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Background: There is limited research on cholesterol metabolism-related genes
(CM-RGs) in non-alcoholic fatty liver disease (NAFLD), despite
hypercholesterolemia being a recognized risk factor. The role of CM-RGs in
NAFLD remains unclear.

Methods: The differentially expressed genes (DEGs) between NAFLD and control
were acquired by differential expression analysis. The differentially expressed
genes associated with cholesterol metabolism (DE-CM-RGs) were identified and
functional enrichment analyses were performed. Protein-protein interaction
network analysis and a two-sample Mendelian randomization study were
utilized for identifying hub genes. Nomogram model, competing endogenous
RNA and messenger RNA-drug networks were established. In addition,
immunoinfiltration analysis was performed.

Results: We identified four hub genes (MVK, HMGCS1, TM7SF2, and FDPS) linked
to NAFLD risk. MVK and TM7SF2 were protective factors, HMGCS1 and FDPSwere
risk factors for NAFLD. The area under the curve values of nomograms in
GSE135251 and GSE126848 were 0.79 and 0.848, respectively. The gene set
enrichment analysis indicated that hub genes participated in calcium signaling
pathways and biosynthesis of unsaturated fatty acids. NAFLD patients showed
increased CD56dim NK cells and Th17. Tretinoin, alendronate, zoledronic acid, and
quercetin are potential target agents in NAFLD.

Conclusion:Our study has linked cholesterol metabolism genes (MVK, HMGCS1,
TM7SF2, and FDPS) to NAFLD, providing a promising diagnostic framework,
identifying treatment targets, and offering novel perspectives into its
mechanisms.

KEYWORDS

NAFLD, cholesterol metabolism, prognosis, bioinformatic analysis, Mendelian
randomization

OPEN ACCESS

EDITED BY

Sheng Liu,
Indiana University Bloomington, United States

REVIEWED BY

Aaron Balasingam Koenig,
INOVA Health System, United States
Li Tian,
Georgia State University, United States
Zhuangzhuang Geng,
Children’s Hospital of Philadelphia,
United States

*CORRESPONDENCE

Xiaoling Zheng,
xiaolingzheng789@163.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 18 July 2024
ACCEPTED 06 September 2024
PUBLISHED 18 September 2024

CITATION

Chen J, Rao H and Zheng X (2024) Identification
of novel targets associated with cholesterol
metabolism in nonalcoholic fatty liver disease: a
comprehensive study using Mendelian
randomization combined with
transcriptome analysis.
Front. Genet. 15:1464865.
doi: 10.3389/fgene.2024.1464865

COPYRIGHT

© 2024 Chen, Rao and Zheng. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 18 September 2024
DOI 10.3389/fgene.2024.1464865

https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1464865/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1464865&domain=pdf&date_stamp=2024-09-18
mailto:xiaolingzheng789@163.com
mailto:xiaolingzheng789@163.com
https://doi.org/10.3389/fgene.2024.1464865
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1464865


1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is the prevailing type
of chronic hepatic disorders globally. The incidence of NAFLD is
continuously increasing, leading to higher mortality rates and
financial burden. The analysis from 1990 to 2019 found that
NAFLD prevalence globally was 30.1% in 2023 (Younossi et al.,
2023), higher than the reported rate of 25% in 2016 (Younossi et al.,
2016). Prompt identification and understanding of its pathogenesis
are crucial to prevent irreversible damage, as there is currently a
shortage of approved pharmaceutical interventions for
managing NAFLD.

Metabolic syndrome, obesity, insulin resistance, type 2 diabetes
mellitus, and dyslipidemia are established risk factors for hepatic
steatosis (Rinella et al., 2023). The precise etiology of NAFLD
remains elusive. The current “multiple parallel hits” theory
mechanism mainly includes dyslipidemia, mitochondrial
oxidative damage, endoplasmic reticulum stress, genetic
differences, changes in immune response and intestinal
microbiota imbalance (Rinella et al., 2023). Lipotoxicity refers to
the disruption of lipid homeostasis and/or alteration in intracellular
lipid composition, resulting in the accumulation of deleterious lipids
that may potentially contribute to cellular dysfunction, injury, or
demise of cells and organelles. NAFLD is characterized by the
accumulation of triglyceride-containing lipid droplets in
hepatocytes, which are currently considered as a defensive
response to lipotoxicity (Papazyan et al., 2016). The
accumulation of lipotoxic lipids, such as cholesterol, free fatty
acids, and ceramides, is believed to cause cellular dysfunction
and contribute to NAFLD progression (Marra and Svegliati-
Baroni, 2018).

Cholesterol metabolism is crucial for maintaining liver health as
it impacts the structural integrity and fluidity of cell membranes, and
participates in vital biochemical processes. In NAFLD, there is a
pervasive dysregulation of cholesterol homeostasis, leading to
augmented cholesterol synthesis and uptake, as well as impaired
clearance, resulting in elevated hepatic cholesterol levels. Hepatic
accumulation of cholesterol can lead to the development of steatosis,
oxidative stress, and inflammatory responses (Ioannou, 2016),
thereby promoting the advancement of NAFLD. Long-term
consumption of a high-cholesterol diet in mice has been linked
to hepatocellular carcinoma (HCC) development, possibly due to
gut microbiota dysbiosis and reactive oxygen species accumulation
caused by a high-fat diet (Zhang et al., 2021).

