the
central position of the protein sequence as the signal source, we
observed that the signal strength exponentially decays with
increasing distance from the source. Based on this observation,
we use the following formula to calculate the signal strength at each
position in the sequence, thereby determining the weight of the
amino acid at that position Wi:

FIGURE 1
The workflow and architecture of DLBWE-Cys.
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Wi � p × e−α di| |

where p represents the initial strength of the signal source, α is the
decay coefficient, di is the distance of the ith position from the
central point. Subsequently, we multiply the binary encoding feature
Bi of the amino acid at each position by its weight Wi to obtain the
weighted binary encoding feature Xi:

Xi � Bi × Wi

Through this method, we not only retain the original
information of the protein sequence but also introduce the
relative importance of each amino acid position through
positional weighting, effectively enhancing the expression of
sequence information.

2.3 Framework overview

Here, we propose a novel predictive framework, DLBWE-Cys,
based on CNN, BiLSTM, attention mechanisms, and FNN, which
fuse protein sequence information to predict cysteine
S-carboxyethylation sites. The model architecture consists of five
main components, as shown in Figure 1. First, in the feature
extraction module, we use the BWE method to convert protein
sequences into a digital format recognizable by computers. Next, in
the convolutional neural network (CNN) module, the features are
fed into a network with two convolutional layers to extract local
features of the protein sequence, followed by a max-pooling layer to
reduce the dimensionality and computational complexity of
the features.

Then, in the bidirectional long short-term memory (BiLSTM)
module, unlike traditional unidirectional LSTM, BiLSTM can
capture the forward and backward contextual relationships, thus
providing a more comprehensive understanding of the relationships
between features. In addition, in the Bahdanau attention mechanism
module, we build an attention layer with three functions (W1, W2,
and V) to determine the relative importance of different features.
Finally, in the prediction module, the system consists of two fully
connected layers and a softmax activation function. Each fully
connected layer uses dropout techniques to mitigate overfitting
problems, and the softmax function is used to predict whether
the target amino acid C undergoes S-carboxyethylation
modification.

2.3.1 CNN module
We have configured the convolutional neural network module

with two one-dimensional convolutional layers and a max-pooling
layer. One-dimensional convolution works by applying filters to
local regions of the sequence, capturing local dependencies within
the sequence and thereby improving the performance of the
network. Additionally, because one-dimensional convolution
operates along only one dimension, it uses fewer parameters than
two-dimensional convolution, making model training faster. The
formula for the convolutional layer in the architecture is:

Conv1D S( )kp � ∑
J−1

j�0
∑
L−1

l�0
Wp

ljSk+l,j

where S represents the segment of the input, p represents the index
of the kernel, and k represents the position index of the output.
Further, Wp denotes the filter with L × J weight matrix, where L
denotes filter size while J denotes input channels.

In addition, to further extract key features and reduce feature
dimensionality, we have incorporated a max-pooling layer into the
network. With this design, we not only retain important feature
information but also effectively reduce the complexity of the model.

2.3.2 BiLSTM module
We use a bidirectional long short-term memory (BiLSTM)

network layer to form the bidirectional long short-term memory
module. BiLSTM is a unique type of recurrent neural network
(RNN) that cleverly combines forward LSTM with backward
LSTM, enabling it to consider both past and future information
simultaneously (Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997). This network processes sequence information using
the forward LSTM, while capturing backward temporal sequence
information using the backward LSTM for a more complete
understanding of context. LSTMs consist of three primary gates:
the input gate, the forget gate, and the output gate, which control
whether information is forgotten, stored, or passed on to the
next time step.

Forget Gate:

ft � σ Wf · ht−1, xt[ ] + bf( )
Where ft is the activation vector of the forget gate, σ represents

the sigmoid function, Wf is the weight matrix for the forget gate,
ht−1 is the hidden state from the previous time step, xt is the input at
the current time step, and bf is the bias of the forget gate.

Input Gate:

it � σ Wi · ht−1, xt[ ] + bi( )
~Ct � tan h WC · ht−1, xt[ ] + bC( )

Where it is the activation vector of the input gate, and ~Ct is the
candidate cell state, activated by the tanh function.

Cell State Update:

Ct � ft*Ct−1 + it*~Ct

Where Ct is the cell state at the current time step, Ct−1 is the cell
state from the previous time step, * represents element-wise
multiplication.

