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Lung cancer is one of themost commonmalignant tumors, and patients are often
diagnosed at an advanced stage, posing a substantial risk to human health, so it is
crucial to establish amodel to forecast the prognosis of patients with lung cancer.
Recent research has indicated that proteasome 20S subunit 6 (PSMB6) may be
closely associated with anti-apoptotic pathways, and proliferation transduction
signals in tumor cells of different tumors. However, the precise role of PSMB6 in
the immunoregulatory processes within lung adenocarcinoma (LUAD) is yet to be
elucidated. By analyzing the TCGA database, we discovered a positive correlation
between the expression of PSMB6 and tumor growth trends, and lung
adenocarcinoma patients with elevated PSMB6 expression levels had a worse
prognosis. Our findings suggest a close correlation between PSMB6 expression
levels, immune cell infiltration and immune checkpoint gene expression, which
suggests that PSMB6 may become a new independent prognostic indicator. In
addition, we developed a prognostic model of PSMB6-regulated immune
infiltration-associated genes by analyzing the link between PSMB6 and the
immune microenvironment. This model can not only predict the prognosis of
lung adenocarcinoma but also forecasts the patient’s reaction to
immunotherapy. The validity of this research outcome has been confirmed by
the GSE31210 and IMvigor210 cohorts. Analysis of the Kaplan-Meier Plotter
database indicates that individuals with elevated levels of PSMB6 expression
exhibit a poorer prognosis. Additionally, in vitro experiments demonstrated
that knockdown of PSMB6 inhibits the proliferation, migration, and invasion of
lung adenocarcinoma cells while promoting their apoptosis. Overall, our findings
suggest that PSMB6 could remarkably influence the management and treatment
of lung adenocarcinoma, opening new avenues for targeted immunotherapeutic
strategies.

KEYWORDS

lung adenocarcinoma, PSMB6, immunotherapy, immune infiltration, tumor immune
microenvironment

OPEN ACCESS

EDITED BY

Jing Wang,
Mass General Brigham, United States

REVIEWED BY

Xuancheng Zhou,
Southwest Medical University, China
Xinran Qi,
Dana–Farber Cancer Institute, United States

*CORRESPONDENCE

Yongsheng Zhao,
scnczys@126.com

Hongpan Zhang,
hongpanzhangsccn@163.com

†These authors have contributed equally to
this work

RECEIVED 01 July 2024
ACCEPTED 09 October 2024
PUBLISHED 23 October 2024

CITATION

ZhaoH, Luo K, LiuM, Cai Y, Liu S, Li S, Zhao Y and
Zhang H (2024) Immune regulation and
prognostic prediction model establishment and
validation of PSMB6 in lung adenocarcinoma.
Front. Genet. 15:1458047.
doi: 10.3389/fgene.2024.1458047

COPYRIGHT

© 2024 Zhao, Luo, Liu, Cai, Liu, Li, Zhao and
Zhang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 23 October 2024
DOI 10.3389/fgene.2024.1458047

https://www.frontiersin.org/articles/10.3389/fgene.2024.1458047/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1458047/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1458047/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1458047/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1458047&domain=pdf&date_stamp=2024-10-23
mailto:scnczys@126.com
mailto:scnczys@126.com
mailto:hongpanzhangsccn@163.com
mailto:hongpanzhangsccn@163.com
https://doi.org/10.3389/fgene.2024.1458047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1458047


1 Introduction

Globally, lung cancer ranks as one of the most common and lethal
malignant tumors, with its annual incidence and mortality rates
continuing to rise. According to the International Agency for
Research on Cancer (IARC), the overall 5-year survival rate for
lung cancer patients remains alarmingly low at only 17.7% (Bray
et al., 2018; Tang et al., 2022; Lahiri et al., 2023). Among the various
subtypes, lung adenocarcinoma (LUAD) has emerged as the
predominant form, accounting for nearly 60% of new lung cancer
cases (Lu et al., 2019). Despite the employment of multiple anti-cancer
strategies including surgery, chemotherapy, and radiotherapy, there
remains a critical need for more effective treatment approaches to
manage or cure lung adenocarcinoma (Yasumoto et al., 2009). Despite
recent advancements in the field that have resulted in the development
of immunotherapymediated by checkpoint suppression, this approach
still has notable limitations. Specifically, it benefits only a minority of
patients, approximately 20%–30%, and issues related to toxicity
accumulation and drug resistance continue to persist (Tang et al.,
2022). Therefore, there is a pressing need to explore reliable models for
predicting the prognosis of lung adenocarcinoma, which could
significantly aid clinicians in making more informed clinical decisions.

The proteasome, a complex responsible for the post-
ubiquitination proteasomal degradation of misfolded or typically
short-lived intracellular proteins, which constitutes over 80% of all
intracellular proteins, plays a crucial role in this context (Guo et al.,
2022; Chauhan et al., 2004). Studies have already demonstrated that
cancer cells exploit the proteasome system to facilitate their
abnormal proliferation, evade apoptosis, and degrade tumor
suppressor proteins to aid their proliferation and metastasis
(Shen et al., 2013; Chauhan et al., 2004). Moreover, the
expression levels of proteasome genes, such as PSMB6, have been
observed to increase in many types of cancers, suggesting that
PSMB6 could potentially serve as a molecular therapeutic target
(Guo et al., 2022; Bruzzoni-Giovanelli et al., 2015; Ding et al., 2020).
However, the role of the proteasome β-subunit PSMB6 gene in
LUAD has not been fully revealed, especially its interaction with
immune infiltration.

Based on these findings, our study employed detailed
bioinformatics analysis and in vitro experiments. Our research
indicates that high expression of PSMB6 is associated with poor
immune infiltration and prognosis, while knocking down
PSMB6 promotes apoptosis in lung adenocarcinoma cells and
inhibits their proliferation, metastasis, and invasion. Furthermore,
we developed a highly reliable clinical prognostic prediction model.
This model not only enhances our understanding of the role of
PSMB6 in the immune microenvironment but also aims to assist
clinicians in formulating personalized medical strategies to ultimately
improve the prognosis of patients with this challenging disease.

