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Accurate species identification of the mosquitoes in the genus Anopheles is of
crucial importance to implement malaria control measures and monitor their
effectiveness. We use a previously developed amplicon panel (ANOSPP) that
retrieves sequence data from multiple short nuclear loci for any species in the
genus. Species assignment is based on comparison of samples to a reference
index using k-mer distance. Here, we provide a protocol to generate version
controlled updates of the reference index and present its latest release, NNv2,
which contains 91 species, compared to 56 species represented in its
predecessor NNv1. With the updated reference index, we are able to assign
samples to species level that previously could not be assigned. We discuss what
happens if a species is not represented in the reference index and how this can be
addressed in a future update. To demonstrate the increased power of NNv2, we
showcase the assignments of 1789 wild-caught mosquitoes from Madagascar
and demonstrate that we can detect within species population structure from the
amplicon sequencing data.
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Introduction

The genus Anopheles contains many species complexes: groups
of closely related species which share large amounts of genetic
variation and can sometimes hybridise in areas of sympatry
(Harbach and Kitching, 2016; Anopheles gambiae 1000 Genomes
Consortium et al., 2017). Usually there are no known morphological
keys to distinguish between species inside species complexes and
molecular methods are required. Most commonly used are species
diagnostic PCRs, which target a single locus and determine the
species based on the length of the amplified sequence (Scott et al.,
1993; Fanello et al., 2002; Cohuet et al., 2003; Wilkins et al., 2006).
The target sites and primers used in these PCRs are specific to each
species complex and failures (lack of a band) are difficult to interpret
(Erlank et al., 2018).

Within the genus Anopheles, which contains approximately
500 described species, a few dozen species are known vectors of
human malaria (Wilkerson et al., 2021). Apart from vector capacity,
the species within this genus also greatly vary in their range, host
preference, biting behaviour and insecticide resistance profiles
(Carnevale and Robert, 2009). Detailed knowledge of each
species’ contribution to malaria transmission and how this
changes through space and time is crucial to design and assess
effective malaria control measures (Krzywinski and Besansky, 2003;
Erlank et al., 2018). Currently, Anopheles species identification
heavily relies on morphological assessments, which are time
consuming and where the accuracy depends on the level of
expertise of the taxonomist. Morphological identification keys are
often specific to a certain geographic region (Le Goff et al., 2012;
Gunathilaka, 2017; Coetzee, 2020; Sallum et al., 2020) and rare
species or those invading from other regions, a phenomenon that
might become more common due to climate change, might be
misidentified and go undetected for some time.

ANOSPP (ANOpheles Species and Plasmodium Panel) is an
amplicon sequencing approach that targets up to 62 nuclear loci in
the genericAnopheles genome to determine the species together with
two mitochondrial loci in the generic Plasmodium genome to assess
parasite presence in mosquitoes. It was built to address the
challenges mentioned above and can be used for robust and
accurate species identification for mosquitoes collected globally
(Makunin et al., 2022). ANOSPP can be used for large scale
monitoring of Anopheles to understand species diversity and
potential transmission patterns and in comparison to whole
genome sequencing, it operates at a small fraction of the cost.
Indeed, ANOSPP can also be used as a first step analysis to
identify specimens of interest for whole genome data generation.

To assign mosquito species, the obtained sequence data is
compared to a reference index using k-mer distances (Boddé
et al., 2022). For each of the sample’s target haplotypes, we
identify its nearest neighbour in the reference index as the
haplotype that minimises the k-mer distance. We normalise over
alleles and targets to obtain the sample’s assignment proportions
over all the species represented in the reference index, based on the
species labels of the nearest neighbours.

The reference index contains sequence data of up to ten
individuals per species, where we carefully assessed the accuracy
of the species label. We are in the process of sequencing many
thousands of mosquitoes with the ANOSPP panel. Among those, we

encountered species that were not represented in our initial
reference index, NNv1, and as a result some mosquitoes could
not be assigned to the correct species. We aim to regularly
update the ANOSPP version controlled reference index to enable
more accurate discernment of species identity. Here we discuss the
process of updating the reference index together with the latest
release, NNv2.

