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Introduction: The agriculture genomics community has numerous data
submission standards available, but the standards for describing and storing
single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped.

Methods: To bridge this gap, we leveraged recent advancements in human
genomics infrastructure, such as the integration of the Human Cell Atlas Data
Portal with Terra, a secure, scalable, open-source platform for biomedical
researchers to access data, run analysis tools, and collaborate. In parallel, the
Single Cell Expression Atlas at EMBL-EBI offers a comprehensive data ingestion
portal for high-throughput sequencing datasets, including plants, protists, and
animals (including humans). Developing data tools connecting these resources
would offer significant advantages to the agricultural genomics community. The
FAANG data portal at EMBL-EBI emphasizes delivering rich metadata and highly
accurate and reliable annotation of farmed animals but is not computationally
linked to either of these resources.

Results: Herein, we describe a pilot-scale project that determines whether the
current FAANGmetadata standards for livestock can be used to ingest scRNA-seq
datasets into Terra in a manner consistent with HCA Data Portal standards.
Importantly, rich scRNA-seq metadata can now be brokered through the
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FAANG data portal using a semi-automated process, thereby avoiding the need for
substantial expert curation. We have further extended the functionality of this tool
so that validated and ingested SC files within the HCA Data Portal are transferred to
Terra for further analysis. In addition, we verified data ingestion into Terra, hosted
on Azure, and demonstrated the use of a workflow to analyze the first ingested
porcine scRNA-seq dataset. Additionally, we have also developed prototype tools
to visualize the output of scRNA-seq analyses on genome browsers to compare
gene expression patterns across tissues and cell populations. This JBrowse tool
now features distinct tracks, showcasing PBMC scRNA-seq alongside two bulk
RNA-seq experiments.

Discussion: We intend to further build upon these existing tools to construct a
scientist-friendly data resource and analytical ecosystem based on Findable,
Accessible, Interoperable, and Reusable (FAIR) SC principles to facilitate SC-level
genomic analysis through data ingestion, storage, retrieval, re-use, visualization,
and comparative annotation across agricultural species.

KEYWORDS

single-cell RNA-seq, metadata, HCA data portal, data ingestion portal, FAANG, data
submission standards, data resource and analysis, FAIR

Introduction

The analysis of how genome information creates phenotypes at
the single cell level, the fundamental unit of biology, is a powerful
approach for understanding genome function, and is rapidly
becoming the gold standard for human genetics research
predicting phenotype from genotype. The complex tissues
analyzed in traditional genomics research contain many cell
types, mixing their gene expression patterns. This makes it hard
to see how genes are regulated within specific cell types, and it
prevents us from accurately linking genotypes to specific cellular
phenotypes. To make the enormous promise of single-cell genomics
a reality for the agricultural genome to phenome community, we
need to develop Findable, Accessible, Interoperable, and Reusable
(FAIR) single-cell data resources, analysis platforms and informatic
tools for storing, sharing, and analyzing such data that is currently
generated in crop and livestock research groups. Such data is a
mixture of all patterns, obscuring regulatory function acting
specifically within individual cell types and preventing
recognition of the genotype link to cellular phenotypes.
Recognition is growing in the agricultural genomics community
that genomics data could be more widely re-used if it was more
readily available, comprehensible, and easier to integrate with other
data (Clark et al., 2020; Harrison et al., 2021). This is especially true
for new data types, such as single-cell RNA-seq (scRNA-seq) data
providing cellular heterogeneity, which is rapidly expanding across
crop and livestock research (Chen et al., 2023; Cole et al., 2021;
Herrera-Uribe et al., 2023). The community has numerous data
submission platforms for traditional tissue-level analyses available,
but little experience in describing and storing single-cell data or
meta-data (Wang et al., 2019). The term “metadata” refers to
additional details or characteristics linked to individual cells in a
dataset (Sheffield et al., 2023). Linked metadata that describes the
biological sample from which genomic sequences are derived and
analyzed, as well as the processes used to create the data, are crucial
for reuse of such data. The establishment of metadata standards
plays a pivotal role in the single-cell era and is of the utmost

importance for understanding the complexities of SC datasets.
Rigorous dataset description enables researchers to derive
valuable biological insights such as annotation of individual cell
types within tissues throughmerging disparate data andmaximizing
power of any inference. However, there are challenges when reusing
and integrating SC data. These challenges include; data
heterogeneity such as comparison and integration of SC datasets
across different studies; inconsistency in experiment protocol and
sample handling which may lead to batch effects; annotation
discrepancies which hinder accurate comparison of scRNAseq
data; lack of comprehensive metadata which is essential for
reproducibility; as well as inconsistent sample preparation and
sequencing techniques contributes to technical variability which
can confound biological signals thus leading to challenges and
reproducibility and interpretation of results across different
studies (Adil et al., 2021). For example, Grones et al. (2024)
focused on following established protocols for data generation,
ensuring thorough analysis and quality control, storing data and
extensive metadata in publicly accessible databases, and
meticulously documenting all procedures and analyses for
reproducibility across studies which are necessary to improve
transparency and utility in scientific research (Hovig et al., 2021;
Harrison et al., 2021; Azevedo and Dumontier, 2020; Jacobsen et al.,
2020; Wilkinson et al., 2018; Wilkinson et al., 2019). To improve
data reusability, it is crucial to provide extensive metadata including
data provenance and clear usage guidelines to evaluate the quality
and reliability of data thus aiding in the FAIRification of data
(Thompson et al., 2020; Weigel et al., 2020; Wilkinson et al., 2016).