2 Material and methods

2.1 Data collection and processing

Data from The Cancer Genome Atlas (TCGA) database was
collected, including clinical information and PSMB6 expression
patterns, encompassing 33 distinct tumor types. Access to data was

facilitated via UCSC Xena (Lee et al., 2019) (https://xena.ucsc.edu/)
and analysis was performed utilizing R software, specifically
employing packages suited for genomic data analysis (https://www.
R-project.org). The research focuses on extracting somatic mutation
information from the TCGA database and building a model, while the
Gene Expression Omnibus (GEO) dataset GSE31210 (Peng et al.,
2017) was employed to validate the prognostic capabilities of our
model. The efficacy of immunotherapy drugs is verified by the
IMvigor210 cohort of atezolizumab in the treatment of urothelial
cancer (Mariathasan et al., 2018). Based on the Kaplan-Meier Plotter
database (Hou et al., 2017) (https://kmplot.com/analysis/), we
analyzed the prognosis of PSMB6 in lung adenocarcinoma patients
and plotted Kaplan-Meier survival curves.

2.2 The correlation between PSMB6 and
pan-cancer

To investigate the correlation between PSMB6 expression and its
clinical implications across various cancers, we utilized R software.
We conducted univariate Cox regression analyses using the
“survival” package to evaluate the prognostic significance of
PSMB6 expression levels across 33 different cancer types. Hazard
ratios (HR) less than 1 indicated that higher PSMB6 expression
correlates with a lower risk of mortality. The analyses were adjusted
for potential confounders, including gender, age, and tumor stage, to
ensure robustness in our findings. Further, we evaluated the
correlation between PSMB6 expression and various clinical
parameters such as clinical stage, grading, and TNM staging. We
considered a p-value threshold below 0.05 to determine statistical
significance in our study.

2.3 Cell culture and transfection

A549 and H1299 lung adenocarcinoma cells and BEAS-2B
human normal lung epithelial cells were placed in 10% DMEM
(Gibco; Thermo Fisher Scientific, Inc.) and cultured in a humidified
incubator at 37°C with 5% CO₂.

PSMB6 silencing was achieved in A549 and H1299 cells by
transfection with PSMB6 siRNA (GenePharma, China). After
24–48 h of transfection, the medium was removed for cellular
behavioral analysis. The PSMB6-specific siRNA oligonucleotides
were synthesized according to the following target sequences:

siPSMB6#1: sense strand sequence 5′-AUUCGCCGUUGCCAC
UUUATT-3′, antisense strand sequence 5′-UAAAGUGGCAAC
GGCGAAUTT-3’; siPSMB6#2: sense strand sequence 5′-ACU
GGGAAAGCCGAGAAGUTT-3′, antisense strand sequence 5′-
ACUUCUCGGCUUUCCCAGUTT-3’.

2.4 RNA extraction and quantitative
RT-qPCR

Total RNA was extracted from clinical samples using the
standard TRIzol protocol (Thermo Fisher Scientific, United
States). Complementary DNA (cDNA) was synthesized from
1 μg of RNA using the PrimeScript™ FAST RT Reagent Kit with

Frontiers in Genetics frontiersin.org02

Zhao et al. 10.3389/fgene.2024.1458047

https://xena.ucsc.edu/
https://www.R-project.org
https://www.R-project.org
https://kmplot.com/analysis/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1458047


gDNA Eraser (TAKARA Bio Inc., Shiga, Japan). RT-qPCR was
performed using the TB Green® Premix Ex Taq™ II (TAKARA Bio
Inc., Shiga, Japan) on the BIO-RAD CFX Connect Real-Time
System (serial number: 788BR06671, Bio-Rad Laboratories, Inc.,
Hercules, CA, United States). Relative RNA expression levels were
quantified using the 2̂ΔΔCt method, with GAPDH serving as the
endogenous reference gene. At least two independent experiments
were conducted, with each experiment including at least three
technical replicates. Analyses were performed using the Bio-Rad
CFX96 Maestro Manager 2.0 software. Data analysis and graphical
representations were conducted using Prism 10 software. Statistical
significance was determined using unpaired t-tests. The primers for
PSMB6 are as follows: Forward Primer: GACACCTATTCACGA
CCGCATT, Reverse Primer: TAAAGAGGCTGGCTGCTGTGT.
The primers for GAPDH are as follows: Forward Primer: CTT
TGGTATCGTGGAAGGACTC, Reverse Primer: GTAGAGGCA
GGGATGATGTTCT.

2.5 Western blot assay

The harvested cells were placed on ice, and after discarding the
culture medium, they were washed three times with pre-cold PBS.
Then, an appropriate amount of RIPA lysis buffer (Epizyme, China)
was added, alongwith phosphatase inhibitors and protease inhibitors at
a ratio of 100:1. The cells were scraped off using a cell scraper and lysed
in an ultrasonic lysis solution for 1 min, followed by centrifugation at
12,000 g for 15 min to collect the supernatant. The protein
concentration was determined using the BCA assay (Epizyme) after
incubating for 30 min, measuring absorbance at 562 nm. The protein
samples were diluted with 5× loading buffer (Epizyme) at a ratio of 4:
1 and heated in ametal bath for 10min to denature the proteins. A 10%
Western blot gel was prepared using Epizyme’s one-step method, and
the electrophoresis was run at 80 V for 30 min and then at 120 V for
60min. For transfer, a PVDFmembrane was used under the conditions
of 250 mA for 60 min. After that, blocking was performed in a rapid
blocking solution for 20–30 min, followed by washing three times with
TBST. The primary antibody (PSMB6, Proteintech) was incubated
overnight, and the next day a secondary antibody (Proteintech) was
used for incubation followed by detection using Epizyme’s ultra-
sensitive ECL luminescent solution and a Bio-Rad imaging
instrument. Data processing was conducted using ImageJ, with all
primary antibody dilutions at 1:3000 and secondary antibody dilutions
at 1:5000. The E-cadherin and N-Cadherin antibodies were provided
by Affinity Biosciences (China), while BAX and BCL-2 primary
antibodies were provided by Huabio (China).

