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The complex nature of microbiome data has made the differential abundance
analysis challenging. Microbiome abundance counts are often skewed to the
right and heteroscedastic (also known as overdispersion), potentially leading to
incorrect inferences if not properly addressed. In this paper, we propose a simple
yet effective framework to tackle the challenges by integrating Poisson (log-
linear) regression with standard error estimation through the Bootstrap method
and Sandwich robust estimation. Such standard error estimates are accurate and
yield satisfactory inference even if the distributional assumption or the variance
structure is incorrect. Our approach is validated through extensive simulation
studies, demonstrating its effectiveness in addressing overdispersion and
improving inference accuracy. Additionally, we apply our approach to two real
datasets collected from the human gut and vagina, respectively, demonstrating
the wide applicability of our methods. The results highlight the efficacy of our
covariance estimators in addressing the challenges of microbiome data analysis.
The corresponding software implementation is publicly available at https://
github.com/yimshi/robustestimates.
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1 Introduction

Human microbiome research has significantly advanced our understanding of
microbial communities within the human body and their extensive impacts on human
health. The high-throughput sequencing technologies have enhanced our ability to collect
and analyze vast amounts of sequencing data.
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One critical aspect of microbiome research is differential
abundance analysis, which aims to identify microbial taxa whose
abundance levels differ significantly between different groups or
conditions. This analysis is crucial for understanding how microbial
communities are associated with various health conditions,
environmental factors, or other biological states (Paulson et al.,
2013; Turnbaugh et al., 2007; Qin et al., 2010). By revealing these
associations, researchers can gain insights into the complex relations
between the microbiome and host, potentially leading to new
therapeutic strategies.

In differential abundance analysis, modelling microbiome count
data presents unique challenges, particularly due to complex nature in
microbiome datasets such as right skewness, heteroscedasticity, and
excess zeros. In this study we focused on finding a simple yet effective
approach to address heteroscedasticity. To further illustrate
heteroscedasticity in microbiome data, we use the genus
Streptococcus in the adenomas microbiome data (introduced in the
simulation section) as an example. Streptococcus is a clinically important
genus commonly found in the human microbiome. It includes both
commensal species that are part of the normal microbiota and
pathogenic species associated with infections such as streptococcal
pharyngitis and pneumonia. Due to its varying abundance across
different individuals and conditions, Streptococcus is an ideal
candidate for demonstrating the variability in microbiome data.

We fitted a Negative Binomial regression model using the
microbiome abundance count of this genus against the covariates
of interest. Presented in Figure 1, the plot of squared residuals versus
fitted values clearly shows an increasing trend in variance as the
count values rise. This trend is further validated by the loess smooth
curve (in orange), which highlights the increasing variance. The
clear evidence of heteroscedasticity in microbiome count data
underscores the need to account for this issue in the analysis.

To specifically address heteroscedasticity, or overdispersion,
researchers have moved beyond the simpler Poisson distribution and
considered more complex parametric models such as the negative
binomial distribution or the generalized Poisson distribution (Qiao
et al., 2024). These sophisticated models provide more robust
inferences, capturing the variability and intrinsic heteroscedasticity in
microbiome data more effectively. An alternative approach is the quasi-
likelihood, which allows for flexible modeling of the variance by the
mean of the data with a function, accommodating the inherent
variability and improving the accuracy of differential abundance
analysis (Wedderburn, 1974; McCullagh and Nelder, 1989; Nelder
and Pregibon, 1987; Chen et al., 2013; Shi et al., 2023).

Over the past a few years, many differential abundance analysis
methods have been developed to address specific characteristics for
microbiome data (e.g., DESeq2, ALDEx2, and edgeR). We refer the
readers to the recent review by Yang and Chen (2022), in which
existing differential abundance analysis methods are evaluated
through comprehensive simulation studies. Although modeling
the count data directly seems a natural approach, those count-
based parametric models face the challenge of inadequate false
positive control, probably due to the model underfit for complex
microbiome data. Thus, recent developments such as ANCOM-BC2
and LinDA are all based on transformed proportion data, where the
variability associated with the count sampling process has not been
accounted for (Yang and Chen, 2022). As most of the microbial taxa
are of low abundance and their sampling variability is large, ignoring
the sampling variability could reduce the statistical power to detect
the differential abundance for these less abundant taxa. Therefore,
the count-based models still hold the potential to be more powerful
once the false positive control problem is fixed.

The main aim of our study is to propose simple yet effective
methods to analyze microbiome abundance count data. We present an

FIGURE 1
Scatter plot of squared residuals versus fitted values for genus Streptococcus in the adenomas microbiome data.
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alternative framework to address heteroscedasticity inmicrobiome data.
We utilize a Poisson distribution to obtain parameter estimates in
regression models for microbiome counts. Although the Poisson
distribution may be mis-specified, the resulting parameter estimates
remain consistent, provided that the mean structure (the log linear
model) is correctly specified. However, the standard error estimate for
this parameter estimated from the mis-specified model (e.g., in the
presence of heteroscedasticity) would be biased. We will consider two
robust approaches to estimate the standard errors of the parameter of
interest. The first approach involves using the bootstrap method to
estimate its standard error. The advantage of this method lies in the
straightforward parameter estimation under the Poisson distribution
assumption, while its standard error is derived via the bootstrapmethod
using the same assumption. This process helps estimate variability and
construct confidence intervals for parameter estimates without relying
on strict parametric assumptions (Efron and Tibshirani, 1994). The
second method is the sandwich robust estimator, which offers reliable
standard errors and confidence intervals for parameter estimates in
statistical models. This is particularly useful when certain assumptions
are not fully met (Cameron et al., 2007). Although the sandwich robust
estimator is used to model the covariance structure for correlated data
(LIANG and ZEGER, 1986), e.g., generalized estimating equations, its
application to tackle heteroscedastic data is less common (Zeileis, 2006).

Through comprehensive simulation studies, we find that both
the bootstrap and sandwich methods perform well in modeling
microbiome differential abundance. The bootstrap method offers a
flexible, data-driven approach to estimate variability, while the
sandwich estimator provides a straightforward adjustment for
heteroscedasticity. Together, these methods provide a robust
framework for analyzing complex microbiome data,
accommodating inherent variability, and improving the precision
of statistical inferences. Our findings suggest that employing these
covariance estimation methods can significantly improve the
performance of microbiome differential abundance analyses.

The rest of the paper is organized as follows. Section 2 outlines the
methodology, detailing the integration of two covariance estimation
methods with Poisson regression to address heteroscedasticity in
microbiome count data. Section 3 presents the simulation study
results, comparing the performance of our proposed methods
against other commonly used models under various conditions and
distributions. Section 4 applies the proposed methods to two real data
collected from human gut and vagina, respectively, highlighting their
practical utility and effectiveness. Finally, Section 5 discusses the
findings, implications for microbiome research, and directions for
future work.

2 Methodology

In this section we will first present the Poisson (log linear)
regression model, assuming a correct mean structure. We will then
demonstrate the robust variance estimation methods.