The application of bioinformatics approaches has facilitated the
discovery of biomarkers and possible targets for various diseases. In
this study, we leveraged NAFLD-related public datasets from the
Gene Expression Omnibus (GEO) database to identify differentially
expressed genes (DEGs) through differential expression analysis.
The differentially expressed genes related to cholesterol metabolism
(DE-CM-RGs) were identified, protein-protein interaction (PPI)
networks were constructed to identify important gene clusters
and modules. The study used two samples to identify hub genes
through Mendelian randomization (MR) analysis. The impact of
hub genes on clinical diagnosis was assessed using receiver operating
characteristic (ROC) curve and nomogram, while the correlation
between hub genes and immune cells was investigated through
single-set gene set enrichment analysis (ssGSEA). The primary

aim of this investigation was to uncover potential DE-CM-RGs
that hold diagnostic significance for individuals with NAFLD.
Additionally, we established competing endogenous RNA
networks and messenger RNA (mRNA)-drug regulatory network,
thereby presenting a potential therapeutic strategy for the
management of NAFLD.

2 Materials and Methods

2.1 Data download

The GSE135251 and GSE126848 datasets were acquired from
the GEO database, containing clinical features and gene expression
data from liver tissue of NAFLD patients and healthy controls. The
GSE135251 dataset included ten control cases and 206 NAFLD
patients, while GSE126848 consisted of 14 control cases and
31 NAFLD patients. Detailed information on the datasets was
provided in Supplementary Table S1. A total of 140 cholesterol
metabolism-related genes (CM-RGs) were obtained from the
Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) (Tang et al., 2022). Genome-
wide association study (GWAS) summary data for NAFLD was
available at https://gwas.mrcieu.ac.uk/datasets/finn-b-NAFLD/,
generating 16,380,466 single nucleotide polymorphisms (SNPs)
from 894 European patients with NAFLD and 217,898 healthy
European controls. Peripheral blood expression quantitative trait
loci (eQTL) GWAS data for exposure factors were obtained from the
IEU-OPCOSnGWAS database, and eQTL summary level statistics
were obtained from the cap analysis of gene expression (CAGE)
study, which included peripheral blood gene expression data in
2,765 individuals (Lloyd-Jones et al., 2017).

2.2 Differential expression analysis

The DEGs were identified using “DESeq2” R package (Love
et al., 2014) with the threshold of |log2FC| > 0.5 and adjusted p <
0.05 in the NAFLD and healthy controls of GSE135251 and
GSE126848 datasets. Subsequently, volcano plots and heatmaps
were constructed to visually represent the DEGs in NAFLD. The
“VennDiagram” package was used to obtain DE-CM-RGs by
intersecting DEGs with CM-RGs.

2.3 Functional enrichment analysis,
correlation analysis, and PPI network of
DE-CM-RGs

Chromosome location information is essential for the precise
positioning of genes in the genome and their upstream and
downstream regions, which is beneficial for the in-depth
understanding of gene functions and their regulatory
mechanisms. The location of DE-CM-RGs on chromosomes was
visualised using the “OmicCircos” package (Hu et al., 2014) in this
study. To explore the role of DE-CM-RGs in specific biological
processes and changes in the activity of specific signalling pathways,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) enrichment analyses for DE-CM-RGs were
conducted using the “clusterProfiler” package (Wu et al., 2021)
in R software (adjusted p < 0.05). Subsequently, Spearman
correlation analysis of DE-CM-RGs in GSE135251 was
performed using the “corrplot” package with a 95% confidence
interval (CI). The PPI network of 20 DE-CM-RGs was developed
using the Search Tool for the Retrieval of Interacting Genes database
(STRING, http://string-db.org) with a medium confidence level
above 0.4 and visualized in Cytoscape V3.8.2 software after
removing isolated targets. The molecular complex detection
(MCODE) plugin integrated within Cytoscape was employed to
detect Cluster1 gene based on filter criteria including a minimum
degree threshold of 2, a node score threshold of 0.2, a k-core value set
at 2, and a maximum depth limited to 100. These module genes were
deemed as potential hub genes.