The Human Cell Atlas- Data Portal (HCA-Data Portal)1, Single
Cell Expression Atlas (SCEA)2, Plant Cell Atlas (PCA)3, and

1 https://www.humancellatlas.org/

2 http://www.ebi.ac.uk/gxa/sc

3 https://www.plantcellatlas.org/
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Functional Annotation of Animal Genomes (FAANG)4 efforts are
prominent initiatives in the field of single cell genomics, each
employing distinct metadata frameworks to facilitate data
organization and dissemination (Giuffra and Tuggle, 2019; Jha
et al., 2021; Lun et al., 2019; Papatheodorou et al., 2019). There
are also new databases that contain data from single-cell based
analyses in bacteria for interested readers (Childs et al., 2024). HCA-
Data Portal (Regev et al., 2018) is integrated with Terra (Perkel,
2022), a secure, scalable, open-source platform for biomedical
researchers to access data, run analysis tools and collaborate.
This cloud-based platform is co-developed by the Broad Institute
of MIT and Harvard, Microsoft, and Verily, with the goal of
accelerating biomedical innovation including scGenomics.
Currently, the most comprehensive data ingestion portal for high
throughput sequencing datasets from plants, fungi, protists, and
animals (including humans) Annotare (Athar et al., 2019), ensures
that sufficient metadata are collected to enable re-analysis and
dissemination via the SCEA housed at the EMBL-European
Bioinformatics Institute (Papatheodorou et al., 2019). Another
EMBL-EBI portal limited to animal datasets, the FAANG data
portal (Giuffra and Tuggle, 2019; Harrison et al., 2021), provides
bulk and scRNA-seq data access which uses a semi-automated
process to submit and validate files using the HCA Data Portal
(Regev et al., 2018)metadata and data validation service. HCA’s
metadata structure encompasses five primary categories:
biomaterials, processes, protocols, files, and projects. These
categories serve as a comprehensive framework to document and
contextualize data. Biomaterials capture information about the
biological specimens, while processes detail the experimental
techniques involved in data generation. Protocols elucidate the
methodologies or procedures employed, and files house the raw
and processed data. Projects, as a broad category, provide the
research framework and overarching goals. The HCA-Data Portal
has been in existence since 2019 and has incorporated 20 million
cells from over 2,000 donors, covering 64 organs in the human body,
from over 300 labs around the world.

FAANG, in contrast, adopts a FAIR-centric metadata hierarchy
that comprises samples, experiments, and analysis. Samples outline
the biological origins of an experiment, experiments capture the
experimental procedures, and analysis explains the data processing
and interpretations. This schema aids in the organizing and
monitoring of data as it moves through various data generating
and analysis stages. The FAANG data portal itself serves as a
centralized, focused resource, offering researchers a wealth of
validated, richly described, and high-quality datasets for genome-
to-phenome research. Historically, the FAANG data portal has
housed tissue-level data, but single-cell datasets are increasing
(Herrera-Uribe et al., 2021). The portal offers an API that
facilitates comprehensive searches across all FAANG data portal
fields, enhancing accessibility and reusability for researchers
(Harrison et al., 2018).

The Plant Cell Atlas (PCA), initiated in 2019, functions as
another collaborative research coordination network accessible at
www.plantcellatlas.org/, that intends to comprehensively describe

the state of various plant cell types and aims to integrate high-
resolution location information of nucleic acids, proteins, and
metabolites within plant cells (Rhee et al., 2019). The recent
roadmap paper by the Plant Cell Atlas Jha et al. (2021)
delineates the strategic steps towards achieving this ambitious
goal. This article and a companion article by Fahlgren et al.
(2023) delve into the essential data infrastructure required to
support the PCA, addressing critical aspects such as data
collection, curation, standardization, integration, and visualization
(Ahmed et al., 2021). The articles also explore funding mechanisms
for such infrastructure, drawing insights from models utilized by
other online resources, though, for now, data standards are being
developed as an unfunded community effort. Anticipated data from
PCA-associated projects will include initial datasets like single-cell
RNA sequencing matrices, subcellular quantitative mass-
spectrometry proteomics and metabolomics data, and fluorescent
protein (GFP) localization images, and comparative -omics between
plant species contributing significantly to advancing our
understanding of plant cellular dynamics (Fahlgren et al., 2023).

The Single Cell Expression Atlas, available at https://www.ebi.ac.
uk/gxa/sc/home (Papatheodorou et al., 2019) is a valuable
bioinformatics resource, providing an integrated online platform
comprising a database, user interface, and web service. This resource
facilitates convenient access to extensive information on gene
expression patterns across diverse species, tissues, cells,
experimental conditions, and diseases. SCEA’s metadata
framework aligns closely with the AE (ArrayExpress) (Parkinson
et al., 2007) platform, adhering to the MIAME (Minimum
Information About a Microarray Experiment) (Rayner et al.,
2006) and FAIR principles (Wilkinson et al., 2016). Expression
Atlas has evolved to incorporate datasets from various reputable
sources and repositories, including NCBI’s Gene Expression
Omnibus (GEO)5 (Clough and Barrett, 2016), the European
Nucleotide Archive (ENA)6 (Leinonen et al., 2011a), and
controlled access datasets like GTEx (Aguet et al., 2020).
Currently, the SCEA encompasses data from 12 different species,
encompassing not only Homo sapiens but also model organisms
such as Mus musculus, Arabidopsis thaliana, and Drosophila
melanogaster. The curation of metadata is conducted in-house
through a semi-automatic process, involving the identification of
experimental factors such as cell types, diseases, or perturbations.
The existing landscape of single-cell tools for storing metadata
includes platforms like Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016), ArrayExpress (AE)7(Parkinson et al.,
2007), Fly Cell Atlas8 (Li et al., 2022), HuBMAP9, CZ CellxGene10

(Abdulla et al., 2023), and scPlantDB11 (He et al., 2024), catering to

4 https://www.animalgenome.org/community/FAANG/

5 https://www.ncbi.nlm.nih.gov/geo/

6 https://www.ebi.ac.uk/ena/browser/

7 https://www.ebi.ac.uk/biostudies/arrayexpress

8 https://flycellatlas.org/#tissues

9 https://portal.hubmapconsortium.org

10 https://cellxgene.cziscience.com/gene-expression

11 https://biobigdata.nju.edu.cn/scplantdb/home
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diverse datasets ranging from human and model organisms to
livestock and crop data. However, a significant drawback arises
from the variability in metadata standards across these databases.
The lack of a standardized ingestion method poses a challenge,
hindering the integration and visualization of data in alternative
portals. Only a few tools are available for agricultural species due to a
lack of standardized ingestion methods.