2.1 Poisson regression mean structure

The mean structure of our proposed models is derived from
Poisson regression, which has a simple structure commonly used for

count data. In the context of microbiome abundance count data, the
model is fitted for each taxon individually. For the taxon of interest, we
denote its read count in sample i by yi, and μi � E(yi) represents the
mean of yi, for i � 1, 2, . . . , n. μ and y are the vector forms of μi and yi,
respectively.Xi is ap-dimensional vector representing the covariates for
the i-th sample, and β is the corresponding coefficient vector. Themean
structure is defined with a log link function as:

log μi( ) � XT
i β

As the mean structure of the Poisson regression is correct, we use
the iterative reweighted least square (IRLS) method to yield the
unbiased coefficient estimation. The initial values of IRLS are chosen
from an intercept-only model, i.e., the initial value of the intercept is set
to the log of the mean of the response variable, and the initial values for
the coefficients of the predictors are set to zero. For Poisson regression,
the weights matrix W(k)

i is a diagonal matrix with the elements of the
vector w(k)

i � μ(k)i � exp (XT
i β

(k)), and zeros elsewhere. Here
Ŵ

(k)
i , μ̂(k)i and β̂

(k)
are the corresponding estimation at each

iteration k, and X � (XT
1 ,X

T
2 , . . . ,X

T
n )T is a matrix of dimension

n × p. The coefficient estimates are updated as follows:

β̂
k+1( ) � XTŴ

k( )
X( )-1XTŴ

k( )
y-μ̂ k( )( )

This iterative process continues until convergence, i.e., until the
change in the coefficients β between iterations (measured using the
Euclidean norm) is smaller than a specified tolerance level.

However, since the variance structure may differ from that of
the Poisson distribution, the Poisson-based model will yield
biased covariance estimate of the regression coefficients. Next,
we propose two simplified methods for covariance estimation
under such a mis-specified model.

2.2 Bootstrap method for covariance
estimation

To obtain robust estimates of the covariance matrix Σ̂ of the
estimated Poisson regression coefficients β̂, we employ the bootstrap
method, which involves resampling the data with replacement and
refitting the model multiple times. By generating numerous
simulated samples, the bootstrap method provides an empirical
distribution of the estimated coefficients β̂, from which the
covariance matrix Σ̂ can be estimated (Efron and Tibshirani,
1994). This approach does not rely on the correct specification of
the parametric distribution or the variance structure. The steps for
using the bootstrap method are as follows:

Step 1: Resample the original dataset with replacement to create a
bootstrap sample.

Step 2: Fit the Poisson regression model to the bootstrap sample.
Step 3: Repeat steps 1 and 2 multiple times (e.g., 1,000 iterations) to

generate a distribution of the coefficient estimates.
Step 4: Calculate the covariance matrix Σ̂ of the coefficient

estimates β̂ from the bootstrap samples.

These steps can be easily accomplished using the ‘boot’ package
in R (Canty and Ripley, 2024; Davison and Hinkley, 1997).
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2.3 Sandwich robust estimator

The sandwich robust estimator, also known as the
heteroscedasticity-consistent (HC) estimator, provides reliable
standard errors and confidence intervals for parameter estimates,
even when model assumptions such as homoscedasticity are violated.
The sandwich estimator is particularly useful in the context of small
sample sizes or when the data exhibits heteroscedasticity. Considering
the situation of small sample size in microbiome data, the
Heteroscedasticity-consistent (HC) 3 estimators is recommended
(Cameron et al., 2007). The HC3 estimator is designed for limited
sample size, making it particularly suitable for microbiome studies, as it
adjusts for potential heteroscedasticity by scaling the residuals in a way
that is robust to small sample sizes. The sandwich Poisson regression is
performed by the following steps:

Step 1: Fit the Poisson regression model to the original dataset.
Step 2: Calculate the residuals êi, which is the i-th element of

residual vector ê � y − expXβ̂ and leverage values hii,
which is the i-th diagonal element of hat matrix H �
X(XTWX)−1XTW from the fitted model.

Step 3: Adjust the covariancematrix of the coefficient estimates using
the HC3 formula, which incorporates the leverage values to
correct for heteroscedasticity. The formula is given as:

Cov β̂( ) � XTWX( )-1XT diag
ê1

1-h11
, . . . ,

êi
1-hii

, . . . ,
ên

1-hnn
( )2[ ]X XTWX( )-1

where diag(a) denotes a diagonal matrix with the elements of the
vector a on its diagonal, and zeros elsewhere. Then W is the weight
matrix of Poisson IRLS estimation, defined as the diagonal matrix
diag(w1, . . . , wi, . . . , wn), and wi � μi � exp (XT

i β̂).
These steps are implemented by using the ‘sandwich’ package in

R program (Zeileis et al., 2020).

3 Simulation study

In this section, we present comprehensive simulation studies to
compare our proposed models with other widely used alternative
methods. The existingmodels selected for comparison include negative
binomial regression, Poisson regression, Generalized Poisson (GP)
regression, Quasi-Poisson (QP) regression. The negative binomial
regression and Poisson regression are generalized linear models
which assumes the data following specific parametric distributions;
they serve as the baseline models for comparison.

The generalized Poisson (GP) regression and Quasi-Poisson
(QP) regression are commonly used to address overdispersion. The
generalized Poisson regression, also known as two-parameter
generalized Poisson distribution, was proposed by Consul and
Jain (1973) (Consul and Jain, 1973). The GP distribution’s
probability mass function is defined as:

f y( ) � θ θ + λy( )y-1 exp -θ-λy( )
y!

where θ > 0, 0< λ < 1 and y � 0, 1, 2.... The mean of GP distribution
is μ � E(Y) � θ

1−λ and the variance of GP distribution is (Y) � θ
(1−λ)3, so

it has a mean variance function as Var(Y) � μ
(1−λ)2. Three variants of

the GP model are available, using different parameterizations. The
original parameterization, referred to as the GP-0 in the R package
‘VGAM’, serves as the baseline of GP models. The GP-1 and GP-2 are
proposed by Yang et al. (2009) offering alternative parameterizations
more suitable for regression. The GP-1 set θ � μ

φ
√ and λ � 1 − 1

φ
√ ,

where μ is the mean and φ> 0, resulting in a variance of φμ. The GP-2
has θ � μ

1+αμ and λ � αμ
1+αμ where μ is the mean and > min(−1

μ,−1
y),

yielding a variance as (1 + αμ)2μ. (Zeileis et al., 2020) However, the
GP-0 and GP-1 models demonstrate suboptimal performance under
conditions of under-dispersion, as observed in our simulation studies
involving Gamma and Pareto distributions (results available upon
request). This issue aligns with findings in the literature, such as those
discussed by Scollnik (1998). Specifically, when the parameter λ of the
GP distribution is negative, the probability mass function is no longer
normalized—meaning that the sum of the probabilities does not equal
1—resulting in poor model performance. In contrast, the GP-2 model,
which allows for α< 0, effectively manages under-dispersion.
Consequently, we focus exclusively on GP-2 regression in
subsequent analyses.