Output Gate:

ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot* tanh Ct( )

Where ot is the activation vector of the output gate, and ht is the
hidden state at the current time step.

The backward LSTM follows the same computational process as
the forward LSTM, but it starts from the last element of the sequence
and processes the information in reverse order, up to the first
element. The BiLSTM combines the forward and backward
hidden states at each time step by concatenating them
(i.e., Ht � [ht, h′t]), merging past and future information. This
concatenation not only provides a richer set of sequence features
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but also enables the model to more comprehensively understand the
entire sequence context (Liu and Guo, 2019).

2.3.3 Bahdanau attention mechanism module
In our study, we have implemented an enhanced version of

the Bahdanau attention mechanism (Bahdanau et al., 2014),
which is designed to augment the decoder’s performance
through dynamic attention to the input data (Lin and Wang,
2024). This mechanism learns to allocate weights to different
encoder output features given the current state of the decoder.
Specifically, we first apply linear transformations to the outputs
of the BiLSTM at each timestep to obtain the intermediate vectors
W1, W2, and V:

W1 � w1O

W2 � w2H

V � vO

Where w1, w2 and v represent trainable weight matrices, O denotes
the sequence of outputs from the BiLSTM, and H represents the
current hidden state of the decoder. Next, we compute the attention
scores as follows:

Scores � VT tanh W1 +W2( )
To scale down the differences between the weights, we use the

softmax function to normalize the scores matrix, thereby obtaining
the weights for each encoder output. Finally, by applying the
attention scores as weights to the outputs of the BiLSTM, we
obtain the final weighted feature matrix C:

C � softmax Scores( ) × O

Through this method, the Bahdanau attention mechanism not
only deepens the model’s understanding of the input data but also
enhances the decoder’s ability to focus on key information during
the processing phase (Lee et al., 2020).

2.4 Performance measures

In our past experience we have used Accuracy (ACC), Matthews
correlation coefficient (MCC) (Chicco et al., 2021), Sensitivity (SN)
and Specificity (SE) to evaluate the performance of different models.
These measures are defined as follows:

Sn � TP

TP + FN

Sp � TN

TN + FP

Acc � TP + TN

TP + TN + FP + FN

MCC � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TN + FN( ) × TP + FP( ) × TN + FP( )√

where TP, FN, TN, and FP stand for the numbers of true positives,
false negatives, true negatives, and false positives, respectively. In
addition, we often calculate the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-
recall curve (AUPR) to assess predictive performance. Higher values
of AUROC and AUPR indicate better predictive performance.

3 Results

3.1 Comparing different model architectures

To demonstrate the superior performance of our model
architecture, we used training dataset from the ‘benchmark
datasets’ described in Section 2.1 and employed the same feature
representation method, Binary-Encoding, to compare against
various model architectures. These comparisons included
traditional machine learning models such as Random Forest
(RF), Support Vector Machines (SVM), and Extreme Gradient
Boosting (XGBoost), as well as deep learning models such as
CNN, BiLSTM, and a combined CNN-BiLSTM model. To verify
the stability of our models, we performed 10 iterations of 5-fold
cross-validation and fine-tuned the parameters. Detailed
configurations for each model can be found in Supplementary
Note S1. Furthermore, to investigate the impact of the decay
coefficient a on our model, we established two comparison
groups: one with the decay coefficient applied to the data and
another without its application. Our results show that the
application of this coefficient consistently leads to superior
performance compared to the group without it, as detailed in
Supplementary Information S2.

Table 2 shows the aggregated results of the 5-fold cross-
validation for each model after applying the decay coefficient,
including the precision-recall (PR) curves and the receiver
operating characteristic (ROC) curves. The results show that
most models have a small standard deviation, indicating good fit
and stability. The comparison shows that, on average, deep learning
models outperformmachine learning models on critical metrics. For
example, compared to RF, the CNN model shows an average
improvement of 7.54% in ACC, 15.47% in MCC, 7.14% in
AUROC and 9.44% in AUPR; the BiLSTM model shows an
improvement of 7.31% in ACC, 15.68% in MCC, 7.04% in
AUROC and 9.98% in AUPR. Notably, compared to RF, our
DLBWE-Cys model improved ACC by 9.58%, MCC by 20.18%,
AUROC by 8.7% and AUPR by 10.81%.