Our overall aim was to determine if the current metadata
schema for crop and livestock SC data can be used to ingest an
example scRNA-seq dataset in a manner consistent with HCA Data
Portal standards and if established resources such as Terra can be
used to analyze the ingested animal data. This aim was accomplished
through development of specific scripts for processing FAANG data
from that portal to the HCA Data Portal. In addition, we created a
Terra Workspace which features network analysis of ingested data
using GENIE3 algorithm (Huynh-Thu et al., 2010) and a
comprehensive interactive application to view network results in
a html-based web server file. Terra was specifically chosen for this
task because of its robust infrastructure, reusability, scalability, and
its integration of the HCA-Data Portal. Although, JupyterLab can be
used with Amazon S3 storage (Palankar et al., 2008).

Terra offers several advantages for analysis of single cell data,
such as scalable infrastructure, pre-configured workflows, and ready
to implement pipelines that reduce setup time and usability across
large agricultural community datasets. Our proposed use of Terra’s
ecosystem focuses more on the applicability of FAIR data standards
to agricultural datasets, while considering the challenges faced
within the cloud platforms such as platform lock in and
interoperability that often involves upfront duplication of efforts.
The Terra infrastructure addresses these concerns by deploying
three different cloud-based frameworks [Azure (Wilder, 2012),
goggle cloud platform (Bisong, 2019), AnViL (Hall et al., 2023)],
significantly reducing the difficulty of integration with other cloud
datasets (Sheffield et al., 2022).

In addition, we test and develop prototype tools to visualize the
output of scRNA-seq analyses on genome browsers, comparing
across tissues and cell populations. Specifically, we introduce a
genome annotation browser based on JBrowse that can display
single-cell data against gene model annotation in a genome
assembly (Buels et al., 2016). This innovative tool takes the
output generated from Terra’s analysis pipelines and transforms
it into a visually intuitive representation. Researchers can leverage
JBrowse to explore single-cell outputs, facilitating the discovery of
novel biological insights and promoting data reuse.

Materials and methods

In this section, we describe methodologies used to ingest and
validate the workflow to adapt single-cell livestock data into the
HCA-Data portal, primarily focusing on a porcine PBMC dataset.
We further tested Terra’s compatibility with the ingested data by
carrying out single cell-based network analysis. Additionally, we
develop a JBrowse plugin interactive tool to carry out further single
cell visualization based on expression level. This section includes
datasets, web portals, tools and standards used to integrate to the
process of ingestion that can be applied across other agricultural
transcriptomics datasets.

Human cell atlas- data portal workflow
validation

Single-cell livestock dataset for proof-of principle
The peripheral blood mononuclear cell (PBMC) single-cell

dataset was downloaded. The data consists of approximately
28,800 cells from seven separate healthy pigs of various ages
analyzed by Herrera-Uribe et al. (2021). This data represents
typical data produced within animal genomics community.

FAANG metadata schema, rule sets and validation
The FAANG project (Harrison et al., 2021) is a collaborative

endeavor spanning multiple global laboratories, committed to
generating and interpreting high-quality data across an
expanding range of species (Tuggle et al., 2016; Clark et al.,
2020). The data for this study was subjected to the well-
established FAANG sample and experimental metadata standards
and actively promotes best practices in data deposition, description,
and openness (Giuffra and Tuggle, 2019; Tixier-Boichard et al.,
2021). These evolving standards are continually refined under the
guidance of the FAANGMetadata Task Force (Harrison et al., 2021)
and version-controlled on GitHub www.github.com/FAANG/
faang-metadata with well-documented releases of metadata
specifications https://data.faang.org/ruleset/samples#Standard. In
this work, we decreased and enlarged the FAANG rulesets to
incorporate both scRNA and scATAC datasets, primarily
focusing on scRNAseq data shown in Supplementary Table 1.
Currently, there is no standardized pipeline allowing automated
submission of FAANG data from the FAANG data portal to any
resource that allows data analysis beyond simple visualization. The
current FAANG metadata standards are organized into three
distinct rulesets: sample, experiment and analysis spreadsheets
with required, mandatory and optional fields which facilitates
streamlined data submission and reuse within the portal. Once
the spreadsheets were updated according to new single-cell
version, the files then underwent validation and conversion into
JSON files which were used to perform ingestion in the HCA
Data Portal.

HCA metadata schema, data wrangler, validation
The Human Cell Atlas Project is a global initiative with the

ambitious goal of characterizing all human cell types based on their
unique molecular profiles, including gene expression patterns, and
integrating this knowledge with traditional cellular descriptions
(Regev et al., 2017). The project defined a highly structured
metadata standard with a granular design, on which separate
entities represent the stages of the experimental assay (Haniffa
et al., 2021). The metadata schema is organized into distinct
“types,” stand-alone schemas that define the validation rules for
each critical component of experiments. These types include
“biomaterial” for biological materials, “protocol” for experimental
procedures, “processes” for practical application of protocols, “files”
for generated data files, and “project” for high-level, project-specific
information. These types have unique fields tailored to describe their
respective entities and can include supplementary thematically
related fields for flexibility and extensions. Within the framework
of the HCA schema modules, “type” schemas encompass a unique
set of fields tailored to describe the attributes of the corresponding
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entity, inheriting fundamental fields from the corresponding “core”
entity schema. Additionally, they may include supplementary
thematically related fields grouped within Module entity schemas,
offering flexibility and extensions related to the specific type (Regev
et al., 2017; Regev et al., 2018). Embedded within these thematic
modules is a distinct subtype articulated by the HCA schema,
namely, ontologies. Through the incorporation of ontology
modules, the HCA schema provides the ability to precisely
delimit the terms used to define certain attributes (e.g., ethnicity,
species) to a set of curated, controlled vocabulary terms, further
enhancing the interoperability of the data (Osumi-Sutherland et al.,
2021). In the process of metadata submission within the HCA Data
Portal, the majority of metadata fields are provided by the data
contributors during the submission phase. However, a specific
subset of fields within the metadata standard is furnished by the
Ingestion Service component of the Data Platform (Rozenblatt-
Rosen et al., 2021).

To address the differences between the HCA and FAANG
schema, we introduced a pipeline as a proof of principle within
the HCA branch that now specifically handles the updated FAANG
schema. Subsequently, we adapted and customized available schema
and generated entities to integrate the first single-cell porcine dataset
into Data Portal ingestion service within the HCA-Data
coordination platform framework.