2.4 Mendelian randomization (MR)

In the current study, two-sample MR analysis was used to
explore the causal association between potential hub genes and
NAFLD. We used potential hub genes (Supplementary Table S2)
as exposure variables and NAFLD as the outcome measure. The
“TwoSampleMR” package (Hemani et al., 2018) was used for the
MR analysis. The instrumental variables (IVs) selected for MR
analysis must meet three key assumptions: Assumption 1, there
should be a strong correlation between the IVs and exposure
factors; Assumption 2, the IVs are independent of confounding
variables that may affect both exposure factors and the outcomes;
Assumption 3, the affect of the IVs on the outcomes is solely
mediated by their influence on the exposure factors, excluding
any other mechanisms. SNPs related to hub genes and were not
linked to NAFLD were selected by reading exposure factors and
filtering IVs through the “extract_instruments” function in R
package TwoSampleMR with p < 5 × 10−8. The SNPs in linkage
disequilibrium were eliminated with clump = TRUE, r2 = 0.001,
and kb = 20. kb = 20 was used to increase the number of SNPs
available for analysis. MR analysis was performed using five
algorithms, including MR Egger (Bowden et al., 2015),
weighted median (Bowden et al., 2016), simple mode (Hemani
et al., 2018), inverse variance weighted (IVW) method (Burgess
et al., 2015), and weighted mode (Hartwig et al., 2017). The
impact estimates were mainly computed using the IVW method.
According to the IVW method, if the corresponding p-values of
hub genes were less than 0.05 and their odds ratio (OR) was
greater than 1, these genes would be considered risk factors for
NAFLD, and if the OR values were less than 1, they would be
considered protective factors for NAFLD. Hub genes with
p-values greater than 0.05 were considered to have no causal
association with NAFLD. As the MR results, they were presented
using scatter plots, forest plots, and funnel plots.

2.5 Sensitivity analyses

Sensitivity analyses, comprising heterogeneity test,
horizontal pleiotropy test, and leave-one-out (LOO) analysis,
were conducted to assess the validity and generalisability of the

MR findings. We detected heterogeneity among the causal effects
through the mr_heterogeneity function, using the Cochran’s Q
statistic from the IVW methodology. A p-value of greater than
0.05 for the Cochran’s Q test indicated the presence of
heterogeneity (Xu et al., 2023). Horizontal heterogeneity test
was supported by the “mr_pleiotropy_test” function, respectively
(Qin et al., 2023). The p-value of MR-Egger exceeded
0.05 manifested the absence of horizontal pleiotropy in MR
study. We utilized “mr_leaveoneout” function for LOO
analysis (Cui et al., 2021), which evaluated the effect of the
remaining SNPs on the outcome variable by progressively
eliminating each SNP through IVW method.

2.6 Evaluating the diagnostic accuracy of
hub genes

The “pROC” package (Robin et al., 2011) was used to evaluate
ROC on datasets GSE135251 and GSE126848. The genes used for
diagnosis have an area under the curve (AUC) value of 0.7 or higher.
The accuracy of a diagnostic nomogram, constructed based on gene
markers, was evaluated using a calibration curve.

2.7 Gene set enrichment analysis (GSEA)

The “clusterProfiler” package (Yu et al., 2012) was used for
GSEA, which identified significant functional and pathway
differences among groups with varying expression levels of hub
genes in the GSE135251 dataset. We selected the reference KEGG
gene set and GO gene sets from the MSigDB. The significance level
for GSEA was set at a threshold of less than 0.05, considering the
adjusted p-value.

2.8 Immune analysis

The ssGSEA algorithm from the “GSVA” package
(Hänzelmann et al., 2013) was used to evaluate the infiltration
of 28 immune cells in the GSE135251 dataset between the
NAFLD and control groups. Heat maps were generated to
show differences in immune infiltration. The Wilcoxon test
was employed to evaluate the disparity in immune infiltrating
cells between NAFLD and control groups (p < 0.05). A boxplot
was used to display the differential immune infiltrating cells. The
“corrplot” package was used to analyze the correlations between
differential immune cells. The Spearman correlation analysis was
utilized to identify significant correlations and a scatter plot was
created to visually represent the relationships between hub genes
and immune cells.

2.9 Construction of regulatory networks

According to the NetworkAnalyst platform (https://www.
networkanalyst.ca/), the encyclopedia of DNA elements
(ENCODE) database was utilized for the prediction of
transcription factors (TFs) linked to hub genes. The TarBase and
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miRTarBase databases were utilized to predict the microRNA
(miRNA)-mRNA interactions based on these hub genes.
Additionally, evidence for direct interaction between the

predicted miRNAs and long non-coding RNAs (lncRNAs) was
integrated using the StarBase database (http://starbase.sysu.edu.
cn/starbase2/index.php). A comprehensive network comprising

FIGURE 1
Identification of DE-CM-RGs. (A) Volcano plot of DEGs between theNAFLD and control groups in twoGEO datasets (p < 0.05). (B)Heatmap of DEGs
between theNAFLD and control groups (p < 0.05). (C) The venn diagram illustrating the intersection of DEGs and CM-RGs. (D) The locations of the 20DE-
CM-RGs on 23 chromosomes. CM-RGs, cholesterol metabolism-related genes; DE-CM-RGs, the differentially expressed genes associated with
cholesterol metabolism; DEGs, the differentially expressed genes; GEO, Gene Expression Omnibus.
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mRNA, miRNA and lncRNAwas constructed and represented using
Cytoscape software (version 3.8.2). The Comparative
Toxicogenomics Database (https://ctdbase.org/) was employed to
predict drugs targeting hub genes. The investigation examined the
correlation between hub genes and drugs, only retaining drugs with
a “Reference Count” greater than 1. The mRNA-drug regulatory
network was visualized using the Cytoscape software.