The genus Anopheles is divided into seven subgenera, five of
which contain relatively few species, while the subgenera Anopheles
and Cellia contain more than 200 species each (Harbach, 2013;
Harbach and Kitching, 2016). These two subgenera, as well as the
subgenus Nyssorhynchus that contains over 30 described species, are
divided into sections and series, which contain further divisions into
groups, subgroups and complexes. Although the taxonomic units
between subgenus and species are not officially recognised as
scientific classification levels (International Commission on
Zoological Nomenclature, 1999; Harbach, 2013), historically they
have been widely used in the Anopheles taxonomy. The taxonomic
classification is based on morphological traits and does not always
agree with phylogenetic relationships between species, inferred from
DNA markers (Harbach, 2013).

Mirroring the hierarchical classification of the genus Anopheles,
the samples in the reference index are grouped at three different
levels. Roughly, the fine level in the reference index corresponds to
species in the taxonomy; the intermediate level corresponds to
groups, subgroups or complexes in the taxonomy; and the coarse
level corresponds to series for the subgenera Anopheles and Cellia
and to subgenus for the other subgenera. At the fine level,
NNv2 contains 91 of approximately 500 described Anopheles
species (Wilkerson, Linton and Strickman, 2021). At the
intermediate and coarse level respectively, 53 groups, subgroups
and complexes and 11 series and subgenera are represented.

We arrived at NNv2 through an iterative process of adding and
removing samples and revising species labels. Where available, we
took the species labels provided by our sample partners, mostly
based onmorphological identifications, as a starting point. However,
the accuracy of morphological identification depends on the level of
expertise of the taxonomist and can be undermined by cryptic
genetic variation, hybridisation and shifting species ranges.
Moreover, morphological identifications often lack the resolution
to distinguish between species within a species complex or
group. Therefore, it is necessary to validate these species labels by
other means. We assessed the confidence of the species labels by
comparing them with clustering results on ANOSPP sequence data,
by assessing the taxonomic placement of a species cluster, and by
considering sequence similarity and taxonomic placement of
ITS2 barcode sequences generated from relevant samples. Here
we also introduce a naming convention to highlight any conflicts
between these lines of evidence. To showcase the power of ANOSPP
and the improvements offered through the NNv2 reference index,
we provide an exploration of 1789 samples from Madagascar and
demonstrate that ANOSPP is able to capture geographic signal
within certain species.

ANOSPP panel development (Makunin et al., 2022) and the
analytical approach (Boddé et al., 2022) have now provided the
framework to support the expansion of species diversity exploration
in this medically important genus of human malaria vectors. Here
we show that increasing the number of species represented in the
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reference index greatly improves species assignment and regular
updates of the reference index are crucial to accurately monitor
vector populations.

Materials and methods

Sample processing

A total of 2163 mosquitoes were collected from several locations
using a variety of collection methods; see Supplementary Tables
S1–S3 for information for each individual mosquito. Samples were
shipped to Sanger, where they were processed and sequenced
according to the protocol in Makunin et al. (2022); Korlević et al.
(2021); Makunin et al. (2022). Sequence data were processed as in
Boddé et al. (2022); Makunin et al. (2022). Species assignment was
performed using NNoVAE (Boddé et al., 2022) using standard
parameters with the following exceptions. The assignment
threshold was changed from 0.8 to 0.7 to obtain a higher
assignment rate for closely related species; e.g., individuals
assigned to Funestus_subgroup_cl1_f§ tend to have assignment
proportions between 0.7 and 0.8 for Funestus_subgroup_cl1_f§.
Assignments are still robust, because with a 0.7 threshold the
difference in assignment proportion between the highest and
second highest proportion is at least twofold. We also introduced
new contamination risk categories, including ‘low’ (≥1,000 reads
and 0 multiallelic targets), ‘medium’ (<1,000 reads or one to two
multiallelic targets), ‘high’ (3 or four multiallelic targets) and ‘very
high’ (more than four multiallelic targets).