The Quasi-Poisson (QP) regression model is an extension of the
Poisson regression model widely used to address overdispersion.
Themodel assumes that the variance is a linear function of themean,
V(Y) � ϕμ, where ϕ is the dispersion parameter. The estimation is
performed using maximum quasi-likelihood estimation.

3.1 Data generated from various distributions
(under model misspecifications)

We design a simulation study to evaluate the performance of our
models undermodelmisspecifications with data generated fromvarious
distributions. Each simulation dataset has a sample size of 200 and
includes a count variable Y along with a univariate covariate X. The
variable X is a binary variable with 50% of observations being 0 and
50% being 1. The count variable Y is generated following different
distributions but shares the same mean structure as
E(Y) � μ � exp (β0 + β1X). The simulation process is repeated
500 times. We compare these models on data generated from
various distributions, including the Gamma distribution, Poisson
distribution, Pareto distribution, Over-dispersed Poisson distribution
and Negative Binomial distribution. These distributions have different
mean-variance relationships, allowing us to comprehensively evaluate
the proposed models’ ability to handle model misspecification.

3.1.1 Distributions
3.1.1.1 Mis-specified Gamma distribution

The simulation datasets are generated following
Y ~ Gamma (k, θ), where k � μ1.5 and θ � μ−0.5. The density
function of the Gamma distribution is given by f(x; k, θ) � xk−1e

−x
θ

θk Γ(k) ,
where x> 0 is the variable, k> 0 is the shape parameter and θ > 0 is the
scale parameter. Γ(k) is the Gamma function defined as
Γ(k) � ∫∞

0
tk−1e−tdt. Therefore, the mean and variance are E(Y) �

kθ � μ and Var(Y) � kθ2 � μ0.5, respectively. The data are generated
using the R function ‘rpois’ from the ‘stats’ package.

3.1.1.2 Poisson distribution
The simulation datasets are generated following

Y ~ Poisson (λ), where the mean and variance are
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E(Y) � Var(Y) � λ. The data are generated using the R function
‘rpois’ from the ‘stats’ package.

3.1.1.3 Pareto distribution
The Pareto distribution is a power-law distribution originally

designed to describe the distribution of wealth in a society, fitting
the phenomena of “80–20” rule that 80% of wealth is held by a small
fraction of the population (Gabaix, 2009). This distribution is analogous
to the characteristics observed in microbiome count data.

Here we consider a Pareto (Type I) distribution, and the simulation
datasets are generated following Y ~ Pareto (γ, xm), where γ � 5, and
xm � 4

5 μ. The density function of Pareto Type I distribution is given by
f(x; γ, xm) � γxmγ

xγ+1 , where α> 0 is the shape parameter, xm > 0 is the
scale parameter, and x≥xm. In this form, xm is the minimum value
that x can take, and α controls the “heaviness” of the tail of the
distribution. Therefore, the mean and variance are E(Y) � γxm

γ−1 �
5
4xm � μ and Var(Y) � γxm2

(γ−1)2(γ−2) � 5
48xm

2 � 1
15μ

2. The data are
generated using the R function ‘rpareto’ from the ‘VGAM’ package.

3.1.1.4 Negative binomial distribution
The Negative Binomial distribution is used for the number of trials

needed to achieve a specified number of successes in a sequence of
independent and identically distributed Bernoulli trials. The density
function of a Negative Binomial distribution with number of failures r
and success probability p (0<p≤ 1) is Γ(y+r)

Γ(r)y! p
r(1 − p)y for y �

0, 1, 2, . . . The parameterization is determined as the mean E(Y) � μ �
r(1−p)

p and the variance Var(Y) � r(1−p)
p2 . Therefore, the mean variance

function as Var(Y) � μ2

r + μ. Here we set r � 0.1, resulting in
Var(Y) � 10μ2 + μ, to mimic the high over-dispersion observed in
certain taxa (e.g., Lactobacillus) in the real data in Section 4. The data
are generated using the R function ‘rnbinom’ from the ‘stats’ package.

3.1.1.5 Over-dispersed Poisson distribution
The simulation datasets are generated by a mis-specified

negative binomial distribution with E(Y) � μ and Var(Y) � 2μ.
The data are also generated using the R function ‘rnbinom’ from the
‘stats’ package with the variance set to 2μ.

We aimed to evaluate the models’ performance based on their
ability to control type I error and their power in detecting true
positives. We will evaluate their ability to estimate the variance of
coefficients by assessing the closeness of the sampling mean of the
standard error estimate (SEM) to the standard error of the
estimate (SEE). Additionally, we consider metrics including
bias, mean squared error (MSE), and coverage probability (CP):

• Bias measures the difference between the average of the
parameter estimates and the true parameter value:

Bias �
∑N
i�1

(ω̂i−ω)
N , where ω̂i is the parameter estimate for the i

th replicate, ω is the true value of the parameter in the
simulation study, and N is the total number of replicates;

• SEE represents the empirical standard error of the parameter

estimate, calculated as: SEE �

∑N
i�1

(ω̂i−�ω)2

N−1

√
, where ω̂i is the

parameter estimate for the ith replicate and �ω is the
average of the parameter estimates ω̂i’s in the
simulation study;

• SEM is the mean of the standard error estimates across all

replicates: SEM �
∑N
i�1

SEi

N , where SEi is the standard error

estimate for the ith replicate;
• MSE is the average of the squared differences between the
estimated parameters and the true parameter value, calculated

as:
∑N
i�1

(ω̂i−ω)2

N ;

• CP is defined as the proportion of simulation runs in which
the true parameter value lies within the estimated confidence

interval. The formula is: CP � 1
N∑N

i�1
I(ω ∈ [ω̂lower

i , ω̂upper
i ]),

where I(•) is the indicator function that equals 1 if the
true parameter ω is within the confidence interval

[ω̂lower
i , ω̂upper

i ] for the ith simulation, and 0 otherwise. The

TABLE 1 Simulation setting 1 with no effect. True model: Gamma distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.000179 0.000179 0.000179 0.000179 0.000179 0.000179

SEE 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205

SEM 0.0368 0.0368 0.0220 0.0222 0.0220 0.0222

MSE 0.000421 0.000421 0.000421 0.000421 0.000421 0.000421

CP 1.000 1.000 0.964 0.966 0.964 0.966

β1 Bias 0.00105 0.00105 0.00105 0.00105 0.00105 0.00105

SEE 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291

SEM 0.0520 0.0520 0.0313 0.0315 0.0312 0.0315

MSE 0.000846 0.000846 0.000846 0.000846 0.000846 0.000846

CP 0.996 0.996 0.952 0.952 0.954 0.952

Type I error 0.004 0.004 0.048 0.048 0.046 0.048
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desired coverage probability is close to the nominal level - 95%
in our study, meaning that we expect the confidence intervals
to contain the true parameter value 95% of the time. If the CP
is much higher than 95%, it suggests that the confidence
intervals are too wide, leading to overly conservative
inferences. If the CP is substantially lower than 95%, it
indicates that the confidence intervals are too narrow,
which increases the risk of not capturing the true
parameter value, leading to misleading inferences.