2.10 Statistical analysis

Statistical analysis was conducted utilizing R software (version
4.1.0). A level of significance lower than 0.05 indicated the presence
of a significant difference. The Wilcoxon test was employed to
compare groups.

3 Results

3.1 Totally 20 DE-CM-RGs and 9 potential
central genes were identified

In the GSE135251 dataset, totally 5,460 DEGs were obtained
between NAFLD patients and healthy controls, with
2,717 upregulated genes and 2,743 downregulated genes. The
dataset GSE126848 identified 4,473 DEGs, with 2,512 upregulated
genes and 1,961 downregulated genes. The volcano plot and
heatmap of the two databases were shown in Figures 1A,B. The
up- or downregulated DEGs in GSE135251 and GSE126848 were
intersected separately, resulting in 455 upregulated and
279 downregulated genes. Taking the intersection of the
upregulated DEGs (2,717) in GSE135251 and the upregulated
DEGs (2,743) in GSE126848, 455 shared upregulated DEGs were
obtained. Taking the intersection of the downregulated DEGs
(2,512) in GSE135251 and the downregulated DEGs (1961) in
GSE126848, 279 shared downregulated DEGs were obtained.
Shared upregulated DEGs and shared downregulated DEGs were
combined to obtain 734 shared DEGs. Twenty DE-CM-RGs were
identified by crossing 140 CM-RGs with 734 DEGs (Figure 1C). The
loop graph illustrated the chromosomal positions of the 20 DE-CM-
RGs (Figure 1D). Chromosomal localisation showed that four of the
20 DE-CM-RGs were located on chromosome 8, two genes were
located on chromosomes 5, 10, 11 and 16, respectively, and there was
only one gene on each of chromosomes 1, 4, 6, 12, 14, 15, 19 and the
Y chromosome. Subsequently, 20 DE-CM-RGs were analyzed using
GO and KEGG to identify their underlying functions. The DE-CM-
RGs were functionally enriched in cholesterol metabolic process,
cholesterol biosynthetic process, sterol biosynthetic process, and
fatty acid synthase activity based on GO annotations for cellular
components, biological processes, and molecular functions.
Figure 2A displayed the top ten GO terms for each classification.
The KEGG pathways enriched by these DE-CM-RGs included
glycerolipid metabolism, cholesterol metabolism, fatty acid
metabolism, PPAR signaling pathway, biosynthesis of unsaturated
fatty acids, and steroid biosynthesis pathways (Figure 2B). The
correlation among the twenty DE-CM-RGs was strong, with
SQLE and HMGCS1 showing the highest level of strength, as
evidenced by a robust correlation coefficient of 0.9508

(Figure 2C). The high correlation between SQLE and
HMGCS1 reveals a tight synergistic regulation of the cholesterol
synthesis pathway in specific cells or tissues. As key enzymes of this
pathway, changes in their expression may affect hepatic
cholesterol homeostasis and thus have a role in the progression
of NAFLD.

A PPI network of 20 DE-CM-RGs was constructed, and a
significant gene cluster module was identified, including
9 potential hub genes: MVK, FDPS, MVD, TM7SF2, FDFT1,
SQLE, CYP7A1, HMGCS1, and NSDHL (Figures 2D,E).

3.2 MVK and TM7SF2 were protective
factors, HMGCS1 and FDPS were risk factors
for NAFLD

Nine potential hub genes were used as exposure factors and
NAFLD as an outcome variable to explore the causal relationship
between genes and NAFLD. Since there were too few SNPs
corresponding to CYP7A1 and NSDHL to support the
following analyses, both were excluded. The IVW found no
evidence linking FDFT1, SQLE, and MVD to NAFLD. Of
note, The IVW analysis provided suggestive evidence for the
association between MVK (OR = 0.674, 95% CI = 0.524–0.868,
p = 0.002), HMGCS1 (OR = 2.163, 95% CI = 1.182–3.955, p =
0.012), TM7SF2 (OR = 0.895, 95% CI = 0.826–0.970, p = 0.007),
and FDPS (OR = 1.477, 95% CI = 1.239–1.761, p < 0.001) and the
risk of NAFLD (Table 1). Specifically, MVK and TM7SF2 were
protective factors, while HMGCS1 and FDPS were risk factors for
NAFLD. These findings were visually represented using scatter
plots, where the slopes of MVK and TM7SF2 were negative, while
the slopes of HMGCS1 and FDPS were positive (Figures 3A–D).
The approximately symmetric distribution of points in the funnel
plots showed that the causality between MVK, TM7SF2,
HMGCS1, FDPS and NAFLD followed Mendel’s second law of
randomisation (Figures 3E–H). Forest plots illustrating the
association between MVK,TM7SF2, HMGCS1 and FDPS with
NAFLD are presented in Figures 4A,C,E,G respectively. The MR
effect sizes for HMGCS1 and FDPS on NAFLD exceeded 0 in the
forest plots, manifesting that they might increase the risk of
NAFLD. However, the outcomes of MVK and TM7SF2 on
NAFLD were opposite. The Cochran’s Q test did not detect
any heterogeneity (Q_p > 0.05) (Supplementary Table S3).
The MR-Egger regression analysis showed no significant
overall horizontal pleiotropy based on the intercept value (p >
0.05) (Supplementary Table S3). The LOO analysis indicated that
the overall estimate was not influenced by any individual SNP
(Figures 4B,D,F,H). In conclusion, sensitivity analyses proved the
reliability and robustness of MR outcomes. FDPS, HMGCS1,
MVK, TM7SF2 identified as hub genes in this study by
MR analysis.