ITS2 sequencing
ITS2 barcodes were sequenced for a few individuals for each

species (Supp 4); ideally after species assignment, but sometimes we
used the morphological labels to select samples before ANOSPP
sequencing. ITS2 sequences were generated as in Makunin et al.
(2022), using ITS2A (5′-TGTGAACTGCAGGACACAT-3′) and
ITS2B (5′-TATGCTTAAATTCAGGGGGT-3′) primers for PCR
amplification (Beebe and Saul, 1995) and sent for Sanger
sequencing using the ITS2A primer and the Eurofins GATC
SupremeRun 96 service (https://eurofinsgenomics.eu/en/custom-
dna-sequencing/gatc-services/supremerun-plate/). We used
cutadapt 4.6 (Martin, 2011) to remove incomplete ITS2
sequences by requiring the ITS2B primer to be present at the end
of the sequence. Selected samples with incomplete ITS2 sequences
were resequenced from the ITS2B primer; for those samples
consensus sequences were generated using the DNAsubway
(Hilgert et al., 2014). Sequence completeness was assessed by
looking at multiple sequence alignments within a group of
related species and incomplete sequences were removed manually.

Tree generation
We generated trees from ITS2 sequences using selected samples

from multiple species and ANOSPP sequence trees for the samples
in NNv2. Multiple sequence alignment was performed on
ITS2 sequences or on ANOSPP sequences for each target
separately using mafft v7.520 (Katoh and Standley, 2013). Trees
were generated with FastTree version 2.1.11 using the -nt option
(Price et al., 2009). The trees from different ANOSPP targets were

combined into a species tree using astral version 5.7.8 (Zhang et al.,
2018). Tree visualisation was done in iTOL (Letunic and
Bork, 2024).

Reference index creation

The candidate samples for NNv2 included the samples from
NNv1 (Boddé et al., 2022), additional individuals of the species
already represented in NNv1 and individuals with species labels that
were not present in NNv1 (Small et al., 2020). We selected up to
10 individuals per species, collected from as many different
countries as possible, but not more than five individuals from the
same country. For species with a large geographic distribution that is
well represented in the datasets we have analysed to date, that means
NNv2 includes only one or two individuals per country (e.g., for An.
arabiensis we included one or two individuals from seven countries,
such that the total number of individuals equals 10), whilst for
species with a narrow geographic range or where we have processed
samples from a limited number of locations, NNv2 includes only five
individuals, all from the same country (e.g., Five An. pauliani from
Madagascar, 1 An. obscurus from Gabon). In this way we try to
capture within species variation, while keeping the reference index
lightweight and assignments computationally feasible. We used the
assignment results obtained using NNv1 to avoid clearly
misidentified individuals, for example, of the 44 individuals
morphologically identified as An. mascarensis, three were
assigned to Anopheles_maculipalpis using NNv1. An.
maculipalpis and An. mascarensis are quite distantly related
(Figure 2), so we concluded that those three individuals were
morphologically misidentified.

For the selected set of individuals we computed the k-mer
distance between each pair of samples from the ANOSPP target
sequences [see Boddé et al. (2022) for the precise mathematical
definition]. These pairwise distances are used to identify clusters of
samples, referred to as species-groups, by setting thresholds on the
normalised k-mer distance. As in Boddé et al. (2022), we used a
threshold of 0.1 for the fine level species-groups and 0.3 for the
intermediate level species-groups. Although these thresholds do not
partition the set of candidate samples perfectly (see Supplementary
Figures S1–S7), the clustering agrees reasonably well with the species
and complex, subgroup or group labels respectively and is sufficient
as a starting point to define species-groups. It was previously shown
that there is not a single threshold that clearly separates all series and
subgenera (Boddé et al., 2022). Therefore we decided to define the
coarse level species-groups in accordance with the taxonomic series
for the species-rich subgenera, Anopheles and Cellia, and with the
taxonomic subgenus for the subgeneraNyssorhynchus andKerteszia,
rather than based on a threshold.