In simulation setting 1 we set β0 � 2 and β1 � 0, ensuring no
association betweenX andY. This allows us to evaluate the Type I error
rate for all proposed models. In simulation setting 2 we set β0 � 2 and
β1 � 0.1, corresponding to a small effect. In simulation setting 3 we set

β0 � 2 and β1 � 1.5, corresponding to a large effect. The settings allow
us to assess how well the models perform in detecting different effect
sizes (β1 � 0.1 and β1 � 1.5) between X and Y.

The results of simulation settings 1-3 are presented in Tables
1–15, respectively. We first observe that all methods have small
biases in parameter estimates of β0 and β1, as all of them have correct
specification of the mean. Our focuses are on (i) whether the
standard error estimates (SEM) for β̂0 and β̂1 are close to the
empirical standard deviation (SEE); (ii) whether the coverage
probabilities for β̂0 and β̂1 are close to the nominal level 0.95;
(iii) whether the Type I errors in Tables 1–5 are well controlled
(close to 0.05); (iv) the powers in Tables 6–10 under well controlled
Type I errors in Tables 1–5. Of note, due to the large value of β1,
most of the powers in Tables 11–15 are 1.

TABLE 3 Simulation setting 1 with no effect. True model: Pareto distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00207 0.00207 0.00207 0.00207 0.00207 0.00207

SEE 0.0261 0.0261 0.0261 0.0261 0.0261 0.0261

SEM 0.0369 0.0368 0.0241 0.0244 0.0241 0.0244

MSE 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069

CP 0.988 0.986 0.912 0.910 0.906 0.910

β1 Bias 0.00159 0.00159 0.00159 0.00159 0.00159 0.00159

SEE 0.0352 0.0352 0.0352 0.0352 0.0352 0.0352

SEM 0.0521 0.0521 0.0347 0.0351 0.0347 0.0351

MSE 0.00124 0.00124 0.00124 0.00124 0.00124 0.00124

CP 0.992 0.990 0.946 0.946 0.944 0.946

Type I error 0.008 0.010 0.054 0.054 0.056 0.054

TABLE 2 Simulation setting 1 with no effect. True model: Poisson distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00133 0.00133 0.00138 0.00138 0.00133 0.00133

SEE 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362

SEM 0.0375 0.0368 0.0366 0.0369 0.0367 0.0369

MSE 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131

CP 0.954 0.954 0.950 0.954 0.954 0.954

β1 Bias 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022

SEE 0.0522 0.0522 0.0522 0.0522 0.0522 0.0522

SEM 0.0530 0.0521 0.0517 0.0523 0.0519 0.0523

MSE 0.00272 0.00272 0.00272 0.00272 0.00272 0.00272

CP 0.962 0.956 0.950 0.958 0.952 0.958

Type I error 0.038 0.044 0.050 0.042 0.048 0.042
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We note that the proposed models—the Bootstrap Poisson
model and the Sandwich Poisson model have satisfactory
performance across various forms of model misspecification. In
Tables 1–15, the standard error estimates (SEM) for β̂0 and β̂1 are
close to the empirical standard deviation (SEE), and the coverage
probabilities for β̂0 and β̂1 are close to the nominal level 0.95. The
Type I errors in Tables 1–5 are well controlled (close to 0.05), and
the powers in Tables 6–10 are among the highest under well
controlled Type I errors.

In contrast, the Poisson and negative binomial regression
models tend to either under- or over-estimate the standard
deviation when these assumptions are violated, which
adversely affects their Type I error control and 95% coverage
probability. For example, the standard deviations are over-
estimated for Gamma and Pareto distributions (Tables 1, 3),

resulting in conservative Type I error controls (small values in
Tables 1, 3) and lower power in Tables 6, 8. On the other hand,
the Poisson regression model under-estimates the standard
deviation for over-dispersed Poisson and negative binomial
distributions (Tables 4, 5), resulting in inflated Type I errors
(potential false positives).

The Quasi-Poisson (QP) model performs relatively well in
simulation settings 1 and 2. In particular, when dealing with
small effect sizes β1 � 0.1 (as in simulation setting 2 where μ �
exp(β0 + β1X) has a relatively small range), the estimated
coefficient standard errors, which are a linear function of the
mean estimates (V(Y) � ϕμ), are close to the true values.
However, in simulation setting 3, when the effect size β1
increases to 1.5 (resulting in a larger range of μ), the linear
relationship V(Y) � ϕμ in the QP model poorly approximates the

TABLE 4 Simulation setting 1 with no effect. True model: Over-dispersed Poisson.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.000218 0.000218 0.000218 0.000218 0.000218 0.000218

SEE 0.0508 0.0508 0.0508 0.0508 0.0508 0.0508

SEM 0.0517 0.0368 0.0515 0.0519 0.0516 0.0519

MSE 0.00257 0.00257 0.00257 0.00257 0.00257 0.00257

CP 0.954 0.842 0.948 0.950 0.948 0.95

β1 Bias 9.14E-05 9.14E-05 9.14E-05 9.14E-05 9.14E-05 9.14E-05

SEE 0.0746 0.0746 0.0746 0.0746 0.0746 0.0746

SEM 0.0731 0.0521 0.0733 0.0738 0.0734 0.0738

MSE 0.00555 0.00555 0.00555 0.00555 0.00555 0.00555

CP 0.946 0.838 0.944 0.946 0.946 0.946

Type I error 0.054 0.162 0.056 0.054 0.054 0.054

TABLE 5 Simulation setting 1 with no effect. True model: Negative binomial.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

SEE 0.325 0.325 0.325 0.325 0.325 0.325

SEM 0.317 0.0380 0.311 0.298 0.584 0.305

MSE 0.107 0.107 0.107 0.107 0.107 0.107

CP 0.950 0.170 0.934 0.924 0.992 0.938

β1 Bias 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322

SEE 0.455 0.455 0.455 0.455 0.455 0.455

SEM 0.448 0.0545 0.448 0.426 0.824 0.437

MSE 0.208 0.208 0.208 0.208 0.208 0.208

CP 0.958 0.170 0.954 0.944 1.000 0.966

Type I error 0.042 0.830 0.046 0.056 0.000 0.034
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Pareto distribution (V(Y) � μ2

15) and the Negative Binomial
distribution (V(Y) � 10μ2 + μ). Consequently, this leads to
much higher standard error estimates (SEM) for β̂0 and β̂1
than the empirical standard deviation (SEE), shown in Tables
13, 15. The coverage probabilities are thus much larger than 95%.
Besides, these overestimated SEM values also lead to wider
confidence intervals, which in turn reduces the statistical
power for the QP model as shown in Table 15.

The Generalized Poisson-2 regression model, with variance
defined as (1 + αμ)2μ, performs worse than the Quasi-Poisson
model. Specifically, the GP-2 model exhibits poor performance
when fitting data generated from a negative binomial distribution
(Tables 5, 10, 15). For instance, Table 5 shows overly conservative
Type I error control, while Table 10 reports low power.
Additionally, the GP-2 model produces less satisfactory results

for Pareto-distributed data (Tables 3, 8), Gamma-distributed
data (Table 11), and over-dispersed Poisson data (Table 14).