3.3 The hub gene-based nomogram could
assess NAFLD risk accurately

The diagnostic accuracy of MVK, HMGCS1, TM7SF2, and
FDPS for NAFLD was confirmed by ROC analysis, as the AUC

Frontiers in Genetics frontiersin.org05

Chen et al. 10.3389/fgene.2024.1464865

https://ctdbase.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1464865


values for FDPS, MVK, and TM7SF2 genes exceeded 0.7 in the
datasets GSE135251 and GSE126848 datasets (Figures 5A,B).
Nomograms containing these four hub genes were constructed
based on GSE135251 and GSE126848 datasets (Figures 5C,D).
The AUC of the nomogram was 0.79 in GSE135251 and 0.848 in
GSE126848 (Figures 5E,F), demonstrating its strong
predictive ability for NAFLD. The calibration curve
demonstrated excellent concordance between the predictions
derived from the nomogram and the actual observations
(Figures 5G,H).

3.4 The latent functions of hub genes

We conducted GSEA for the identification of key signaling
pathways at a single-gene level. HMGCS1 was significantly
enriched in thioester and sterol metabolic processes, steroid
biosynthesis, calcium signaling pathway, and unsaturated fatty
acid biosynthesis (Figure 6A). FDPS showed significant
enrichment in secondary alcohol metabolism, steroid
biosynthesis, calcium signaling pathway, and biosynthesis of
unsaturated fatty acids (Figure 6B). MVK exhibited significant

FIGURE 2
PPI network construction for DE-CM-RGs. (A,B)GO terms and KEGGpathways enriched byDE-CM-RGs. (C)Correlation analysis of 20 DE-CM-RGs.
(D) The PPI network of DE-CM-RGs. (E) The most significant module identified by MCODE. PPI, protein-protein interaction; DE-CM-RGs, the
differentially expressed genes associated with cholesterol metabolism; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP,
biological progress; CC, cellular component; MF, molecular function; MCODE, molecular complex detection.
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enrichment in secondary alcohol metabolism, sterol metabolic
processes, regulation of monoatomic ion transport, steroid
biosynthesis, and calcium signaling pathways (Figure 6C).
TM7SF2 demonstrated significant enrichment in myeloid
leukocyte migration functions, cell chemotaxis, leukocyte cell
adhesion, leukocyte migration, and steroid biosynthesis (Figure 6D).

3.5 There were 8 differential immune cells in
NAFLD and controls

The ssGSEA algorithm was used to analyze the enrichment
scores of 28 immune cell types, and a heat map was generated to
visualize immune infiltration in NAFLD (Figure 7A). Wilcoxon test
revealed significant differences in activated CD4 T cells, CD56bright

natural killer (NK) cells, T helper Type 1 (Th1) cells, activated
B cells, CD56dim NK cells, Th17 cells, eosinophils, and Th2 cells
between NAFLD and control groups (p < 0.05). Compared to
controls, NAFLD patients had higher levels of CD56dim NK cells
and Th17 cells but lower levels of activated CD4 T cells, CD56bright

NK cells, Th1 cells, activated B cells, eosinophils and Th2 cells
(Figure 7B). Th2 cells and activated CD4 T cells exhibited the
strongest correlation with a coefficient of 0.7492 (Figure 7C). The
correlation between the four hub genes (FDPS, HMGCS1, MVK,
and TM7SF2) and eight differential immune infiltrating cells was
analyzed, a negative association was observed between Th2 cells and
both MVK and TM7SF2 (Figure 7D).

3.6 Comprehensive regulatory network
analysis revealed key regulatory factors and
potential therapeutic agents of hub genes

The mRNA-TF regulatory network included 153 nodes (3 hub
genes, 150 TFs), and 206 edges (Figure 8A). The lncRNA-miRNA-
mRNA regulatory network consisted of three genes, 47 nodes and
158 edges (Figure 8B). The findings revealed that the manifestation
of HMGCS1 might be regulated in a competitive manner by
fastening with hsa-let-7b-5p, hsa-miR-155-5p, hsa-miR-186-5p,
hsa-miR-192-5p, hsa-miR-23a-3p, hsa-miR-210-3p, hsa-miR-335-
p and hsa-miR-23b-3p to 134 lncRNAs. 24 lncRNAs could
competitively bind both hsa-miR-335-5p and hsa-miR-193b-3p to

regulate TM7SF2. Thirteen lncRNAs competitively bind to hsa-
miR-124-3p, regulating the expression of MVK. The mRNA-drug
regulatory network identified four key hub genes and 62 drugs or
compounds, including tretinoin, entinostat, alendronate, zoledronic
acid and quercetin as potential targeted drugs for regulating
cholesterol metabolism genes in NAFLD (Figure 8C).