Terra cost, billing and workspace

We utilized a cloud-based platform to store and analyze ingested
pig single-cell data called Terra https://app.terra.bio/ (Perkel, 2022).
To tailor secure and scalable environment for data analysis of gene
regulatory networks, we configured a Microsoft Azure platform
hosted at Iowa State University and a built in workspace titled
“AG2PI-ingest”. Terra uses data tables to record metadata, and URI
linking to cloud-stored data files, enabling users to easily filter and
query massive datasets. This environment is complemented by
JupyterLab, which lets users create, execute, and debug code in
an interactive notebook configuration with pre-configured tools.
Virtual Machines (VMs) provide the computational power needed
for analyses, which come in a range of sizes with various sizes
available to maximize efficiency and minimize cost. These VMs can
be customized with specific software environments.

To test Terra’s compatibility with the ingested data, we
implemented an analytical pipeline deploying GENIE3 network
analysis tool on Azure platform. We established a virtual
environment within Terra workspace through an interactive
Jupyter notebook to perform the network analysis. Cloud costs
will vary depending on the resources being leveraged, with major
sources being cloud storage, compute, and egress (aka. moving data
out of the cloud). As an example, the cost of computing and disk
usage for our Azure platform-based analysis via an interactive
Jupyter notebook on a virtual machine was $4 for 3 days in
202412. GENIE3, developed by (Huynh-Thu et al., 2010), uses
regression tree ensembles to predict the levels of gene expression

based on the data of other genes. The GENIE3 tool identified
interactions between transcription factors (TF) and target genes
(TG) particularly in the CD4+ T cell type, with measured
importance scores thereby treating each gene as a target variable to
identify which genes best predict its expression. We used python
programming language to predict the networks and downloaded the
transcription factors from animalTFDB (Hu et al., 2019) database and
the target genes from the ingested dataset. Consequently, the results
were plotted using the Pyvis library in Python, which was used to
develop the web interface for displaying the results generated by
GENIE3 (Perrone et al., 2020). Terra’s workspace configuration not
only allows for detailed analysis but also supports reproducibility as all
users/collaborators have access to the shared workspace.

In addition to storing data, Terra’s public cloud infrastructure
facilitates easier organization, access and analysis by allowing users
to share workspaces with collaborators. Workspaces combine data,
metadata, and analysis tools into a secure cloud workbench. The
platform provides three distinct access levels for a workspace,
namely, a writer, owner, and reader, each having a unique set of
permissions. WDL scripts enable workflows in Terra that can be
written by users or transferred from resources such as Dockstore
(O’Connor et al., 2017) hence improving the reproducibility and
accessibility of research13.

EBI single-cell expression atlas workflow
validation

Single-cell dataset for plant and animal
data ingestion

Plant single-cell expression data derived from 20 experimental
studies from 4 major plant genomes (A. thaliana, Oryza sativa,
Solanum lycopersicum, Zea mays) (Supplementary Table 2) has
been ingested into the EMBL-EBI single-cell expression atlas
(Papatheodorou et al., 2019) in close collaboration with the
Gramene14 (Tello-Ruiz et al., 2021). After the extensive manual
metadata curation and quality checks by experts, this data is
displayed for users on the EMBL-EBI single-cell expression atlas
site (www.ebi.ac.uk/gxa/sc) to explore through dimensionality
reduction plots, gene expression heatmaps and marker genes.
This data will also be indexed and accessible at cellular level via
an embedded Atlas widget within Gramene’s search browser https://
www.gramene.org/in the future. Similarly, animal single cell
expression data was derived from existing study of PBMC
porcine single-cell dataset (Herrera-Uribe et al., 2021). The data
consists of approximately 28,800 cells from seven separate healthy
pigs of various ages and has been ingested to EMBL-EBI single-cell
expression atlas.

Single cell expression atlas data ingestion
To foster integration with various model organism communities

and ensure the harmonious comparison of datasets generated across

12 https://support.terra.bio/hc/en-us/sections/10090806360475

13 https://support.terra.bio/hc/en-us/articles/13184974155803-Cloud-

environment-Persistent-Disk-storage

14 https://www.gramene.org/
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multiple laboratories, a concerted effort has been made by SCEA to
standardize metadata and the requirements for raw and processed
data (Wilkinson et al., 2016). Moreover, for technological metadata
encompassing facets like library construction, cell isolation, and
cDNA amplification, new Minimum information for Single Cell
experiments (MinSCe) and previous MAGE-TAB standards have
been established. These standardized terms have been thoughtfully
integrated into the Experimental Factor Ontology (EFO) (Malone
et al., 2010), with unique labels assigned to each entity, further
promoting consistency and clarity in metadata representation. We
closely worked with the Gramene collaboration and EMBL-EBI for
the ingestion of bulk and single-cell plant and animal data, to ingest
various datasets in the portal. Furthermore, we used their existing
ingestion pipeline to add the first pig single-cell datasets to the SCEA
portal. A reproducible scRNA-Seq dataset comprises three
fundamental components: raw data, processed data, and
metadata, which serves to describe and link to the raw data. This
cohesive framework is followed by the data submission tool,
Annotare (Athar et al., 2019) or the existing datasets which are
extracted from GEO/AE. Upon the data submission process’s
completion, a rigorous manual review is undertaken to ascertain
the completeness and integrity of the raw data and metadata. In the
latest release of the SCEA (Moreno et al., 2022), a comprehensive
suite of visualization tools is offered to empower users to explore cell
clusters, gene expression levels, and the values of metadata fields.
This view reveals either the author’s inferred cell types, if available,
or, in their absence, the atlas-calculated cluster annotations at an
intermediate resolution value. An important addition to this release
is the computation of marker genes, now available not only for the
author’s inferred cell types but also for the cell clusters determined
by SCEA. This enhancement further enriches the analytical
capabilities of the platform, enabling users to gain deeper insights
into cell heterogeneity, gene expression patterns, and the biological
underpinnings of the datasets.