We also performed a series of ablation tests to confirm the
superiority of our model architecture. As shown in Table 2, our
proposed model with attention mechanisms significantly
outperformed the CNN-BiLSTM embedding architecture without
attention, highlighting the ability of the attention mechanism to
recognize critical information in sequences, thereby significantly
improving model performance. Furthermore, the embedded deep
learning models incorporating CNN and BiLSTM outperformed
standalone models in terms of SP, ACC, MCC, AUROC and AUPR.
This superiority is due to the embedded models combining the
strengths of CNN and BiLSTM, which capture both local and long-
term dependency information. Meanwhile, our model significantly
outperforms single CNN models, showing average increases of
5.45% in SP, 2.04% in ACC, 4.71% in MCC, 1.56% in AUROC,
and 1.37% in AUPR.

To visually present the differences in performance between our
model and others, we used the Mann-Whitney U test to calculate the
statistical significance of these differences, which are marked in
Figures 2A–D using the significance levels (NS, *, **, ***). These
graphs clearly show the significant differences between DLBWE-Cys
and other models.
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Finally, to further validate the superiority of our proposed
model, we evaluated the generalization performance of DLBWE-
Cys against six other models using the independent test dataset
mentioned in Section 2.1. The results are presented in
Supplementary Note S3. To make it easier for readers to observe
the results, we have also performed a series of visualizations. Figures
3A–D shows the results for ACC, SN, AUROC, and AUPR.
Additionally, Figures 3E, F provides comparisons between
different methods based on PR and ROC curves. These results
indicate that DLBWE-Cys generally outperforms the other
models, confirming the advantages of the deep learning
architecture and attention mechanism.

3.2 Comparing different feature
representation methods

To validate the effectiveness of our BWE method in feature
representation, we used the iLearnPlus (Chen et al., 2021; Chen
et al., 2018; Chen et al., 2020) to select five different manual
feature encoding methods for comparison. These methods
include AAindex (Kawashima et al., 2008), Composition,
Transition and Distribution (CTD) (Dubchak et al., 1995),
Enhanced Amino Acid Composition (EAAC) (Zhou et al.,
2018), Dipeptides Composition (DPC) (Bhasin and Raghava,
2004) and Tripeptides Composition (TPC) (Saravanan and

TABLE 2 Comparison of performance between different model architectures using 5-fold cross-validation on training data.

Model ACC ± SD (%) SN ± SD (%) SP ± SD (%) MCC ± SD AUROC ± SD AUPR ± SD

SVM 65.03 ± 0.16 61.51 ± 0.22 68.54 ± 0.25 0.3012 ± 0.0033 0.7111 ± 0.0006 0.7214 ± 0.0012

RF 65.98 ± 0.3 68.26 ± 1.27 63.7 ± 1 0.32 ± 0.0061 0.7128 ± 0.0059 0.7163 ± 0.0093

XGBoost 66.23 ± 0.38 65.53 ± 1.14 66.93 ± 1.09 0.3247 ± 0.0075 0.7104 ± 0.0055 0.7177 ± 0.0052

BiLSTM 73.29 ± 0.46 62.76 ± 1.92 83.82 ± 1.79 0.4768 ± 0.0095 0.7832 ± 0.0082 0.8161 ± 0.0094

CNN 73.52 ± 0.85 67.01 ± 1.91 80.03 ± 1.82 0.4747 ± 0.0174 0.7842 ± 0.0079 0.8107 ± 0.0076

CNN-BiLSTM 74.26 ± 0.55 64.35 ± 1.59 84.17 ± 1.81 0.4953 ± 0.0123 0.7885 ± 0.0087 0.8226 ± 0.0046

DLBWE-Cys 75.56 ± 0.21 65.63 ± 1.49 85.48 ± 1.64 0.5218 ± 0.0064 0.7998 ± 0.0089 0.8244 ± 0.0082

Bold values are the best values for the column.