4 Discussion

NAFLD is a prevalent hepatic disorder affecting millions of
individuals worldwide. NAFLD not only affects patients’ wellbeing
and health, but also increases the risk of developing cirrhosis and
HCC. Consequently, effective prevention and control strategies are
imperative for curtailing the onset and progression of this condition.
However, the current therapeutic approaches for NAFLD remain
unsatisfactory due to the intricate nature of its pathogenesis. A
previous study demonstrated that hepatic accumulation of free
cholesterol induces cytotoxicity, thereby facilitating the transition
from steatosis to non-alcoholic steatohepatitis (NASH) (Van
Rooyen et al., 2011). The exact role of cholesterol metabolism in
NAFLD is not fully understood. To our understanding, this research
is the initial attempt to recognize and examine the involvement of
CM-RGs in NAFLD.

In the present investigation, we demonstrated the significant
impact of four genes (MVK, HMGCS1, TM7SF2, and FDPS) on
NAFLD risk. Both datasets showed AUC values exceeding 0.7 for
FDPS, MVK, and TM7SF2. Additionally, we constructed a
nomogram model incorporating MVK, HMGCS1, TM7SF2, and
FDPS. The nomogram achieved AUCs of 0.79 in GSE135251 and
0.848 in GSE126848 datasets respectively, indicating its reliability as
a biomarker for predicting NAFLD diagnosis.

Our study identified four key DE-CM-RGs (MVK, HMGCS1,
TM7SF2, and FDPS) with the strongest association to NAFLD.
FDPS, a key enzyme in the mevalonate pathway, produces farnesyl
pyrophosphate and geranyl pyrophosphate, which are involved in
cholesterol synthesis. The presence of FDPS in various neoplasms
and its association with cardiovascular diseases has been previously
reported (Seshacharyulu et al., 2019; Wang et al., 2021). Excessive
FDPS expression leads to heightened disease severity in NASH by
increasing farnesyl pyrophosphate levels, which enhance
CD36 expression and accelerate the development of NASH

TABLE 1 Associations of DE-CM-RGs with NAFLD.

No. of SNPs p OR (95% CI)

FDFT1 49 0.548 1.014 (0.969–1.062)

SQLE 23 0.078 0.834 (0.682–1.021)

MVK 15 0.002 0.674 (0.524–0.868)

HMGCS1 5 0.012 2.163 (1.182–3.955)

TM7SF2 44 0.007 0.895 (0.826–0.970)

FDPS 27 0.000 1.477 (1.239–1.761)

MVD 10 0.963 0.993 (0.747–1.322)

DE-CM-RGs, the differentially expressed genes associated with cholesterol metabolism; NAFLD, non-alcoholic fatty liver disease; SNP, single-nucleotide polymorphism; CI, confidence interval;

OR, odds ratio.
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through lipid accumulation, inflammation, and fibrosis (Liu et al.,
2023). Based on our MR analysis and nomogram model, we
identified FDPS as a risk factor for NAFLD. Our findings
suggested that increased FDPS expression was associated with an

elevated risk of NAFLD, consistent with previous research (Liu et al.,
2023). HMGCS1 is a key enzyme in the cholesterol biosynthesis
pathway. Ursolic acid inhibits HMGCS1 activity, reducing
cholesterol-related metabolite production and may explaining its

FIGURE 3
(A–D) Association of MVK, TM7SF2, HMGCS1, and FDPS with NAFLD visualized by scatter plots. (E–H) Funnel plots of the association of
MVK,TM7SF2, HMGCS1, and FDPS with NAFLD. NAFLD, non-alcoholic fatty liver disease.
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FIGURE 4
(A, C, E, and G) Forest plot of the association of MVK, TM7SF2, HMGCS1, and FDPS with NAFLD. (B, D, F, and H) Leave-one-out analysis of the causal
association ofMVK, TM7SF2, HMGCS1, and FDPSwith NAFLD. The black dots and bars indicated the causal estimate and 95%CI when a SNPwas removed
in turn. The red dot and bar indicated the overall estimate and 95% CI using inverse variance weighted method. NAFLD, non-alcoholic fatty liver disease;
CI, confidence interval; SNP, single-nucleotide polymorphism.
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FIGURE 5
(A,B) ROC analysis of four hub genes (MVK, HMGCS1, TM7SF2 and FDPS) for diagnostic performance in GSE135251 and GSE126848 datasets. (C,D)
Diagnostic nomogram for NAFLD using four hub genes (MVK, HMGCS1, TM7SF2 and FDPS) in theGSE135251 andGSE126848 datasets. (E,F) ROC curve of
nomogram in GSE135251 and GSE126848. (G,H) Calibration curves of the nomogram in GSE135251 and GSE126848. ROC, receiver operating
characteristic; AUC, area under the curve; NAFLD, non-alcoholic fatty liver disease.
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therapeutic effects against hyperlipidemia and atherosclerosis and
related disorders (Ma et al., 2022). Additionally, dysregulation of
mevalonate on the CSN6-HMGCS1-YAP1 axis has been found to
specifically promote NAFLD-related liver cancer progression in