3.2 Data generated from the
ZicoSeq algorithm

In order to assess the ability of the models to handle the complex
nature of microbiome data, we perform another simulation using
the ZicoSeq algorithm (Yang and Chen, 2022). ZicoSeq is a
combination of permutation-based simulation dataset generation
algorithm and differential analysis method. It takes real microbiome
datasets to generate simulation data which mimic the unique
characteristics of microbiome datasets, such as high
dimensionality, sparsity, zero inflation, and overdispersion. Since

TABLE 6 Simulation setting 2 with small effect (β1 � 0.1). True model: Gamma distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018

SEE 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205

SEM 0.0368 0.0368 0.0220 0.0222 0.0220 0.0222

MSE 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

CP 1.00 1.00 0.968 0.966 0.964 0.966

β1 Bias 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060

SEE 0.0280 0.0280 0.0280 0.0280 0.0280 0.0280

SEM 0.0508 0.0508 0.0303 0.0304 0.030 0.030

MSE 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078

CP 0.996 0.996 0.950 0.952 0.952 0.952

power 0.504 0.504 0.928 0.924 0.926 0.924

TABLE 7 Simulation setting 2 with small effect (β1 � 0.1). True model: Poisson distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027

SEE 0.0388 0.0388 0.0388 0.0388 0.0388 0.0388

SEM 0.0374 0.0368 0.0364 0.0367 0.0364 0.0367

MSE 0.00150 0.00150 0.00150 0.00150 0.00150 0.00150

CP 0.942 0.940 0.934 0.932 0.928 0.932

β1 Bias 0.00104 0.00104 0.00104 0.00104 0.00104 0.00104

SEE 0.0520 0.0520 0.0520 0.0520 0.0520 0.0520

SEM 0.0516 0.0508 0.0505 0.0508 0.0505 0.0508

MSE 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270

CP 0.946 0.942 0.938 0.938 0.934 0.938

power 0.494 0.508 0.504 0.502 0.516 0.502
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Yang and Chen’s review (Yang and Chen, 2022) has already
established ZicoSeq’s superiority over other existing methods, we
focus on comparing our model with ZicoSeq rather than these
methods. Given the similarity between the GP-0, GP-1, and GP-
2 models, and considering the superior performance of GP-2 in
handling under-dispersion, we exclude the GP-0 and GP-1
models in the following studies and include only the GP-2
model as a representative of the Generalized Poisson
methods. Additionally, we include two more recently
developed and widely used microbiome differential analysis
methods: LinDA (Zhou et al., 2022) and ANCOM-BC2 (Lin
and Peddada, 2024) (a 2024 update of ANCOM-BC). The
simulation study will help us assess our model’s effectiveness
in the context of current leading methods. LinDA (Linear
Models for Differential Abundance Analysis) is a differential

abundance analysis method for microbiome data, using
traditional linear models with center log ratio (CLR)
transformed abundance data and a bias correction procedure
to account for the compositional structure of microbiome data
and employs regularization techniques to improve the
robustness and accuracy of differential abundance detection.
ANCOM-BC2 (Analysis of Composition of Microbiomes with
Bias Correction-2) is an extension of the ANCOM-BC method,
designed to identify differentially abundant taxa while
controlling for the compositional bias. ANCOM-BC2
incorporates bias correction techniques to improve the
accuracy and reliability of the differential abundance analysis
in microbiome studies. The following simulation study is
conducted using the most recent versions of each method’s
respective package at the time of analysis: ZicoSeq (“Gunifrac”

TABLE 8 Simulation setting 2 with small effect (β1 � 0.1). True model: Pareto distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00109 0.00109 0.00109 0.00109 0.00235 0.00109

SEE 0.0255 0.0255 0.0255 0.0255 0.0262 0.0255

SEM 0.0368 0.0368 0.0249 0.0252 0.0369 0.0259

MSE 0.00065 0.00065 0.00065 0.00065 0.00069 0.00065

CP 0.990 0.990 0.938 0.942 0.990 0.950

β1 Bias 0.00080 0.00080 0.00080 0.00080 0.00894 0.00080

SEE 0.0371 0.0371 0.0371 0.0371 0.0374 0.0371

SEM 0.0509 0.0508 0.0353 0.0358 0.0508 0.0358

MSE 0.00137 0.00137 0.00137 0.00137 0.00148 0.00137

CP 0.984 0.980 0.946 0.950 0.982 0.948

power 0.488 0.488 0.810 0.804 0.606 0.808

TABLE 9 Simulation setting 2 with small effect (β1 � 0.1). True model: Over-dispersed Poisson distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00022 0.00022 0.00022 0.00020 0.00022 0.00022

SEE 0.0508 0.0508 0.0508 0.0508 0.0508 0.0508

SEM 0.0511 0.0368 0.0516 0.0519 0.0517 0.0519

MSE 0.00257 0.00257 0.00257 0.00258 0.00257 0.00257

CP 0.946 0.842 0.944 0.950 0.946 0.950

β1 Bias 0.00046 0.00046 0.00046 0.00027 0.00046 0.00046

SEE 0.0703 0.0703 0.0703 0.0702 0.0703 0.0703

SEM 0.0713 0.0508 0.0715 0.0720 0.0716 0.0720

MSE 0.00493 0.00493 0.00493 0.00492 0.00493 0.00493

CP 0.950 0.830 0.954 0.958 0.956 0.958

power 0.294 0.504 0.290 0.287 0.296 0.286
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1.8), LinDA (“MicrobiomeStat” 1.2), and ANCOM-BC2
(“ANCOMBC” 2.6.0).

We use the adenomas dataset as the reference dataset for
ZicoSeq simulation dataset generation. Adenomas study focuses
on the gut microbiota composition in patients with and without
adenomatous polyps, precursors to colorectal cancer. The study
generated 16S rRNA gene sequences from fecal samples of
266 patients with adenomas and 534 controls collected from
standard screening colonoscopy operating between 2001 and
2005 at multiple medical centers (Hale et al., 2017). Following
Shi et al. (2023), for the preprocessing we exclude operational
taxonomic units (OTUs) with prevalence less than 25%,
classifying OTUs with prevalence from 100% to 62.5% as
common, and those with prevalence from 62.5% to 25% as
rare. In our simulation, the covariate X is generated

uniformly from 0 to 1. To explore the performance of the
methods under different signal densities, we include two
simulation settings: low (10%) and high (30%) signal density
scenarios. In the low signal density scenario, 10% of the taxa Y
are associated with X, while the remaining 90% have no
association with X. In the high signal density scenario, 30%
of the taxa Y are associated with X. For the differentially
abundant taxa group, the abundance for taxon i is defined as:
Yi � Ci exp(0.2Xi + ϵi), where the random abundance Ci is
drawn from the reference adenomas dataset. We generate
400 samples and 100 taxa for each iteration, repeating this
process 100 times. Performance is evaluated based on the
average false discovery rate (FDR), true positive rate (TPR),
F1 score, and Matthews Correlation Coefficient (MCC). The
formulas for these metrics are as follows:

TABLE 10 Simulation setting 2 with small effect (β1 � 0.1). True model: Negative binomial distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

SEE 0.325 0.325 0.325 0.325 0.325 0.325

SEM 0.317 0.038 0.311 0.298 0.580 0.312

MSE 0.107 0.107 0.107 0.107 0.107 0.107

CP 0.948 0.170 0.934 0.924 0.990 0.938

β1 Bias 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364

SEE 0.459 0.459 0.459 0.459 0.459 0.459

SEM 0.448 0.0532 0.444 0.427 0.835 0.438

MSE 0.211 0.211 0.211 0.211 0.211 0.211

CP 0.950 0.170 0.948 0.932 1.00 0.962

power 0.064 0.826 0.058 0.068 0 0.044

TABLE 11 Simulation setting 3 with large effect (β1 � 1.5). True model: Gamma distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00018 0.00018 0.00018 0.00018 0.00035 0.00018

SEE 0.0205 0.0205 0.0205 0.0205 0.0209 0.0205

SEM 0.0368 0.0368 0.0220 0.0221 0.0368 0.0190

MSE 0.00042 0.00042 0.00042 0.00042 0.00044 0.00042

CP 1.000 1.000 0.964 0.966 1.000 0.932

β1 Bias 0.00004 0.00004 0.00004 0.00004 0.00023 0.00004

SEE 0.0212 0.0212 0.0212 0.0212 0.0216 0.0212

SEM 0.0407 0.0407 0.0232 0.0232 0.0407 0.0210

MSE 0.00045 0.00045 0.00045 0.00045 0.00047 0.00045

CP 0.998 0.998 0.962 0.964 0.998 0.934

power 1.000 1.000 1.000 1.000 1.000 1.000
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False Discovery Rate FDR( )
� False Positives FP( )
False Positives FP( ) + True Positives TP( )

True Positive Rate TPR( )
� True Positives TP( )
False Negatives FN( ) + True Positives TP( )

F1 score � 2 × Precision × Recall
Precision + Recall

,where

Precision � TP
TP + FP

and Recall � TPR

Matthews Correlation Coefficient MCC( )
� TP × TN - FP × FN

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

We further compare the performance of the proposed methods
in the common and rare groups, to assess their performance under
different abundance conditions. The results, shown in Figures 2, 3,
indicate that the Negative Binomial regression, Poisson regression,
Quasi-Poisson, GP-2 and ANCOM-BC2 models fail to control the
false discovery rate around the nominal level. Among these, the
ANCOM-BC2 model performs better with the common taxa
compared to the rare taxa, suggesting that ANCOM-BC2 requires
a higher abundance for effective model fitting. Specifically, we
observe convergence issues for the GP-2 model, making it less
suitable for applications in microbiome data analysis.

In the simulation setting with high signal density (Figure 2), our
proposed bootstrap Poisson model and sandwich Poisson model
successfully control the false discovery rate close to the 0.05 nominal

TABLE 13 Simulation setting 3 with large effect (β1 � 1.5). True model: Pareto distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00207 0.00207 0.00207 0.00207 0.00615 0.00207

SEE 0.0261 0.0261 0.0261 0.0261 0.0272 0.0261

SEM 0.0388 0.0368 0.0241 0.0243 0.0388 0.0410

MSE 0.00069 0.00069 0.00069 0.00069 0.00078 0.00069

CP 0.992 0.986 0.912 0.910 0.992 0.996

β1 Bias 0.00159 0.00159 0.00159 0.00159 0.00610 0.00159

SEE 0.0352 0.0352 0.0352 0.0352 0.0358 0.0352

SEM 0.0442 0.0407 0.0347 0.0349 0.0444 0.0453

MSE 0.00124 0.00124 0.00124 0.00124 0.00132 0.00124

CP 0.986 0.976 0.944 0.946 0.986 0.978

power 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 12 Simulation setting 3 with large effect (β1 � 1.5). True model: Poisson distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133

SEE 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362

SEM 0.0370 0.0368 0.0366 0.0368 0.0370 0.0368

MSE 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131

CP 0.954 0.954 0.950 0.954 0.954 0.954

β1 Bias 0.00259 0.00259 0.00259 0.00259 0.00259 0.00259

SEE 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402

SEM 0.0411 0.0407 0.0406 0.0407 0.0411 0.0407

MSE 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162

CP 0.958 0.954 0.952 0.950 0.958 0.954

power 1.000 1.000 1.000 1.000 1.000 1.000
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level. Additionally, both methods achieve higher statistical power:
0.384 and 0.421 respectively, compared to the power of ZicoSeq
(0.241), LinDA (0.278) and ANCOM-BC2 (0.212). Almost all the
methods yield false discovery rate more than 10% in the rare taxa
(with prevalence from 62.5% to 25%) group. Notably, a severe false
discovery inflation (FDR = 0.574) is observed in the ANCOM-BC2
method, in contrast to its good performance of the common taxa
group (FDR = 0.031).

We also observe similar patterns in the low signal density
groups in Figure 3, indicating the stability of the methods across
different signal densities. These results demonstrate that our
proposed methods offer higher statistical power in detecting
true differential taxa while effectively controlling the false
discovery rate.

As shown in Figures 4, 5, in both the high and low signal
density groups, our proposed Bootstrap Poisson and Sandwich
Poisson methods achieve higher F1 scores and MCC than other
methods, except for the Negative Binomial regression and
Quasi-Poisson (QP) models. However, the NB model and QP
model fail to control the false discovery while our proposed
methods effectively control the false discovery rate around the
nominal level and achieve comparable power. In microbiome
studies, particularly in differential analysis, minimizing false
positives is crucial due to the large datasets and complex
biological signals involved. False positives can lead to
incorrect conclusions about the associations between
microbial taxa and health outcomes, potentially diverting
resources toward investigating spurious findings. This not

TABLE 14 Simulation setting 3 with large effect (β1 � 1.5). True model: Over-dispersed Poisson distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022

SEE 0.0508 0.0508 0.0508 0.0508 0.0508 0.0508

SEM 0.0424 0.0368 0.0515 0.0517 0.0413 0.0519

MSE 0.00257 0.00257 0.00257 0.00257 0.00257 0.00257

CP 0.906 0.842 0.944 0.950 0.890 0.954

β1 Bias 0.00028 0.00028 0.00028 0.00028 0.00028 0.00028

SEE 0.0562 0.0562 0.0562 0.0562 0.0562 0.0562

SEM 0.0504 0.0407 0.0571 0.0573 0.0493 0.0574

MSE 0.00315 0.00315 0.00315 0.00315 0.00315 0.00315

CP 0.922 0.838 0.948 0.950 0.914 0.952

power 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 15 Simulation setting 3 with large effect (β1 � 1.5). True model: Negative binomial distribution.