Additional tool development for interactive
visualization: JBrowse genome browser

To facilitate the visualization of scRNA-seq-based expression
levels in a genomic context, we developed a plugin for the JBrowse
genome browser (Buels et al., 2016). The test dataset used for
development was the same PBMC dataset used in the
development of the data ingestion workflow (Herrera-Uribe
et al., 2021). We developed the test genome browser using the
Sscrofa11.1 genome assembly and the associated gene annotation
from Ensembl Release 97. Starting with a Seurat object (RDS
format), we used the ExportToCellbrowser function in Seurat
3.1.4 to export an expression matrix (exprMatrix.tsv) and a cell
metadata file (meta.tsv), which are formatted for use with the UCSC
Cell Browser (Speir et al., 2021). We then used utilities available
from the UCSC Genome Browser website (Raney et al., 2024) to
further format the data to create an input file for a genome browser
track. First, matrixClusterColumns was used to combine the
exprMatrix.tsv and meta. tsv files, creating a new expression
matrix containing cell clusters or types as column headers. Then
matrixToBarChartBED was used with the new expression matrix
and BED file of gene annotations to convert the expression matrix

into BED6+4 format containing gene identifiers, gene locations,
gene names and their expression levels for each cell type. The
resulting BED file was sorted using bedSort, and a bigBED file
was created using bedToBigBED. Code for the JBrowse track plugin
was developed using guidelines provided on the JBrowse
website https://jbrowse.org/docs/plugins.html and by investigating
existing JBrowse plugins. We developed and tested the plugin
using JBrowse Release 1.16.11, as implemented with Apollo 2.7.0
(Dunn et al., 2019).

In conclusion, distinct portals that were used above to develop
an ingestion framework enhances the findability, accessibility,
interpretability and reusability of single cell transcriptomics
datasets across different livestock species along with interactive
visualization. This will also facilitate the future ingestion and
computational workflow developments within the plant single
cell community.

Results and discussion

In this section, our purpose was to construct an infrastructure to
leverage the well-established single-cell metadata standards within
the agricultural genomics community for enhancing data reusability
along with testing the compatibility of the associated computational
environment. We aimed to develop pipelines for ingestion and
validation of livestock data into globally recognized tools such as
the services and infrastructure supporting the HCA-Data Portal and
SCEA. By doing so, this reuse will enhance the single-cell
infrastructure for agricultural species, fostering improved data
interoperability and accessibility across diverse genomics platforms.

Improvement in animal workflow pipeline:
FAANG data portal to HCA data portal
workflow development

We opted to utilize a porcine scRNA-seq dataset (Herrera-Uribe
et al., 2021) as a proof of principle of the workflow developed to
move data from FAANG data portal to the HCA Data Portal. We
aimed to develop pipelines for ingestion and validation of livestock
data into globally recognized tools such as the services and
infrastructure supporting the HCA-Data Portal and SCEA. By
doing so, this reuse will enhance the single-cell infrastructure for
agricultural species, fostering improved data interoperability and
accessibility across diverse genomics platforms. Thus, we opted to
utilize a porcine scRNA-seq dataset (Herrera-Uribe et al., 2021) as a
proof of principle of the workflow developed to move data from
FAANG data portal to the HCA Data Portal. This dataset serves as a
representative example of the data generated by the animal
genomics community, illustrating the practical application of our
prototype in real-world scenarios. Currently FAANG portal only has
rulesets for bulk RNA seq, therefore we undertook the task of
updating the rule sets for single-cell data using the existing
metadata structure in the FAANG portal, encompassing both
scRNA and scATAC data. To align these datasets with the
current metadata standards, we established new descriptors for
samples, experiments, and analysis spreadsheets in accordance
with the FAANG metadata schema as shown in Supplementary
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Table 1. Subsequently, we created JSON files from the updated
spreadsheets and subjected them to validation using the FAANG
validation system. In our proof-of-principle for data ingestion, we
ingested the FAANG-validated files, adapting non-human schemas
via the HCA Data Portal ingest platform as illustrated in Figure 1.
The JSON schema for the ingestion of FAANG data into the HCA
Data Portal can be accessed through this link: https://github.com/
ebi-ait/ag2pi-2-ingest/tree/main/json_schema During the ingestion
process, we encountered certain discrepancies arising from
differences in schema, metadata adaptors and validation services
between the two portals.

To address these challenges, we took a systematic approach
which would require a data wrangler (Figure 1). We established a
separate branch for the proof of principle ingestion, named the
FAANG to HCA branch, and made the source code available on this
GitHub Link: https://github.com/ebi-ait/ag2pi-2-ingest. This
allowed us to streamline our efforts to harmonize the data and
metadata. Our first challenge for FAANG to HCA JSON schema
transformation centered around the categorization of fields in the
FAANG schema, which includes “optional,” “recommended,” and
“mandatory” values. In contrast, the HCA JSON schema primarily
covers “mandatory” and “optional” fields, not allowing non-defined
attributes to be passed down. To resolve this, we excluded the
“recommended” category and updated the FAANG rule sets and
JSON files accordingly to align with the new schema. Therefore, for
all new incoming datasets we changed the rulesets of FAANG-HCA
JSON schema to include only “mandatory” and “optional” fields to
be further ingested within the HCA-Data Portal.

The second challenge arose when translating the documents
(metadata files) generated by FAANG into documents that could be
ingested into the HCA Data Portal ingest platform. As previously
mentioned, the HCA portal data model is composed of experimental
entities, linked together to form graph structures that represent

biological assays. On the other hand, FAANG organizes the data in a
slightly more compact data model, where only three JSON files are
generated: analysis, samples, and experiment information. To tackle
this challenge, we designed a script to translate these three types of
files into separate entities that could be ingested and would address
the generated FAANG-to-HCA schemas https://github.com/ebi-ait/
ag2pi-2-ingest/blob/main/src/utilities/clean_data.py. For any new
FAANG ingested dataset, the analysis, samples and experiment
information metadata files will be divided into separate entities
to match HCA-Data Portal ingestion schema.