HCC development (Li et al., 2024). However, the exact
involvement of HMGCS1 in NAFLD remains unclear. The
TM7SF2 gene encodes a pivotal enzyme involved in cholesterol
biosynthesis and plays a critical role in diverse biological processes,

FIGURE 6
GSEA revealing GO-BP and KEGG items enriched by hub genes. The GSEA results of HMGCS1 (A), FDPS (B), MVK (C) and (D) TM7SF2. GO, Gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological progress; GSEA, gene set enrichment analysis.
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FIGURE 7
Immune infiltration analysis. (A) The heat map showing the distribution of 28 immune cells in NAFLD and controls. (B) Box plots comparing
differences in enrichment scores of 28 immune infiltrating cells between NAFLD and controls. *p < 0.05, **p < 0.01, ***p < 0.001, ns: p > 0.05. (C) Heat
map displaying correlations among different immune cells. (D) Scatter plot of correlation between hub genes (MVK and TM7SF2) and differential immune
cells in NAFLD. NAFLD, non-alcoholic fatty liver disease.
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encompassing liver regeneration (Bartoli et al., 2016) and regulation
of inflammatory response (Gatticchi et al., 2015). The investigation
revealed that a deficiency in TM7SF2 leads to delayed cell cycle
progression and disrupted lipid metabolism during liver
regeneration (Bartoli et al., 2016). Leonardo Gatticchi et al. have
confirmed that the deletion of TM7SF2 disrupts adipogenesis in
mouse embryonic fibroblasts by modulating early and late
regulators, leading to decreased insulin sensitivity and
upregulation of the anti-adipogenic factor matrix
metalloproteinase 3 (Gatticchi et al., 2021). Dysregulation of
TM7SF2 function may contribute to metabolic abnormalities and
diseases, including dyslipidemia, insulin resistance and obesity.

However, the role of TM7SF2 in NAFLD remains to be
elucidated. The MVK gene encodes the enzyme mevalonate
kinase, which plays a vital role in the early stages of cholesterol
biosynthesis. Mutations in the MVK gene can lead to
hyperimmunoglobulinemia D syndrome and mevalonic aciduria
(Brennenstuhl et al., 2021; Haas and Hoffmann, 2006). The
upregulation of MVK was observed in NAFLD patients in this
study; however, further investigation is required to elucidate its
involvement in disease mechanisms.

The activity of HMGCS1 can influence the rate of cholesterol
biosynthesis in the liver. Ligustilide forms an irreversible bond with
the Cys129 site of HMGCS1 through its metabolic intermediate,

FIGURE 8
Regulatory network of hub genes. (A) mRNA-TF regulatory network. Orange for hub genes, pink for TFs. (B) lncRNA-miRNA-mRNA regulatory
network. Orange represents hub genes, green represents miRNAs, pink represents lncRNAs. (C)mRNA-drug regulatory network. Orange for hub genes,
purple for drugs. TFs, transcription factors; mRNA, messenger RNA; lncRNA, long non-coding RNA; miRNA, microRNA.
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leading to a significant reduction in HMGCS1 enzyme activity and
thus effectively ameliorating dyslipidemia induced by a high-fat diet
in mice (Zhang et al., 2023). HMGCS1 also serves as a crucial
molecular connection between obesity, inflammation, type
2 diabetes, and coronary artery calcification (Ding et al., 2015).
Furthermore, TM7SF2, a novel factor, is implicated in the
differentiation of fat cells and the development of adipose tissue
along with metabolic wellbeing (Gatticchi et al., 2021). Depletion of
TM7SF2 may lead to various unfavorable metabolic outcomes
including weight gain, decreased insulin sensitivity, and reduced
Akt kinase activity (Gatticchi et al., 2020), potentially affecting
hepatic lipid metabolism homeostasis due to differences in its
expression or function (Huang et al., 2021). Additionally, Mireia
Junyent et al. suggested that genetic variations in the MVK gene
influence levels of high-density lipoprotein cholesterol, potentially
affecting blood lipid levels (Junyent et al., 2009). In nephrotic rats,
the upregulation of the FDPS gene significantly promotes
cholesterol biosynthesis, providing a crucial insight into the
pathogenesis of hypercholesterolemia associated with nephrotic
syndrome (Zhou et al., 2008). Our review indicates that the four
hub genes are closely linked to cholesterol synthesis and lipid
metabolism, playing pivotal roles in metabolic disorders like
hyperlipidemia, insulin resistance, diabetes, and obesity.
Considering the known correlation between these conditions and
NAFLD progression (Rinella et al., 2024), it is plausible that these
hub genes are strongly associated with NAFLD progression.