2.6 CCK8 assay

The Cell Counting Kit-8 (Beyotime, China) was used to assess
cell proliferation. After resuspending the cells, they were counted
and diluted, and 100 μL of medium containing 5,000 cells was added
to each well. After transfection, 10 μL of CCK-8 reagent was added to
each well at 0 h, 24 h, 48 h, and 72 h, and the absorbance was
measured at 450 nm 1 hour later. Each group had five replicate wells,
and the experiment was repeated three times to ensure result
reliability.

2.7 Transwell migration assay

The cells were starved for 24 h, followed by digestion and
resuspension. A total of 40,000 cells and 200 μL of serum-free
DMEM were added to the upper chamber of each Transwell, while
600 μL of DMEM containing 10% fetal bovine serum was added to
the lower chamber. The upper chamber was carefully immersed in
the lower chamber liquid using sterile tweezers, and the 24-well plate
containing the Transwell inserts (Corning, United States) was
incubated at 37°C for 24 h.

For the invasion assay, Matrigel (Beyotime, China) was required.
According to the instructions, Matrigel was diluted at a ratio of 1:
8 and coated in the upper chamber. After 24 h, the liquid in the
upper chamber was removed, and the wells were washed three times
with 600 μL PBS, followed by fixation with formaldehyde. Staining
was performed using crystal violet, and the samples were then
observed and photographed under an electron microscope. Cell
counting was conducted using ImageJ software. Each experiment
was repeated three times to ensure the reliability of the results.

2.8 Wound healing assay

Logarithmically growing cells were seeded in a six-well plate at a
density of 1 × 105 cells per well, with three replicate wells for each
group. Once the cells adhered and formed a monolayer, a 200 μL
pipette tip was used to create a vertical scratch in each well, ensuring
the scratch remained straight. The wells were washed with PBS to
remove any floating cells, and the remaining cells were placed in a
37°C, 5% CO₂ incubator to be cultured in low serum medium (1%).
Images were taken under a microscope at 0, 24, and 48 h post-
scratch. Each experiment was repeated three times. Finally, ImageJ
software was used to measure the distance of cell migration and
calculate the migration rate.

2.9 Flow cytometric analysis

Cells were collected using trypsin without EDTA, followed by
two washes with PBS to collect 1–5 × 105 cells. These cells were then
added to 500 µL of Binding Buffer and gently pipetted to form a
single-cell suspension. Next, 5 µL of Annexin V-APC (keyGEN,
China) was added and mixed, followed by the addition of 5 µL of PI
(keyGEN) and mixed again. The reaction mixture was incubated in
the dark at room temperature for 10 min. Detection was performed
using a flow cytometer, with the excitation wavelength for APC set at
Ex = 633 nm and emission wavelength at Em = 660 nm, detecting
red fluorescence using the FL4 channel; for PI, the excitation
wavelength was Ex = 488 nm and emission wavelength Em ≥
630 nm, detected through the FL3 channel.

2.10 Analysis of immune cell infiltration and
immune characteristics

We evaluated the proportional distribution of 22 distinct
immune cell populations in lung adenocarcinoma using the
CIBERSORT method and analyzed the association of these
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immune cells with PSMB6 expression (Newman et al., 2015). Using
the ESTIMATE algorithm, we compared the difference between the
PSMB6 high and low expression groups in terms of stromal scores,
immune scores, and ESTIMATE scores. Furthermore, we employed
Spearman Correlation Analysis to further demonstrate the
association of these scores with PSMB6 expression (Yoshihara
et al., 2013). Finally, we utilized the MCPcounter (Becht et al.,
2016a) method to classify immune cell taxa in lung adenocarcinoma
in more detail to understand the specific cell types present in the
tumor microenvironment.

2.11 Genomic screening and gene set
enrichment analysis

We performed GO enrichment analysis of genes associated
with PSMB6 and immune infiltration by Spearman Correlation
Analysis and screened for genes significantly associated with
PSMB6 expression and immune scores (p < 0.001,
correlation >0.3). We performed GO and KEGG analyses on
the 367 genes screened using the clusterProfiler R package and
then prioritized the top 10 most significant terms in each category
for visualization. For pathway analysis, we used GSVA method to
calculate pathway scores for the TCGA sample cohort. The
Wilcoxon test was used to determine the difference in pathway
activity between the PSMB6 high and low expression groups.
Finally, we used single-sample genome enrichment analysis
(ssGSEA) to analyze the correlation between these significantly
different pathways.

2.12 Risk model construction

We screened 9 key genes with prognostic value by univariate
Cox and Lasso regression analysis. Next, we calculated risk scores
for each subject using multivariate Cox regression analysis and
z-scored the risk scores. finally, the high and low risk groups were
delineated with a cutoff of 0. An external dataset sourced from the
Gene Expression Omnibus (GEO) was incorporated into our
study for additional analysis, serving as an independent
validation to assess the consistency and dependability of the
established model. Comprehensive evaluation, including
univariate and multivariate Cox analysis, Nomogram, and
decision curve analysis.

2.13 Immunotherapy response and
chemotherapy analysis

In this study, we analyzed an independent dataset of
immunotherapy subjects to classify treatment outcomes into four
categories: complete response (CR), partial response (PR), disease
progression (PD), and stable disease (SD). Non-responders were
classified as SD or PD, while responders were identified as belonging
to the CR or PR category. To assess the difference in
PSMB6 expression between responders and non-responders, the
statistical Wilcoxon rank sum test was used to gain insight into the
role of PSMB6 in immunotherapy efficacy.

2.14 Statistical analysis

In our study, all statistical analyses (including the calculation
methods for p-values and confidence intervals) were performed using
R language and Prism - GraphPad. The association between two
groups of quantitative variables was estimated using the Pearson
correlation coefficient, while intergroup comparisons were conducted
using the t-test, analysis of variance (ANOVA), and rank-sum test.
Data are presented as mean ± standard deviation (SD).