Parameter Metric Negative
Binomial

Poisson Bootstrap Sandwich Generalized
Poisson - 2

Quasi-Poisson

β0 Bias 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389

SEE 0.334 0.334 0.334 0.334 0.334 0.334

SEM 0.316 0.0380 0.312 0.299 0.499 0.501

MSE 0.113 0.113 0.113 0.113 0.113 0.113

CP 0.930 0.186 0.934 0.912 0.974 0.994

β1 Bias 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243

SEE 0.443 0.443 0.443 0.443 0.443 0.443

SEM 0.446 0.0423 0.442 0.425 1.10 0.556

MSE 0.196 0.196 0.196 0.196 0.196 0.196

CP 0.946 0.150 0.938 0.932 1.00 0.960

power 0.910 1.00 0.918 0.922 0.0580 0.868
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only misguides scientific understanding but also impacts clinical
decision-making if such findings are applied in therapeutic or
diagnostic contexts. Therefore, while metrics like the F1 score
and MCC are valuable, it is equally important to emphasize the
control of false positives to ensure the validity and reliability of
the study’s conclusions. Given these considerations, our
proposed Bootstrap Poisson and Sandwich Poisson models
outperform the alternative models in our simulation study.

4 Application

In this section, the proposed Bootstrap Poisson model and
Sandwich Poisson model are applied to two real 16S rRNA
amplicon sequencing microbiome datasets. The two datasets
were collected from human gut and vagina, respectively, which

can help us understand the performance of the proposed methods
in high- and low-diversity microbial communities. Notably,
when fitting the GP-2 model to the two real data in this
section, we encounter similar convergence problems to those
in the ZicoSeq simulation study. R software generates warnings
indicating premature convergence of the regression model,
potentially leading to inaccurate and unreliable estimates.
Consequently, we exclude it from our real data
application section.

4.1 Gut samples analysis

In the first study, we apply the proposed methods to the
adenomas dataset introduced earlier. Out of the 2147 taxa at the
species level collected from 800 fecal samples (266 patients with

FIGURE 2
Bar plot of FDR and TPR for ZicoSeq generated simulation with high signal density (30%).
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adenomas and 534 controls), we filter out those with a prevalence
of less than 5%, resulting in 102 taxa for testing. The models are
fitted to assess the differential abundance of these 102 taxa
between the adenomas group and the control group without
polyps. The models are adjusted for covariates including gender,
batch, and smoking status. Additionally, the log-transformed
total count is introduced into the model as an offset to scale
the counts of each OTU, equivalent to Total Sum Scaling (TSS).
Tests are conducted with the Benjamini–Hochberg (BH) FDR
multiple method.

The results are presented in the Upset plot (Figure 6) and heat
map (Figure 7). In the Upset plot, the red colored bar plot at the
left bottom panel shows the number of statistically significant
taxa detected by different methods. We observe a similar pattern
to that in the simulation studies (Figures 2–5). Several taxa are
identified as significant by different methods. In the Upset plot,

the matrix at the bottom panel shows which sets are involved in
each intersection. Each row corresponds to a set, and each
column represents a specific intersection. Similar to the
simulation study, the Poisson regression model identifies the
highest number of significant taxa (79) among all methods,
indicating its poor false discovery control under model
misspecification and overdispersion. The intersection plot
shows that 53 taxa are identified only by the Poisson model,
again demonstrating its inconsistency with other models. The
ANCOM-BC2 method identifies 24 significant taxa, and the
Negative Binomial method identifies 11 significant taxa, all
demonstrating poor false discovery control as reflected in
Section 3.2 of the simulation studies. The Bootstrap Poisson
method identifies 5 significant taxa, all of which are also
detected by the Sandwich Poisson method. The Sandwich
Poisson method identifies 1 additional significant taxon

FIGURE 3
Bar plot of FDR and TPR for ZicoSeq generated simulation with low signal density (10%).
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compared to the Bootstrap method. The LinDAmethod identifies
only 1 significant taxon, while the ZicoSeq and Quasi-Poisson
methods fail to identify any significant taxa. In contrast, our
proposed methods, Bootstrap Poisson and Sandwich Poisson,
demonstrate higher power in detecting differential abundance
while maintaining effective false discovery control.

Notably, the genus Lactobacillus is identified as significantly
associated with adenomatous polyps, precursors to colorectal
cancer, by our proposed Bootstrap Poisson and Sandwich
Poisson models. Lactobacillus is well-known for its probiotic
properties, and its presence in the gut has been associated with
various health benefits, including the inhibition of colorectal
cancer (CRC) progression (Chattopadhyay et al., 2021).
Specifically, Lactobacillus can inhibit the growth of CRC by
reducing inflammation, enhancing intestinal barrier function,
and producing short-chain fatty acids like butyrate, which have

anti-inflammatory and anti-carcinogenic properties (Profir et al.,
2024). This biological support underlines the significance of the
Lactobacillus detection in our study, providing a strong rationale
for its association with colorectal adenomas and further
highlighting the robustness of our proposed methods in
identifying biologically meaningful taxa.

In contrast, other methods with lower power fail to detect
Lactobacillus. For example, as shown in Tables 13, 15, the Quasi-
Poisson model tends to over-estimate standard errors in over-
dispersed distributions (e.g., for Lactobacillus), leading to wider
confidence intervals and reduced statistical power, which limits
its ability to detect significant taxa.

In response to a reviewer’s suggestion, we investigate the
biological relevance of the taxa identified as significant by the
Poisson model only. Through an extensive literature review, we
focus on Catenibacterium, Sutterella, and Coprobacillus—among

FIGURE 4
Bar plot of F1 score and MCC for ZicoSeq generated simulation with high signal density (30%).
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the top 10 taxa with the lowest p-values in the Poisson model, but
not flagged by models with better false positive control. Despite
their statistical significance, our comprehensive search through
PubMed and related scientific databases uncovers no substantial
evidence linking these genera to colorectal cancer (CRC). This
finding suggests that their detection by the Poisson model may
reflect issues with false positive control rather than genuine
biological associations.

4.2 Vaginal samples analysis

In the second study, we aim to identify associations between
vaginal microbiome characteristics during pregnancy and
preterm birth (delivery before 37 weeks of gestation). In this
study, pregnant patients were enrolled at a single tertiary care

institution. Serial mid-vaginal swabs were collected throughout
pregnancy during prenatal visits. A nested case-control study was
designed to compare samples from patients who delivered at term
to those who delivered preterm (Stout et al., 2017). The study
included 77 patients, 31% of whom delivered preterm.
149 vaginal swabs were collected: 27 samples during the first
trimester, 61 samples from the second trimester, and 61 samples
from the third trimester. DNA was extracted using the MO BIO
PowerSoil DNA Isolation Kit. Amplicons from the V3V5 regions
of the 16S rRNA gene were sequenced using the Roche
454 platform and used in the current analysis.