Immune dysregulation plays an essential part in NAFLD
pathogenesis. We studied immune infiltration in NAFLD and
found elevated levels of CD56dim NK cells and Th17 cells
compared to control liver samples. Th17 cells significantly impact
immune defense against pathogens that exist outside of cells. The
population of Th17 cells is increased in both the hepatic and
peripheral blood of NAFLD mice (He et al., 2017). Similarly,
patients with NASH exhibit increased hepatic TH17 cell
population (Rau et al., 2016). NK cells are classified into CD56dim

and CD56bright types based on surface density, with the former
exerting cytotoxicity and the latter regulating immunity through
cytokine secretion (Stabile et al., 2017). Previous research has shown
a decrease in CD56bright NK cells in individuals with NAFLD
compared to the control group, while an elevated frequency of
CD56dim NK cells has been observed, consistent with our own
findings (Diedrich et al., 2020). In our investigation, Th2 cell
levels decreased in NAFLD and were associated with MVK and
TM7SF2, but their role in the pathogenesis of NAFLD remains
unclear. Th2 cells can have anti-inflammatory effects through
cytokine secretion. The frequency of Th2 cells was elevated in
peripheral blood of individuals with NAFLD compared to
controls (Rau et al., 2016), but no statistically significant
disparities were noted between NASH patients and both NAFLD
individuals and controls (Inzaugarat et al., 2011). IL-33 stimulates
Th2 cells to produce cytokines, inducing liver fibrosis while reducing
liver damage in a murine model of NASH (Gao et al., 2016). Hence,
additional research is required to elucidate the precise involvement
of Th2 cells in NAFLD.

GSEA showed that FDPS, HMGCS1 and MVK were
significantly enriched in calcium signaling pathways. The
dysregulation of calcium signaling is crucial in metabolism and
has been linked to cancer development (Liang et al., 2018).

RYR1 gene mutations are frequently found in both mouse and
human NASH-HCC, indicating dysregulation of calcium signaling
in cholesterol-related NASH-HCC and NASH rather than steatosis
(Liang et al., 2018). PAR2 impairs glucose uptake and insulin
sensitivity in NAFLD by decreasing GLUT2 expression through
the Gq-MAPK-FoxA3 pathway, and inhibiting insulin-Akt
signaling via the Gq-calcium-CaMKK2 pathways (Shearer et al.,
2022). Unsaturated fatty acid involves FDPS and HMGCS1. The
unsaturated fatty acids can inhibit lipolysis and mitigate hepatic fat
accumulation (Rosqvist et al., 2019). Musa-Veloso et al. discovered
that supplementation withω3-polyunsaturated fatty acids effectively
reduced liver fat content and steatosis score in NAFLD patients
(Musa-Veloso et al., 2018). The previous study proposed that n-3
polyunsaturated fatty acids have the potential to modulate molecular
pathways related to lipogenesis, endoplasmic reticulum function,
and mitochondrial function, leading to improvements in NASH
(Okada et al., 2018).

Considering the limited availability of effective treatments for
NAFLD, this study explored gene-targeted medications that
specifically focus on four hub genes. Tretinoin is a vitamin
A-derived retinoid drug commonly used to treat acne and acute
promyelocytic leukemia. Individuals with NAFLD exhibit decreased
levels of circulating retinoic acid, which plays a crucial role in
hepatic lipid metabolism and insulin resistance (Liu et al., 2015).
Retinoic acid protected against high-fat diet-induced hepatosteatosis
by downregulating Srebp-1c expression and enhancing antioxidant
capacity through a Sirt1-mediated mechanism (Geng et al., 2017).
Alendronate, a pharmacological inhibitor of FDPS used clinically to
treat glucocorticoid-induced osteoporosis, improved inflammation,
steatosis and fibrosis in mice with NASH(27). Zoledronic acid, an
inhibitor of FDPS, mitigated hepatic steatosis by suppressing de
novo lipogenesis in NAFLDmice (Mohamed et al., 2019). Quercetin
ameliorates NAFLD in db/db mice by attenuating inflammation,
oxidative stress, and modulating lipid metabolism via the farnesoid
X receptor 1/Takeda G-protein-coupled receptor 5 signaling
pathways (Yang et al., 2019). Pharmaceutical interventions
targeting these four genes present a novel prospective strategy for
managing NAFLD.

However, our study has several limitations. First, the limited
availability of information in the public datasets necessitates the
inclusion of additional data to increase the validity of the findings.
Second, further validation through mouse experiments and
additional clinical samples is imperative to corroborate the
findings and elucidate the underlying mechanisms of CM-RGs
in NAFLD.

5 Conclusion

In the current study, we have successfully identified four hub
genes (MVK, HMGCS1, TM7SF2, and FDPS) associated with
cholesterol metabolism in NAFLD. Based on these hub genes, we
developed a nomogram to accurately diagnose patients with
NAFLD. Our findings offer potential molecular targets for
elucidating the pathogenesis of NAFLD and guiding the
development of drug therapies. However, the specific
mechanisms involved in disease development and the exact
molecular targets require additional verification.
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