3 Result

3.1 The level of PSMB6 expression in pan-
cancer and its prognostic value across
cancer subtypes

We evaluated the pan-cancer expression profile of PSMB6 using data
from the TCGA database. The analysis revealed a pronounced
upregulation of PSMB6 expression in eight 8 kinds of tumors: Lung
Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC),
Uterine Corpus Endometrial Carcinoma (UCEC), Bladder Cancer
(BLCA), Esophageal Carcinoma (ESCA), Kidney Renal Papillary Cell
Carcinoma (KIRP), Breast Cancer (BRCA), Thyroid Carcinoma (THCA).
Conversely, a low expression of PSMB6was observed in four specific types
of tumors: Liver Hepatocellular Carcinoma (LIHC), Stomach
Adenocarcinoma (STAD), Kidney Renal Clear Cell Carcinoma (KIRC),
Kidney Chromophobe (KICH) (p < 0.05, Figure 1A). Furthermore, we
performed a Cox survival analysis utilizing the PSMB6 expression as a
basis. The findings demonstrated that elevated expression of PSMB6 is
linked to decreased survival rates in LUAD and KIRC. However, in
pancreatic adenocarcinoma (PAAD), elevated levels of PSMB6 expression
correlate with a more favorable prognosis. (p < 0.05, 95% CI, Figure 1B).

3.2 Effect of PSMB6 expression on LUAD
clinical outcomes

We utilized data from the TCGA database to investigate the role of
PSMB6 in lung adenocarcinoma (LUAD). This analysis focused on the
differences in PSMB6 expression between normal and tumor tissues, as
well as its relationships with single nucleotide variants (SNV), copy
number variations (CNV), cancer stages, and patient survival. The results
indicated that PSMB6 expressionwas significantly higher in tumor tissues
compared to normal tissues (p < 0.01, Figure 2A). No significant
differences in PSMB6 expression levels were observed when
comparing the mutant group to the wild-type group (Figure 2B). In
samples with gene amplification, PSMB6 expression was significantly
higher than in samples with gene deletion or normal gene dosage (p <
0.05, Figure 2C). Comparisons between early-stage (I-II) and late-stage
(III-IV) cancers showed no significant differences in PSMB6 expression
levels (Figure 2D). Kaplan-Meier curve analysis revealed that high
PSMB6 expression was significantly associated with lower patient
survival rates compared to low expression patients (p = 0.018,
Figure 2E). Additionally, we further performed an online prognostic
analysis of PSMB6 in LUAD using the Kaplan-Meier Plotter website and
plotted K-M curves. The findings indicated that patients with elevated
PSMB6 expression had a poorer prognosis (p < 0.05, Figures 2F, G).
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3.3 The correlation between PSMB6
expression and tumor microenvironment
and immune infiltration

To further compare immune cell scores between groups with
high and low PSMB6 expression, we calculated the immune scores of
22 types of immune cells and used the median to divide high and low
expression groups. Notably, the high expression of PSMB6 was
positively correlated with the infiltration levels of plasma cells, CD8+

T cells, follicular helper T cells, regulatory T cells and activated NK
T cells, while negatively correlated with the memory B cells,
CD4 memory resting T cells, M2 macrophages, resting Dendritic
cells and resting mast cells (p < 0.05, Figures 3A, B). Additionally, we
investigated the relationship between the high and low
PSMB6 expression groups in terms of stromal scores, immune
scores, and ESTIMATE scores, and found significant differences
(p < 0.001, Figure 3C). PSMB6 expression exhibited a marked
inverse relationship with the stromal score, immune score, and
ESTIMATE score (Figures 3D–F).

3.4 Correlation analysis of PSMB6
expression pathway

To further explore the pathways potentially regulated by the
PSMB6 gene, we used R software and the Gene Set Variation
Analysis (GSVA) method to score pathways across individual
TCGA samples based on their expression profiles. We then

visualized these data using a heatmap, displaying the ssGSEA
scores for each pathway and sample (Figure 4A). Simultaneously,
we performed correlation analyses between these pathways to
identify significant interactions and dependencies. Our analysis
uncovered distinct associations between different pathways and
the groups categorized by high and low levels of
PSMB6 expression (Figure 4B).

3.5 A comprehensive analysis of the
correlation and functional enrichment of
PSMB6with cancer immune signature genes

We screened for genes associated with both PSMB6 and immune
infiltration, identifying those with a correlation greater than 0.3 or
less than −0.3. We took the intersection of all genes with PSMB6
correlation >0.3 or < -0.3 and immune score correlation >0.3 or <
-0.3, and obtained 367 genes (Figure 5A). We then employed the
clusterProfiler package to perform enrichment analysis on these
367 genes. We selected and visualized the top 10 most significant
pathways in four categories: biological process (BP), cellular
component (CC), molecular function (MF), and KEGG pathways.
The GO analysis significantly enriched immune-related functional
pathways, including positive regulation of cytokine production,
leukocyte proliferation, and cellular activation involved in
immune response. Concurrently, the KEGG analysis revealed
notable enrichment in pathways such as the MAPK signaling
pathway (Figure 5B).

FIGURE 1
Expression and prognosis analysis of PSMB6 in pan-cancer. (A)Comparison of PSMB6 levels in normal and tumor tissues of different types of cancer.
(B) Forest plot showing survival hazard ratios for various cancers based on PSMB6 expression.
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3.6 Establish and validate the LUAD
risk model

We conducted univariate Cox proportional hazards regression
analysis using expression profiling data from TCGA and associated
gene and survival data. Subsequently, 21 genes were identified as
having prognostic value and lasso regression was used to further
compress these 21 genes, reducing the number of genes in the risk
model (Figure 6A). Finally, we obtained 9 genes: ANKRD13A,
CD200R1, GGA2, NLRP1, SLC18A2, XCR1, ZNF136, ZNF25,
and ZNF441 (Figure 6B). We calculated risk scores using

multivariate Cox analysis and then standardized these scores
using z-score transformation.