Given the significant changes in the microbiome community
environment during pregnancy (DiGiulio et al., 2015; Berry et al.,
2021), we focus on the samples collected from the second
trimester by using the first available measurement per
individual within this period. This approach ensures

FIGURE 5
Bar plot of FDR and TPR for ZicoSeq generated simulation with low signal density (10%).
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consistency in the timing of sample collection, provides a clear
baseline measurement of microbiome dynamics during fetal
development. We then filter out the OTUs with a prevalence
of less than 10% to alleviate zero-inflation, resulting in 31 OTUs
and 53 samples in our analysis. We test if the 31 OTU abundance
counts are associated with the risk of subsequent preterm birth
using the eight models described earlier. The models are adjusted
for covariates including race and gestational age, and p-values are
adjusted using the Benjamini–Hochberg (BH) method for
multiple comparisons.

In this real data analysis (Figures 8, 9), Poisson regression
identifies the largest number of significant taxa (24), followed by
negative binomial regression (6), and then ANCOM-BC2 (4).
This reflects the results from the simulation study, where Poisson
regression, negative binomial regression, and ANCOM-BC2 fail
to control the FDR, leading to an increased number of false
positives. The Poisson Bootstrap method identifies 1 significant
taxon, which is also significant according to the NB, Poisson,
Sandwich and ANCOM-BC2 methods. The Sandwich method
additionally identifies 1 significant taxon, also detected by NB,
Poisson, ANCOM-BC2. Similar to the performance in the

simulation studies, LinDA and ZicoSeq methods fail to find
any significant taxa. The QP model again fails to detect any
significant taxa, mirroring the results observed in simulation
setting (Table 15), where it over-estimates the coefficient’s
standard error for over-dispersed distributions and reduces
their ability to identify significant associations. Notably, the
heatmap plot (Figure 9) shows that the color representing
p-values for LinDA exhibits a similar trend to those of the
Sandwich method. However, there are fewer significant results
for LinDA due to its lower power. The results from the vaginal
data further validate the effectiveness of our proposed methods,
demonstrating their high power in detecting significant
differential taxa while effectively controlling false positive
findings. In conclusion, the consistent findings across our two
different studies affirm the validity and reliability of our methods.

5 Discussion

Our study demonstrates that our proposed covariance
estimators within Poisson regression effectively mitigates

FIGURE 6
Upset plot for adenomas dataset. The red-colored bar plot at the bottom left shows the number of taxa detected as significant by differentmethods.
The top right blue bar plot displays the size of each intersection, indicating the number of significant taxa shared by the methods corresponding to each
intersection. The matrix at the bottom displays the intersections, with each row representing different methods and each column representing a specific
intersection. The green dots in the matrix indicate the significant taxa detected by each method. Lines connecting the dots in a column show
methods sharing the identified significant taxa.

Frontiers in Genetics frontiersin.org17

Shi et al. 10.3389/fgene.2024.1458851

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1458851


FIGURE 7
Heatmap for adenomas dataset. Each cell represents the adjusted p-value for a specific taxon-method combination, with the color gradient
reflecting the magnitude of the p-value. Darker shades of green correspond to lower p-values, suggesting stronger evidence of differential abundance.
The taxa identified by methods other than Poisson or ANCOM-BC2 models are listed on the y-axis, while the methods are presented on the x-axis. The
black boxes highlight the tests that yielded statistically significant results (adjusted p-value <0.05).
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heteroscedasticity in microbiome count data analysis. Extensive
simulations show that both methods yield consistent and reliable
parameter estimates, even when distributions are mis-specified.
Our proposed Bootstrap and Sandwich estimation approaches
outperform traditional methods, including negative binomial
and Poisson regression, in controlling type I error rates and
achieving higher statistical power. When applied to real datasets,
such as those involving adenomas and preterm births, the
Bootstrap and Sandwich Poisson methods exhibit greater
power in detecting significant taxa and offer more accurate
control of false discoveries compared to other commonly
employed differential abundance analysis techniques. Based on
these results, we recommend using these methods for
microbiome count data, where the distribution of the count
data is unknown and difficult to specify.

While the Bootstrap method is indeed a well-established
technique for estimating standard errors and constructing
confidence intervals, its application to “partially mis-specified”
models, i.e., correct for mean but mis-specified for variance, has
not been extensively explored. In our paper, we examine a
Poisson model that is correctly specified for the mean
(log μ � XTβ) but mis-specified for the variance under various

scenarios, such as data generated from Gamma, negative
binomial, Pareto, and overdispersed Poisson distributions. We
demonstrate that, even in these cases, the Bootstrap method
remains valid for estimating standard errors. We thus present
a concept that has potential for broad generalization: when
handling complex data, if the mean structure is correctly
specified, parameters can be estimated using a simple model
(e.g., Poisson regression) that accurately reflects the mean, even if
the variance is mis-specified. Standard errors can then be reliably
estimated using the Bootstrap method, which helps to bypass the
complexities involved in estimating standard errors in other
more intricate models.

The choice between the Bootstrap and Sandwich estimators
primarily depends on the computational efficiency required for the
analysis. The Bootstrap method is more time-consuming due to its
nature of repeatedly fitting Poisson regressions. In contrast, the
Sandwich estimator requires significantly less computation time
while still providing results that are close to those obtained from
the Bootstrap method. Therefore, we recommend using the Bootstrap
method when working with relatively small datasets where the
additional time required is manageable. For larger datasets, where
computational efficiency is a concern, the Sandwich Poisson model is

FIGURE 8
Upset plot for Preterm Birth dataset. The red-colored bar plot at the bottom left shows the number of taxa detected as significant by different
methods. The top right blue bar plot displays the size of each intersection, indicating the number of significant taxa shared by themethods corresponding
to each intersection. The matrix at the bottom displays the intersections, with each row representing different methods and each column representing a
specific intersection. The green dots in thematrix indicate the significant taxa detected by eachmethod. Lines connecting the dots in a column show
which methods share the identified significant taxa.
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FIGURE 9
Heatmap for Preterm Birth dataset, each cell represents the adjusted p-value for a specific taxon-method combination, with the color gradient
reflecting the magnitude of the p-value. Darker shades of green correspond to lower p-values, suggesting stronger evidence of differential abundance.
The taxa identified by methods other than Poisson or ANCOM-BC2 models are listed on the y-axis, while the methods are presented on the x-axis. The
black boxes highlight the tests that yielded statistically significant results (adjusted p-value <0.05).
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preferable due to its balance between performance and time efficiency.
Furthermore, for complex models without readily available sandwich
estimates, the Bootstrap method is a practical alternative.

Future research should expand upon our findings to investigate
several areas. First, we can combine the two methods with other
models, such as Zero-inflated Poisson models, to handle the zero-
inflation issue which could further improve accuracy in microbiome
data analysis (Xu et al., 2015; Chen and Li, 2016; Hall, 2000). Second,
we may explore the application of the proposed methods to
longitudinal microbiome samples. A possible solution to this
problem is make use of the marginal model (Fitzmaurice et al.,
2011). For example, sandwich robust estimators are widely used in
Generalized Estimating Equations (GEE) to account for the within-
subject correlation and estimate the covariance with working
correlation matrix. It is of interest to develop “double decker
sandwich” estimates to address within-subject correlation matrix
and overdispersion simultaneously.
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