FIGURE 2
Performance analysis of different m6Am prediction models using five-fold cross-validation on training data. Subgraphs (A–D) represent boxplots of
ACC, MCC, AUROC, and AUPR of different models, respectively. The level of significance (NS, *, **, ***) represents non-significant (p > 0.05), low
significance (p < 0.05), medium significance (p < 0.01), and high significance (p < 0.001), respectively.
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Gautham, 2015), with further details available in Supplementary
Note S4. We then applied each of these feature encoding methods
to our model architecture for training and testing, and evaluated
the differences between them using four key performance
metrics: ACC, MCC, AUROC and AUPR.

As shown in Figures 4A–D, the BWE method outperformed
the other feature encoding methods on all metrics. Specifically,
the BWE method showed improvements of 4.3%, 10.1%, 3.8%,
and 8.34% in ACC, MCC, AUROC, and AUPR, respectively,
compared to the second-best encoding method. Most
notably, compared to the DPC encoding, the BWE method
demonstrated increases of 15.02%, 31.45%, 16.59%, and
20.28% in ACC, MCC, AUROC, and AUPR, respectively.
These results further confirm the significant advantages of
our proposed BWE method.

3.3 Visualization of feature representation
during training

To visually demonstrate how each module in DLBWE-Cys
extracts different sequence features, we used the t-distributed
stochastic neighbour embedding (t-SNE) (Fang et al., 2023)
technique to reduce high-dimensional features to two dimensions
for visualization. t-SNE is a nonlinear dimensionality reduction
technique that effectively reveals the nonlinear structures of data.
Figures 5A–D show the distribution of prediction probabilities in the
training and independent test dataset within the feature extraction
module, CNN module, BiLSTM module, and attention mechanism
module, respectively.

This figure shows t-SNE plots of the data after each module -
Feature Extraction, CNN, BiLSTM and Attention - arranged by

FIGURE 3
Performance comparison of DLBEW-Cys with various classical machine learning models and deep learning models on an independent test dataset.
(A–D) represent the ACC, MCC, AUROC and AUPR values of our proposed DLBEWE-Cys in comparison with other models, including SVM, RF, XGBoost,
BiLSTM, CNN and CNN-BiLSTM, respectively. (E, F) depict the receiver operating characteristic (ROC) curves and the precision-recall (PR) curves of the
different models, respectively.
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rows, with each column comparing the training set with the test set.
Initially, the points appear intermixed, showing limited class
separation. After the CNN module, subtle clustering emerges in
the training data, although this pattern is less pronounced in the test
data. In contrast, the BiLSTM and attention modules produce
clearer clusters during training, indicating stronger class
separation. Although class separation is somewhat reduced in the
test data, these modules still produce more discernible groupings
than the earlier stages.

Overall, these visualisations highlight the importance of each
component of the model (Pakhrin et al., 2023a; Pakhrin et al., 2023b;
Palacios et al., 2024). Each successive module contributes to the
extraction of more informative features, ultimately improving the
model’s ability to discriminate between classes and increasing its
overall recognition performance.

3.4 Comparison of attention weights and
position weights

To gain a deeper understanding of how the attentionmechanism
assigns weights to sequence features, and to understand the

contributions of different sequence positions to the model’s
predictive performance, we visualized the attention weights as
shown in Figure 6A. The figure shows that the attention
mechanism tends to assign higher weights to the central region
of the sequence, with the weights gradually decreasing as the
distance from the center increases. Surprisingly, this distribution
pattern is fully consistent with the concept of our proposed BEW,
where weights decrease with increasing distance from the
signal source.

In principle, the process of using a decay coefficient α to form a
position-based weighting matrix for binary encoding is
mathematically consistent with applying an attention-based
weighting matrix to features after they have passed through the
CNN and BiLSTM. Furthermore, since the binary-encoded features
retain a similar structural organisation after processing by the CNN
and BiLSTM, the comparison of the two weighting matrices remains
both valid and meaningful.