Subsequently, as the FAANG data portal allows analysis
sequence files submission to ENA, there was no connection to
samples and experiment files as required by the HCA schema.
Thus, our third challenge centered around establishing such
connections between the analysis files and other related
components. This information is collected in the metadata in
FAANG via connection attributes, whereas the HCA portal
schema links the assay parts via database linking of entities. We
wrote several adaptation scripts to translate these relationships into
database links, connecting the organism, specimen and file metadata
in the database https://github.com/ebi-ait/ag2pi-2-ingest. This is
shown as a JSON format image in Figure 1, which is an analysis
FAANG adapted JSON file translated into new FAANG to HCA
schema. Henceforth, FAANG validated datasets will have a
connection between all three files to be directly ingested within
HCA-Data portal to facilitate automated curation.

A fourth challenge emerged from the absence of a project
information tab in the FAANG background files. The HCA Data
Portal schema relies on this tab to contain critical information for
data search and extraction. To resolve this, we manually collected
and introduced the project information in our ingestion script from
the existing accession sources, such as ENA, the FAANG portal and
the (Herrera-Uribe et al., 2021) metadata of seven PBMC dataset

FIGURE 1
Ingestion in HCA Data-Portal; First result of FAANG-HCA JSON schema is one of the entities in the API, showing the transformation in the format by
data wrangler employing metadata adaptors and validation checks. The points (1–5) in FAANG-HCA JSON schema shows the steps optimized to make
data compatible and validated in the HCA ingestion service. The second result is JSON validated schema bymetadata adaptors in HCA-Data Portal which
shows an image of the UI of validated entities along with data transfer into Terra by data wranglers.
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used, effectively generating a comprehensive project information tab
aligned with HCA data ingestion project and the
metadata standards.

Lastly, the fifth challenge involved a critical component in the
HCA-Data portal schema, the self-describing attribute “described_
by”. This field points to the JSON schema URI and serves as a way
for each of the documents to include information about what fields
can/must be included, alongside description and validation rules. To
address this, we laid out the schemas in a public GitHub repository
and included the field referencing the JSON documents in this
repository https://github.com/ebi-ait/ag2pi-2-ingest/tree/main/
examples. While solving these challenges, we also designed the
first steps into making a sustainable, interoperable process, by
identifying and designing solutions that could be applied to
future ingested datasets, should they need to be ingested by other
data wranglers until the full infrastructure can be adapted.

The metadata schema, aligned with HCA Data Portal standards,
aided the data ingestion as well as validation into the HCA Data
Portal ingestion service through the HCA-JSON schema validation
illustrated in Figure 1. To achieve a reproducible metadata transfer
for every dataset, we established a dedicated GitHub page under
AG2PI - > Ingest, accessible under the EMBL-EBI-AIT organization
at https://github.com/ebi-ait/ag2pi-2-ingest, utilizing Python
scripting as an initial proof of concept. Initially, a script was
developed to refine the metadata, enabling operations such as
cleaning, deletion, or addition of files and attributes in JSON
format according to the FAANG-to-HCA Data Portal JSON
schema. Furthermore, comprehensive guidelines were provided
on the GitHub page, offering a step-by-step description for
creating a new submission adhering to FAANG-to-HCA Data
Portal standards. This ensures a standardized and reproducible
process for further testing while the infrastructure is adapted to
accommodate for future datasets. The GitHub page also features the

creation of a valid graph within the HCAData Portal, illustrating the
interlinkages among files and the flow of the data ingestion process.
The HCA Data Portal ingestion platform provides supplementary
metadata, required for systems to understand, classify and validate
the data, such as schema version (to understand which set of rules
entities were validated) and UUID (Unique Universal identifier),
amongst others. To enhance the FAANG-validated JSON files, we
introduced these additional fields that aimed at establishing
connections between the files and ensuring their successful
validation, reinforcing the comprehensive nature of the metadata
ingestion process. Furthermore, a script was implemented to
generate a new spreadsheet, facilitating user downloads or
downstream analysis. This step enhances the accessibility of the
data for users who wish to delve deeper into its specifics. Following
the successful ingestion and showcasing of the data on the HCA
Data Portal ingestion service, the subsequent phase involves
transferring the data to a computing environment. This transfer
is executed using a curl command, providing access to a plethora of
single-cell tools. Users can either employ existing pipelines or create
customized ones for further analysis, unlocking the potential for
discovering new biological insights.

Terra workflow for gene regulatory network
analysis using GENIE3

To utilize the Terra environment once the porcine PBMC data
was ingested and validated, a comprehensive gene regulatory
network analysis was conducted. A new workspace named
“AG2PI-ingest” was then created, and writer, reader or owner
access was granted to the collaborators along with the metadata
tables, which can be imported and reviewed in the workspace under
data tables column as illustrated in the left of Figure 2. For the

FIGURE 2
Terra Workspace Dashboard for AG2PI-Ingest showing metadata tables linked to cloud native file storage (left), workspace faceted search (upper
right), and cloud computing environment detail displays for cloud transparency (bottom right).
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analysis of the ingested data, a virtual environment was established
within an interactive Jupyter notebook which employed
GENIE3 algorithm showing significant TF associated with the
TG and an importance score, influencing gene expression in the
CD4+_T cell type of the healthy PBMC data. Importance scores/
weights are computed by averaging across all trees in the model and
are quantified by metrics such as Gini importance. This constructs
key regulatory networks with rankings and an importance score for
every TF and their TG. As demonstrated in Figure 3, prediction from
table shows the scores of top 8 target genes along with their
transcription factors with measured importance scores as
representation of their ranked interactions.

We chose the specific TF network for HMGB2 because it contained
the strongest hub gene. Moreover, the involvement of HMGB2 in T cell
transcriptional regulation is known (Neubert et al., 2023). This is now
illustrated for pig cells for the first time using an interactive web-based
HTML file represented in Figure 3. This analytical workflow involves
using a Jupyter notebook within Terra to analyze the ingested data,
visualize the network and create an example workspace, which
demonstrates how to manage cloud resources and computing
environment along with infrastructure and other costs involved
which in our case amounted to approximately $4 for this specific
analysis as indicated above. The link and documentation to the
Jupyter notebook analysis is at GitHub repository for further reuse
https://github.com/kapoormuskan/Terra-Analysis. Additionally, the
computational environment within the Terra platform provides
functionalities such as pausing, ending, or initiating new
environments, which helps manage associated costs effectively.