Risk scores = “-0.13*ANKRD13A + -0.004*CD200R1+-
0.295*GGA2+-0.042*NLRP1+-0.018*SLC18A2+-0.116*XCR1+-
0.149*ZNF136+-0.154*ZNF25+-0.054*ZNF441”.

The Kaplan-Meier curve showed that low-risk patients had a
better prognosis compared with high-risk patients (p = 0.00027,
Figure 6C). Based on the ROC analysis, the model in the TCGA
dataset demonstrated significant predictive value for LUAD
patients, with an AUC of 0.71 at 1-year, 0.64 at 3-year, and
0.63 at 5-year (Figure 6D). We employed the GSE31210 dataset

FIGURE 2
Correlation between PSMB6 and clinical characteristics. (A) The expression level of PSMB6 is significantly higher in tumor tissues compared to
normal tissues. (B) There is no significant difference between the mutant gene and the wild-type gene in the expression level of PSMB6. (C)
PSMB6 expression in samples with gene amplifications is significantly higher compared to those with deletions or diploids. (D) There is no significant
differences in the expression level of PSMB6 between early (stages I-II) and advanced (stages III-IV) cancer stages. (E–G) K-M curve suggests that the
prognosis of the low PSMB6 expression group is better.
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to substantiate the risk model proposed in this work, calculating
the risk score for each sample based on its gene expression level,
and plotting the distribution of these scores. The results
obtained from the Kaplan-Meier curves were consistent with

our model (p < 0.0001, Figure 6E). Based on the ROC analysis,
high-risk patients exhibited a unfavorable prognosis, with an
AUC of 0.7 at 1-year, 0.66 at 3-year, and 0.72 at 5-
year (Figure 6F).

FIGURE 3
PSMB6 and immune cell infiltration. (A, B) The correlation of PSMB6 expression with immune cells score in LUAD. (C) The low PSMB6 group had
higher stromal score, immune score and ESTIMATE score. (D–F) The expression of PSMB6 is negatively correlated with StromalScore, ImmuneScore and
ESTIMATEScore.

FIGURE 4
(A, B) PSMB6 high expression group and low expression group regulate different pathways.
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3.7 Association of risk models with
clinicopathological features of LUAD

Next, we investigated the relationship between our risk
modeling based on PSMB6 and clinical phenotypes in LUAD
patients. We found that the median risk scores increased with
tumor stage progression across (T) stages (Figure 7A), (N) stages
(Figure 7B), and overall clinical stages (Figure 7D). This trend
emphasizes the prognostic relevance of the PSMB6 risk score to
cancer progression. However, our analysis did not detect a
substantial disparity in risk scores among patients classified as
stage M0 and those at stage M1 (Figure 7C). Interestingly, LUAD
patients over 65 years of age presented lower risk scores (Figure 7E).

3.8 Analysis of association between LUAD
risk score and immune cell infiltration

First, we conducted an examination to discern the variations in
the levels of immune cell infiltration present within the groups
categorized by low and high PSMB6 risk. We calculated the
enrichment scores for various immune cell populations and
identified substantial disparities in the extent of immune cell
infiltration between the low-risk and high-risk groups. The
results showed that the infiltration of memory B cells,
CD4 memory resting T cells, monocytes, M2 macrophages,
resting dendritic cells, and resting mast cells was more abundant
in the low-risk group. In contrast, the high-risk group exhibited a
more significant infiltration of plasma cells, follicular helper T cells,
regulatory T cells, activated NK cells, and M0 macrophages (p <
0.01, Figure 8A). Next, we utilized the Microenvironment Cell
Populations-counter (MCP-counter) method to assess the
population abundance of tissue-infiltrating immune and stromal

cell populations. We identified that the low-risk group exhibited
notably elevated scores for T cells, CD8+ T cells, cytotoxic
lymphocytes, B lineage cells, NK cells, monocytes, myeloid
dendritic cells, neutrophils, endothelial cells, and fibroblasts (p <
0.01, Figure 8B). Furthermore, using the ESTIMATE method, we
observed that the stromal score, immune score, and overall
ESTIMATE score were all markedly diminished in the high-risk
group as compared to the low-risk group. (p < 0.001, Figure 8C).
Finally, in our analysis of immune checkpoint molecule expression
between the low-risk and high-risk groups, we observed significantly
higher expression of key immune checkpoint-related genes,
including CD200R1, PDCD1, CD28, and CTLA4, in the low-risk
group (p < 0.001, Figure 8D).

3.9 Validation of risk models using datasets
from immunotherapy

We examined the efficacy of immunotherapy response in
patients categorized into CR/PR and SD/PD, based on the risk
stratification of PSMB6 into high-risk and low-risk groups. For
external validation, we employed the IMvigor210 dataset to verify
the robustness and reliability of our prognostic model. Our
findings revealed a higher proportion of non-responders to
immunotherapy within the high-risk group, as assessed in the
treatment response evaluation (p < 0.05, Figure 9A), and a lower
proportion of early-stage patients in the high-risk group (p < 0.05,
Figure 9B). Moreover, patients in the SD/PD group exhibited
significantly higher risk scores compared to those in the CR/PR
group (p < 0.0001, Figure 9C). When comparing early (stages I +
II) and late (stages III + IV) risk scores, we observed that earlier
staging was associated with lower risk scores (p < 0.0001,
Figure 9D). Finally, the K-M curve Finally, the K-M curve

FIGURE 5
PSMB6 and immune signature genes and functional enrichment. (A) Venn diagram showing the intersection of 367 genes between 2035 PSMB6-
related genes and 2084 immune score-related genes. (B) Barplot graph of the GeneOntology Biological Processes, Cellular Components, andMolecular
Functions enrichment analysis and Barplot graph of the Kyoto Encyclopedia of Genes and Genomes Pathways enrichment analysis.
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FIGURE 6
Prognosticmodel and validation. (A)Cross-validation of tuning parameter selection in LASSOmodels. (B) Riskmodel construction 9 identification of
key genes. (C) The K-M curve of the TCGA cohort suggests that patients in the high-risk group have worse prognosis. (D) ROC curves and AUC for 1-, 3-,
and 5-year OS in the TCGA cohort. (E) The KM curve validated by the GSE31210 data set suggests that the high-risk group has a worse prognosis. (F) ROC
curves and AUC for 1-, 3-, and 5-year OS of GSE31210 data set.
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illustrated a notably poorer prognosis for patients classified within
the high-risk category in contrast to those categorized within the
low-risk group (P = 4e−04, Figure 9E).