To further explore the relationship between attention weights
and BWE, we conducted a series of experiments. First, to better
compare their similarities, we “stretched” the attention weight score
matrix to match the length of the original sequence, with specific
details available in Supplementary Note S5. To observe the effect of

FIGURE 4
Performance comparison between the feature representation of BWE and other five handcrafted feature encoding methods. (A–D) respectively
represent the ACC, MCC, AUROC and AUPR values of the feature representation of BWE and other handcrafted feature encoding methods, including
AAindex, EAAC, CTD, DPC and TPC.
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this “stretching”, we visualized it again, with darker colors in the heat
map indicating higher importance scores, as shown in Figure 6B.We
observed that the color gradually lightens from the center to the

edges, indicating that the “stretching” operation did not change the
distribution pattern of attention weights. We then used Dynamic
Time Warping (DTW) (Sakoe and Chiba, 1978) to compare the

FIGURE 5
Visualization of the features of the different modules. (A–D) respectively represent the t-SNE visualizations of the original sequence after passing
through the feature representation module, CNN module, BiLSTM module, and attention module.
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similarity between the “stretched” attention weight vector and the
weight vector in BWE, as shown in Figure 6C. Both curves rise at the
beginning of the sequence, continue to rise towards the center and
then gradually fall towards the end. Furthermore, these two curves
are almost perfectly aligned at all positions and show very similar
trends. Finally, to better observe the optimal alignment path of the
two curves, we visualized the path matrix of both curves, as shown in
Figure 6D. The path is shown as a perfect diagonal, indicating that
the changes in the two curves are synchronous, i.e., the optimal
alignment path is direct.

These experimental results suggest that the way we assign
position weights and the way the attentional mechanism

enhances important features are similar, further demonstrating
the strong explanatory power of BWE in theory. In addition, it
demonstrates high adaptability to complex weighting patterns in
practical applications.

3.5 Comparison of binary encoding with and
without weights

Here, we compare the effects of binary encoding with and
without position weights on model performance across various
sequence lengths. To further understand the impact of our

FIGURE 6
Visualization of attention weights and position weights, and their similarities. (A) shows the distribution of attention weights across the relative
positional ratios within the sequence. (B) displays the distribution of attention weights “stretched” to approximate the length of the original sequence. (C)
uses Dynamic Time Warping (DTW) to calculate the distance between the attention weight curve and the position weight curve, demonstrating their
similarities. (D) presents the optimal alignment path between the two.
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proposed BWE method on model performance, we used a
controlled variable comparison method, testing binary
encoding in models with and without position weights under
the same model parameters and other conditions. Meanwhile,
since individual test results may be random, we fixed the central
position of the original sequences and constructed benchmark
datasets of different lengths (21, 31, 41, 51, and 61 amino acids) to
achieve an accurate evaluation of model performance, as shown
in Figure 7A. We observed that for all sequence lengths tested, the
models performed best at a sequence length of 41 amino acids,
regardless of whether weights were applied. Furthermore,
regardless of sequence length, configurations with position
weights generally outperformed those without weights. In
particular, at a sequence length of 41 amino acids, we found
that the model performed best when the decay coefficient, α, was
set to 0.02, as shown in Figure 7B. It’s worth noting that the
unweighted scenario corresponds to the ideal state, where the
decay coefficient α is zero. This indicates that our proposed new
method does indeed include this ideal case, which means that the
performance of the unweighted method could not surpass that of
the weighted method.

4 Conclusion

In this study, we proposed a deep learning architecture named
DLBWE-Cys, which integrates CNN, BiLSTM, Bahdanau attention
mechanism, and FNN utilizing a Binary-Weight encoding approach
specifically designed for precise identification of cysteine
S-carboxyethylation sites. The combination of CNN and BiLSTM
effectively captures the local and long-term dependencies of
sequences, while the attention mechanism enhances the detection
of key features and the FNN is responsible for the final predictions.

Experimental results demonstrate a significant advantage of our
model over other machine learning and deep learning models, both
in 5-fold cross-validation and on the independent test dataset.
Feature comparison experiments also confirmed the superiority
of our proposed Binary-Weight encoding method over other
encoding techniques. In addition, t-SNE visualization highlighted
the model’s strong capability for accurate classification through the
effective integration of different architectural components.
Furthermore, we found that the distribution of attention weights
was very similar to our proposed method of distributing positional
weights, further validating the rationality of our approach. Finally,

FIGURE 7
Optimal Sequence Length and Decay Coefficients. (A) demonstrates the impact of binary encoding with and without positional weights on model
accuracy across sequence lengths of 21, 31, 41, 51, and 61 amino acids. (B) shows the effect of different decay coefficients on model accuracy at a
sequence length of 41 amino acids.
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our experiments proved that the model performance using Binary-
Weight encoding surpasses that of standard binary encoding at any
sequence length, further confirming the effectiveness of our
proposed improvements.
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