General route of metadata flow for current
and improvedworkflows in plant, animal and
public databases

In single-cell RNA sequencing (scRNA-seq), the general
workflow now unfolds through three different paths, namely,

datasets submitted on plants through a community such as Plant
Cell Atlas, datasets submitted on farm animals through the FAANG
community which is focusing on data standardization across diverse
animal species, and the domain of public data like AE or GEO
(Figure 4). Different communities of researchers approach data
archiving, processing, and metadata reporting using various
strategies.

In the plant community, where these tasks are not tightly
coordinated, this usually entails researchers depositing raw data
in large public nucleotide repositories [NCBI SRA (Leinonen et al.,
2011b), EBI ENA (Leinonen et al., 2011a)], processing their data
using ad hoc scripts that utilize various available R or python
packages, and hosting processed data and experimental and
inferred metadata either as Supplementary Tables accompanying
the manuscript describing the experiments, on public expression
repositories such as the Gene Expression Omnibus (Clough and
Barrett, 2016), FigShare (Thelwall and Kousha, 2016), and SCEA
(Papatheodorou et al., 2019) or on researcher-curated webpages
(e.g., scPlantDB) (He et al., 2024). Within the existing SCEA
framework, the path involves time-consuming manual curation,
and the metadata submission which takes place in Array Express
(Parkinson et al., 2007) with minimal annotation or in SCEA specific
data submission tool called Annotare (Athar et al., 2019). The
pipeline initiates by sourcing the raw sequencing dataset from
public archives, such as NCBI’s Gene Expression Omnibus
(GEO) (Clough and Barrett, 2016), BioStudies (Sarkans et al.,
2018), and the European Nucleotide Archive (ENA). A critical
step of data curation and validation is carried out by the curators
employing a suite of in-house scripts. In Figure 5, the data
acquisition from GEO is depicted, followed by the execution of
semi-automated scripts by the curators. These scripts play a crucial
role in converting the existing standards into a MAGE-TAB
format, comprising IDF and SDRF files. Upon the successful
conversion of files, subject matter experts (SMEs) conduct
thorough file checks and map ontology terms to describe the
entities and allow comparison of the same cell type across

FIGURE 3
Analysis using Terra workspace for gene regulatory network analysis deploying GENIE3 algorithm for the ingested porcine scRNA-seq data. The
figure highlights the interactions between transcription factors (TF) and target genes (TG) particularly in CD4+ T cell type, with measured importance
scores showing the ranked interactions of each TF on its target genes.
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multiple datasets. Additional information is incorporated into
both IDF and SDRF files specifically tailored for single-cell data.
Subsequently, SMEs perform validation checks on the converted
data. Once the validation process is successfully completed,
configuration scripts are generated. These scripts serve as the
basis for transferring the data to SCEA and are executed by the
SMEs at EBI. This meticulous process ensures the integrity and
quality of the data, adhering to standardized formats and

facilitating its integration into SCEA portal for further
visualization processes and consequently downstream analysis
in the Galaxy (Tekman et al., 2020) computing environment.
To facilitate user access and analysis, tools like Galaxy are
available within the SCEA portal, enabling users to conveniently
retrieve metadata via accession numbers and conduct data analysis
and visualization. This integrative approach underscores the
significance of robust data management and accessibility within

FIGURE 4
The general route of meta-data flow in Plant cell atlas, public, and Animal. The black arrows with pink and blue boxes shows existing manual and
automated path to the exsisting pipelines. Whereas the red arrow with numbering shows the steps we employed to achieve an automated pipeline from
FAANG portal to HCA- Data portal from which ingested data is then transferred and shown in Terra.

FIGURE 5
Ingestion of Plant Side, the Single-cell data from public archives follows a route through three scripts. The data can be visualized in the SCEA portal
itself and analyzed in the GALAXY through web API retrieval.
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the scRNA-seq landscape, ultimately advancing our understanding
of single-cell biology.

For livestock, most of the available data has followed the same path
as for crops above; submission to ENA or NCBI with minimal metadata
descriptions. However, for FAANG, the path of scRNA-seq data and
metadata is now submitted through a predominantly automated process,
which is preferred due to increased throughput as well as efficiency and a
main objective of our study. This pathway now involves the addition and
submission of new single-cell rulesets and raw sequencing data to the
FAANG and ENA portals. Data flows from the FAANG portal to the
HCA Data Portal ingestion process through automated data ingestion,
and further validation is performed during the flow to Data Portal
ingestion service. Furthermore, the dataset is automated to be effortlessly
incorporated into EMBL-EBI’s ingestion service and subsequently
transferred to Terra, facilitated by an automated curl command by
the data wranglers.Within the Terra environment, researchers/users can
find dedicated workspaces and repositories optimized for single-cell
analysis. These resources house a suite of powerful single-cell analysis
and visualization tools, fostering collaboration and knowledge sharing
among diverse scientific communities.

In the context of public data within the scRNA-seq domain, the
workflow closely parallels that of the plant pathway (Papatheodorou
et al., 2019), with the primary distinction in the origin of the data,
which predominantly derives from pre-submitted datasets such as
ENA/GEO or AE (Clough and Barrett, 2016; Leinonen et al., 2011a;
Parkinson et al., 2007). These datasets typically adhere to the MAGE-
TAB format (Rayner et al., 2006), a standard in the field. Rigorous
conversion and validation checks are conducted to ensure that the
formatted data aligns with the SCEA portal. The validation process is
executed by the curators in the EMBL-EBI using specialized scripts.
Once the validation is completed, data is transferred to the SCEA
which provides a conducive environment for improved visualization,
enhanced data reuse, and secure long-term storage.