3.10 Build and validate predictive nomograms

We conducted univariate and multivariate Cox regression
analyses to evaluate other clinical variables, including age, sex,
stage, and risk score, and to determine if our model operates
independently of other clinical prognostic factors that may
influence patient outcomes. Both stage and risk score were
identified as independent predictors of overall survival (OS)
(p < 0.05, 95%CI, Figures 10A, B). We then developed
nomograms incorporating these independent prognostic
biomarkers to estimate the one-, three-, and 5-year survival
probabilities for individual patients (Figure 10C). The
calibration curves for the nomograms showed that the
predicted OS for 1 year, 3 years, and 5 years closely aligned
with the observed OS (Figure 10D). Furthermore, we constructed
a nomogram for predicting patient prognosis, which

demonstrated high consistency with clinical predictions. DCA
was used to compare the net benefit across different risk
thresholds, indicating that the nomogram provided the most
effective prediction (Figure 10E).

3.11 Knockdown of PSMB6 promotes
apoptosis in LUAD cells and inhibits their
proliferation

To validate the aforementioned findings, we performed RT-
qPCR analysis on tumor samples from LUAD patients. The results
showed that the expression of PSMB6 in 30 LUAD tumor samples
was significantly higher than that in paired normal samples (p <
0.01, Figure 11A). Furthermore, both RT-qPCR and Western blot
analyses indicated that the expression of PSMB6 was significantly
elevated in the lung cancer cell lines A549 and H1299 compared to
the normal lung epithelial cell line B2B (p < 0.05, Figures 11B, C). To
further investigate the impact of PSMB6 on the apoptosis and
proliferation of lung adenocarcinoma cells, we established
PSMB6 knockdown A549 and H1299 cell lines through transient

FIGURE 7
Correlation between risk models and clinical characteristics. Differential expression of risk models for LUAD patients according to clinical
characteristics are presented: (A) T-stage, (B) N-stage, (C) M-stage, (D) clinical stage, (E) Age.
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FIGURE 8
Correlation of immune cell infiltration among different PSMB6 risk groups. (A) Immune cell scores in different PSMB6 risk groups. (B) Immune cell
scores in the high-risk group are lower. (C) StromalScore, ImmuneScore and ESTIMATEScore scores in the PSMB6 high-risk group are lower. (D) High
expression of most immune checkpoints is positively correlated with PSMB6 low-risk group.
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transfection (p < 0.01, Figures 11D–G). Western blot analysis
revealed that in A549 and H1299 cells, knockdown of
PSMB6 resulted in an upregulation of BAX expression and a
downregulation of BCL-2 expression (p < 0.05, Figures 11H, I).
Flow cytometry results indicated that the apoptosis rate of
PSMB6 knockdown A549 and H1299 cells was significantly
higher than that of the control group (p < 0.01, Figures 11J,
K), further validating the role of PSMB6 in resisting apoptosis in
lung adenocarcinoma cells. Additionally, CCK8 assays
demonstrated that PSMB6 knockdown significantly inhibited
the proliferation of A549 and H1299 cells (p < 0.05,
Figures 11L, M).

3.12 Knockdown of PSMB6 inhibits the
migration and invasion of LUAD cells

We next explored the effect of PSMB6 on the migration and
invasion of lung adenocarcinoma cells. The Transwell migration

assay demonstrated that the migration and invasion capabilities
of A549 and H1299 cells with PSMB6 knockdown were
significantly lower than those of the control group (p < 0.05,
Figures 12A, B). The wound healing assay indicated that
knocking down PSMB6 expression in A549 and H1299 cells
led to a marked decrease in their migration abilities,
consistent with the results from the Transwell migration assay
(p < 0.01, Figures 12C, D). This further confirms the promoting
role of PSMB6 in the metastasis of lung adenocarcinoma cells.
Considering the crucial role of epithelial-mesenchymal transition
(EMT) in tumor progression and metastasis, we conducted
Western blot analysis to evaluate the expression levels of
E-Cadherin and N-Cadherin in A549 and H1299 cells after
PSMB6 knockdown. The results showed that N-cadherin
expression decreased while E-cadherin expression increased in
A549 and H1299 cells with PSMB6 knockdown (p < 0.05, Figures
12E, F). This suggests that PSMB6 may promote the proliferation
and migration of lung adenocarcinoma cells by regulating the
EMT process.

FIGURE 9
IMvigor210 data set validates immune efficacy and prognosis in LUAD patients (A) In the low-risk group, the proportion of non-responders to
immunotherapy is lower. (B) In the low-risk group, the proportion of early-stage patients is higher. (C) Patients with SD/PD have higher risk scores
compared with CR/PR. (D) Patients with stage III + IV have a higher risk score compared to stage I + II. (E) K-M curve shows that high-risk groups have
poor prognosis.
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4 Discussion

The proteasome is widely distributed in the cytoplasm and
nucleus, exhibiting various protein hydrolase activities. It serves a
pivotal function in governing various cellular processes, including
the modulation of the cell cycle, regulation of apoptosis,
transmission of signals, control of gene expression, and the
process of translation. In malignant tumors, the proteasome has
been acknowledged for its pivotal role in regulating anti-apoptotic
pathways and proliferative signaling (Varga et al., 2017; Choi, 2001;
Mani and Gelmann, 2005). The ubiquitin-proteasome system plays
a significant role in cancer cell survival (i.e., evading apoptosis) and

proliferation by targeting negative regulators of the cell cycle, such as
p53 and p27, for degradation, as well as promoting the activation of
NF-κB signaling (Shen et al., 2013). Furthermore, previous studies
have reported successful implementation of proteasome inhibitors,
including carfilzomib and bortezomib, in the clinical treatment of
patients suffering from multiple myeloma (Chauhan et al., 2004;
Chen et al., 2008).