JBrowse genome browser track

We wished to enhance the capability of JBrowse (Buels et al.,
2016), a widely used genome browser platform, to display scRNA-
seq-based expression data in a genomic context, similar to the
scRNAseq tracks available in the UCSC human genome browser
(Raney et al., 2024), so we developed a JBrowse plugin called
“BarChartViewer”. By implementing this plugin in a
JBrowse1 instance, tracks can be created using scRNA-seq-based
expression data in BarChartBED or BarChartBigBED format. The
track provides a histogram for each gene showing expression levels
for each cell type (Figure 6A) in a tissue sample. The width of each
histogram spans the length of a gene, and it adjusts in width
according to the genome browser zoom level. Right clicking a
histogram opens a window showing details including a table with
expression values and cell types (Figure 6B). scRNA-seq expression
data tracks provide an additional layer of annotation that can be
viewed in the genome browser in the context of many other genome
annotation data types, such as bulk RNA-seq and functional
annotation data. If multiple samples of the same tissue are
available, sample-specific scRNA-seq histogram tracks allow users
to quickly compare relative cell-type expression levels for the same
gene. The plugin code and the current version 1.0 is accessible by
clicking on “Releases” on GitHub https://github.com/elsiklab/
BarChartViewer with the example track data and track
configurations.

To conclude, the outcomes from our data ingestion pipeline and
subsequent analysis within the computational environment of Terra
represent significant advancements particularly in the FAIR
standards within the agricultural genomics community. The
demonstrated successful adaption of HCA metadata schema
aligning with livestock schema provides a refined data ingestion
framework, which will significantly contribute to improving the

FIGURE 6
(A) JBrowse view showing tracks for PBMC scRNA-seq, Ensembl protein-coding genes, and two bulk RNA-seq experiments. The scRNA-seq track
shows a bar chart for each gene, depicting gene expression levels for each cell type. (B) A detailed panel, available by right clicking a bar chart, provides a
table called “Categories and Scores” showing the gene expression level (called “Score”) for each cell type.
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accessibility and utility of single-cell data in future genomics
research. This will further ensure collaborative and accessible
computational framework within Terra providing access to
worldwide researchers aimed at improving the understanding/
cellular heterogeneity of single-cell data.

Conclusion and future directions

This study aimed to address the challenges associated with
metadata standards in agricultural genomics by exploring the
potential value of integrating single-cell data flow from the
FAANG data portal into well-established infrastructures supporting
single-cell research such as the HCA Data Portal and SCEA. We

present a comprehensive overview of our approach, emphasizing the
importance of structured metadata in ensuring Findability,
Accessibility, Interoperability, and Reusability (FAIR) principles in
data management. The present workflow in Figure 7 (outside ring,
currently in place only for FAANG data types) illustrates our
proposed approach to data ingestion, validation, and analysis,
showcasing the potential for integration of agricultural genomics
data into established single-cell research supporting infrastructures.
The inner circle (in pink) provides a schematic depiction of the
process available prior to this work, which involves data transfer to a
web-portal, which are often maintained by individual laboratories,
where it can be used for visualization or analysis. However, this ad hoc
process can create problems with data or metadata not being FAIR
and lacking centralized annotation or knowledge portals. In contrast,

FIGURE 7
Current Status describing the single cell data ecosystem when the data and metadata file is created and transferred to a web-portal with or without
the help of curators. Inner circle (in pink) represents the existing problems with manual curation and the outer circle (in blue) represents FAIR data with
automated curation along with interactive scGenomics tools.
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the details in the outer circle (in blue) shows the specifications that
define our vision to address these deficits, including submission of
data and metadata to various single-cell resources, such as the HCA
Data Platform and SCEA. Users are helped by dedicated data
wranglers and curators who ensure the complete and accurate
automated flow of information. Upon submission, the data
undergoes a rigorous validation process conducted by the data
wranglers. This critical step ensures that the ingested data and
metadata are well-structured and validated, meeting the
community standards of metadata quality. Subsequently, the
validated data is submitted either by a user or automatically from
a portal (e.g., FAANG) to the HCA Data Portal ingestion service.
Once within Terra’s computing environment, users gain access to
many pipelines designed to simplify and enhance data analysis. Terra
offers a diverse array of single-cell analytical pipelines, complete with
example workflows, making it a valuable resource for researchers in
the field. Our overarching goal was to determine the adaptability of
the current metadata schema for crop and livestock data to scRNA-
seq datasets, aligning them with HCA portal standards and further
testing Terra compatibility. Looking forward, our work could lead to
advancements towards metadata standardization across agricultural
platformswhichwill enable better collaboration between data curators
and other scientific communities to refine such future metadata
schemas. Thus, our improved ecosystem benefits the users by
providing access to high quality metadata for human and other
species, automated curation of datasets, simplified data submission
and improved findability of distinct agricultural scRNAseq data.
Agricultural researchers can utilize the HCA-Data portal
framework to gain access to advanced sc tools, workflows and
computational nodes that can also directly use human/mouse data
to perform comparative analysis, integration, and other downstream
applications. Such capability will shift the focus of the single cell
community in agriculture from deposition or handling of datasets
more into analysis and interpretation. In addition, the development of
prototype tools, including a new single-cell track plugin for the
genome annotation browser JBrowse, enhances data visualization
and exploration. This JBrowse plugin allows researchers to explore
cell type expression levels per gene in a genomic context. Furthermore,
this JBrowse instance can be utilized to improve context visualization
to enhance interactive data analysis.

However, additional future work by the community is required
for an optimal environment which will include improved portability
of sc metadata files into computational frameworks to ensure data
and built-in workflows can be efficiently transferred and analyzed
across different cloud platforms. Accessibility across cloud platforms
is required to develop user friendly interface, validated workflows
and analytical tools. These utilities can further be expanded beyond
RNA to other multi-omics studies.

Envisioning the future of agricultural single-cell genomics, we
expect to see a shift towards cloud-based analysis platforms which
for biomedical research currently enables a scalable and secure
environment. Cloud computing infrastructure is mainly
dominated by Google Cloud Platform (GCP), Microsoft Azure
and Amazon Web Services (AWS) (Narula et al., 2015; Geewax,
2018; Wilder, 2012). Acknowledging the potential of cloud
computing, Broad Institute of MIT and Harvard, Microsoft and
Verily co-developed and launched the Terra native platform (Perkel,
2022). Terra is operational on both GCP and Azure (Duyzend et al.,

2024) which focus on data access and sharing, scalable analytical
tools, and robust security measures. Finally, our study contributes to
advancing the field of agricultural genomics by integrating robust
data management, validation, and analysis within a collaborative
and accessible framework.
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