PSMB6, responsible for encoding the β1 subunit of the
proteasome, is crucial for the catalytic function and stable
functioning of the proteasome. In this study, we identified a
substantial elevation in the levels of PSMB6 within lung
adenocarcinoma tissues, and this enhanced expression was linked

FIGURE 10
Comprehensive survival analysis and prognostic assessment of cancer patients. (A) Univariate regression analysis of age, stage, gender, and risk
score. (B) Multivariate regression analysis of age, stage, gender and risk score. (C) Nomogram integrating PSMB6 with stage and gender as independent
prognostic factors for LUAD. (D) Calibration curve of the nomogram. (E) The DCA curve suggests that Nomogram has the best prediction effect.
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to a diminished prognosis for the patients. These findings suggest
that the high levels of PSMB6 expression may be inseparably linked
to the degradation of negative regulators of the cell cycle, p53 and
p27, as well as abnormal activation of the NF-κB signaling pathway.
This could promote tumor cell growth and impact the anti-apoptotic
pathways and proliferation signals of cancer cells, ultimately leading
to poorer patient outcomes. Additionally, these results show that
PSMB6 could serve as a prognostic marker and therapeutic target for
malignant tumors, providing a new avenue for targeting the
proteasome.

The tumor immune microenvironment (TIME) has long been
acknowledged for its significant association with tumor recurrence,
development, and metastasis (Fu et al., 2021). The impact of the
TIME on patient survival has also been demonstrated in numerous
cancer types (Li et al., 2017a). We observed that the low expression
group of PSMB6 and the low-risk group showed higher immune cell
infiltration and lower tumor purity. This indicates that PSMB6 may
serve as a pivotal factor within the TIME by reducing immune cell

infiltration, thereby aiding tumor cells in immune evasion. Indeed,
research has shown that cytokines are pivotal in facilitating
communication between cells within the tumor
microenvironment (TME) and are strongly linked to the
initiation, progression, and metastatic dissemination of tumors
(Waldmann, 2018; Berraondo et al., 2019). Cytokines such as
IFNγ, IFNα, and IL-2 promote anti-tumor responses in the TME,
while dysregulation of cytokines produced by immune, malignant,
and stromal cells are involved in the entire process of carcinogenesis
and therapy response (Propper and Balkwill, 2022; Briukhovetska
et al., 2021; Shalapour and Karin, 2019). Therefore, there is
therapeutic potential in utilizing cytokines for their
immunostimulatory effects and in neutralizing them when they
are dysregulated. Our GO analysis revealed enrichment of immune-
related functional pathways, indicating the involvement of cytokine
production, leukocyte proliferation, and cellular activation in
immune responses. This suggests that PSMB6 may alter the
release of cytokines within the immune microenvironment by

FIGURE 11
Knockdown of PSMB6 promotes apoptosis in LUAD cells and inhibits their proliferation. (A, B) The mRNA levels of PSMB6 were measured using RT-
qPCR in 30 pairs of cancerous and normal tissues from LUAD patients, as well as in 3 cell lines: A549, H1299, and B2B. (C) WB analysis showed that the
expression level of PSMB6 was significantly higher in A549 and H1299 cell lines compared to the B2B cell line. (D–G) Knockdown efficiency of PSMB6 in
LUAD cells was verified by RT-qPCR and Western blot. (H, I)Western blot analysis was used to compare the expression levels of BCL-2 and BAX in
PSMB6 knockdown A549 and H1299 cells with those in the control groups. (J, K) Apoptosis rates of A549 and H1299 cells with PSMB6 knockdown and
their corresponding control cells without PSMB6 knockdown were measured using flow cytometry. (L, M) The cell growth rates of PSMB6 knockdown
A549 and H1299 cells were determined using the CCK-8 method and compared with those of the control groups.
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influencing leukocyte proliferation and cellular activation involved
in immune responses, ultimately impacting the activity of lung
adenocarcinoma cells. CD8+ T cells function as the key executors
in the immune system’s fight against tumors, leveraging the display
of peptides on the surface of cancer cells by Major
Histocompatibility Complex (MHC) Class I molecules to
recognize and eliminate the targeted cells (Bernal et al., 2012). In
most instances, high-density memory T lymphocytes directed
towards Th1 and robust CD8+ compartments are typically linked
to improved prognostic outcomes (Becht et al., 2016b). Natural killer
(NK) cells have the capacity to detect the reduction in Class I MHC
expression and exert cytotoxicity that relies on direct contact. NK
cells have been recognized as a prominent cellular population
involved in facilitating immune responses against tumor cells
(Vivier et al., 2012). We observed higher expression of CD8+

T cells and NK cells in the low-risk group with low
PSMB6 expression. This suggests that PSMB6 may help promote
the growth of lung adenocarcinoma cells by reducing the number of
immune cells, such as CD8+ T cells and NK cells. Ultimately, this
could lead to poorer prognosis for patients.

It is important to highlight that the KEGG analysis revealed a
significant enrichment in MAPK pathways. The MAPK pathways
encompass a three-tiered kinase module. The MAPK signaling
pathway plays a role in various cellular processes such as cell

proliferation, migration, differentiation, and apoptosis, regulating
the biological functions of cells (Dhillon et al., 2007). Previous
studies have indeed shown that the MAPK signaling pathway can
influence the proliferation of lung cancer cells (Yu et al., 2022). This
suggests a potential close association between PSMB6 and the
MAPK pathway in promoting the growth and specialization of
lung adenocarcinoma cells.

Interestingly, the GO analyses revealed significant enrichment of
pathways associated with GTPase. Rho GTPases are pivotal
regulators in numerous cellular activities, exerting their influence
on cell proliferation, survival, andmigration, among other processes.
In addition to their roles in cellular processes, Rho GTPases
participate in the interplay with the tumor microenvironment,
where they modulate inflammation, which in turn can influence
the progression of cancer (Crosas-Molist et al., 2022). Alterations in
the expression of Rho GTPases or their upstream regulators have
been frequently observed in cancer, with Rho GTPase often being
overexpressed rather than downregulated (Haga and Ridley, 2016;
Fritz et al., 2002; Del Pulgar et al., 2005). Rho GTPase signaling
pathways are also of significant importance within immune cells
(Bros et al., 2019). For example, RAC1P29S melanoma harbored
increased PD-L1 expression compared to RAC1 wild type or other
RAC1 mutants (Vu et al., 2015). In breast cancer, it has been
observed that in vitro, the phosphorylation of moesin by ROCK

FIGURE 12
Knockdown of PSMB6 inhibits the migration and invasion of LUAD cells. (A, B) The migration and invasion abilities of A549 and H1299 cells with
PSMB6 knockdown and their corresponding control cells without PSMB6 knockdown were assessed using a Transwell migration assay. (C, D) The
migratory ability of A549 and H1299 cells with PSMB6 knockdown and their corresponding control cells without PSMB6 knockdownwas assessed using a
wound healing assay. (E, F) Western blot analysis was used to compare the expression levels of E-Cadherin and N-Cadherin in PSMB6 knockdown
A549 and H1299 cells with those in the control groups.
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can stabilize the levels of PD-L1. In mouse tumors, the systemic
inhibition of ROCK hindered tumor progression by decreasing the
expression of tumor-derived PD-L1, which in turn resulted in
increased infiltration of CD4+ and CD8+ T cells (Meng et al., 2020).
Additionally, inhibition of ROCK on tumors directly affected
immune cell populations, enhancing dendritic cell-mediated
phagocytosis of tumor cells, promoting antitumor immunity,
and T-cell priming (Nam et al., 2018). In this study, we found
that the high-risk group with elevated PSMB6 expression showed
higher levels of PD-L1 expression. Additionally, in the low-risk
group, immune scoring for immune cells such as CD8+ T cells was
higher. Therefore, we hypothesize that Rho GTPase signaling in
lung adenocarcinoma cells may serve as a key regulator of immune
evasion. It achieves this by altering the expression level of PD-L1
and affecting the infiltration of immune cells, including CD8+

T cells. Ultimately, this promotes the growth and metastasis of
LUAD cells.

Immune checkpoint molecules are a group of
immunoregulatory receptors/ligands that play a significant role
in maintaining the balance of the body’s immune response under
normal physiological conditions. They influence the activation of
T cells to prevent over-activation of the immune system (Morad
et al., 2021; Wagner et al., 2021). One important strategy for
tumors to escape immune surveillance is by regulating the
expression of immune checkpoint molecules, thereby
suppressing the anti-tumor response of the body (Khan et al.,
2020). During the induction phase of the anti-cancer immune
response, immune checkpoint molecules inhibit the activation of
effector T cells by interfering with the interaction between CD80/
CD86 and CD28. This weakening of the anti-tumor effects of
T cells allows tumor cells to evade immune surveillance (Hosseini
et al., 2020; Lee et al., 1998). We found that the expression of CD28,
CD80, andCD86 was markedly reduced, suggesting that
PSMB6 may decrease their expression to reduce the binding
between CD80/CD86 and CD28, ultimately leading to immune
evasion in lung adenocarcinoma cells. CD276 is a member of the
immune checkpoint protein B7 family. There is evidence
indicating that CD276 exhibits high expression in cancer cells
as well as in activated immune cells infiltrating tumors. It assists
tumor cells to evade surveillance by NK cells and cytotoxic T cells
and is strongly linked to tumor cell proliferation and treatment
resistance (Getu et al., 2023). In the high-risk group with elevated
PSMB6 expression, there is a significant increase in
CD276 expression. These results suggest that PSMB6 could
potentially enhance the proliferation and metastasis of lung
adenocarcinoma cells by upregulating CD276 expression and
suppressing immune responses.

This study found that PSMB6 is relatively highly expressed in
lung adenocarcinoma tissues and lung adenocarcinoma cells. In
vitro experiments demonstrated that knocking down the
expression of PSMB6 inhibited the proliferation, invasion, and
metastasis of lung adenocarcinoma cells, while promoting their
apoptosis. This indicates that PSMB6 is an important regulatory
factor closely associated with the occurrence and development of
lung adenocarcinoma. Epithelial-mesenchymal transition (EMT)
plays a critical role in the proliferation and migration of tumor
cells (Li et al., 2017b; Tsutsumi et al., 2017). Through EMT,
tumor cells can alter the expression of surface antigens, thereby

reducing the likelihood of recognition by immune cells.
Additionally, the cytokines and chemokines secreted by tumor
cells during the EMT process can recruit immunosuppressive
cells, further inhibiting the immune response. These mechanisms
enable tumor cells to possess a stronger escape ability under
immune surveillance (Chaffer and Weinberg, 2011). Recent
studies have shown that the proteasome is closely related to
EMT in the development of gastric cancer (Wang et al., 2023), but
the interaction between PSMB6 and EMT in lung
adenocarcinoma has not been reported. Therefore, we used
Western blot experiments to detect the expression of
E-cadherin and N-cadherin (EMT markers) in lung
adenocarcinoma cells. The results indicated that knocking
down PSMB6 expression increased E-cadherin expression
while inhibiting N-cadherin expression. Combined with the
observation that the PSMB6 high expression group had a
lower immune score, we speculate that PSMB6 may influence
the immune microenvironment through the EMT pathway,
thereby promoting the proliferation and invasion of lung
adenocarcinoma.

Our study is not without limitations. First, we utilized a
substantial amount of data from online databases such as GEO
and TCGA. The patients in these public databases exhibit
heterogeneity in clinical characteristics, including variations
in immunotherapy and staging, which may impact the
accuracy of the proposed predictive models. Therefore, it is
necessary to use larger prospective cohorts to further validate
these risk prediction models. Second, conducting animal
experiments to elucidate the role of PSMB6 in LUAD,
particularly its impact on the tumor immune microenvironment,
is essential.
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