Some closely related species (e.g., An. coluzzii and An.
gambiae; and An. epiroticus and An. sundaicus) have k-mer
distances below the fine level threshold; an indication that the
NN method on all ANOSPP targets cannot confidently distinguish
between them. In this case a species-group represents multiple
species (there are seven such species-groups with labels ending in
§; see Table 1) and in order to distinguish between them a follow up
method has to be implemented [e.g., the variational autoencoder
(VAE) for the Gambiae Complex, see Boddé et al. (2022)]. On the
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other hand, sometimes we see several clusters at the fine level
threshold of samples with the same species label. This likely
represents an undescribed species complex (e.g., An. pharoensis)
or considerable geographic structure (e.g., An. squamosus). In
some cases we include the clusters as separate species-groups,
indicated by the species name followed by _cl1, _cl2, etc., (as for
An. pharoensis), where “cl” stands for clade. In other cases we
merge the clusters into a single species group (as for An.
squamosus). The decision as to whether a species is represented
by multiple clusters depends on the distance between members of
the clusters, whether most individuals of the species can be clearly
assigned to one cluster or whether many individuals have mixed
assignments, whether individuals from different clusters occur
sympatrically and whether ITS2 information supports the
clustering.

Naming convention
The fine (0.1 k-mer distance threshold) and intermediate

(0.3 k-mer distance threshold) level species-groups are named
according to the species they represent, suffixed by _cl1, etc. if
necessary. If a species-group (meaning a cluster of samples that are
grouped based on these thresholds) represents several species, the
species-group is named according to the species complex, subgroup
or group to which these species belong, again suffixed by _cl1, etc. if
necessary. If a species-group represents one or more unnamed
species, it is named according to the complex, subgroup or group
it most likely belongs to as deduced from the pairwise distances on
the ANOSPP data, always followed by _cl1, etc. Fine level and
intermediate level species groups are suffixed by _f and _i
respectively, with the exception of fine level species-groups with a
one-to-one correspondence to a single species, in which case the _f

TABLE 1 Species-groups with uncertainty or potential conflict.

Level Species-group Issue

Intermediate An_rhodesiensis_i* NN coarse: Myzomyia series
Taxonomy: Neomyzomyia series

Marshallii_group_i* Contains An_theileri* (taxonomy: Wellcomei group) and An_mascarensis* (taxonomy: Mascarensis group, Neomyzomyia
series)

Moucheti_complex_i* Contains An_jebudensis* (taxonomy: Smithii group, Neomyzomyia series)

Sundaicus_subpictus_
complex_i§

Taxonomy: Sundaicus and Subpictus are separate complexes in the Pyretophorus series

Myzomyia_series_cl1_î Unnamed species in Myzomyia series

Fine An_rhodesiensis*† NN coarse: Myzomyia series
Taxonomy: Neomyzomyia series
Also strong geographic structure

An_theileri* NN intermediate: Marshallii group
Taxonomy: Wellcomei group

An_mascarensis* NN intermediate, coarse: Marshallii group, Myzomyia series
Taxonomy: Mascarensis group, Neomyzomyia series

An_jebudensis* NN intermediate, coarse: Moucheti complex, Myzomyia series
Taxonomy: Smitthii group, Neomyzomyia series

Funestus_subgroup_cl1_f§ Contains An. funestus, An. funestus-like and An. vaneedeni

Funestus_subgroup_cl2_f§ Contains An. longipalpis and An. parensis

Marshallii_group_cl1_f§ Potentially contains An. marshallii, An. hancocki and An. brohieri

Marshallii_group_cl2_f§ Potentially contains An. marshallii, An. hancocki and An. brohieri

Marshallii_group_cl3_f§ Potentially contains An. marshallii, An. hancocki and An. brohieri

An_gambiae_coluzzii§ Contains An. gambiae and An. coluzzii

Sundaicus_complex_f§ Contains An. sundaicus and An. epiroticus

Coustani_group_cl1_f§ Potentially contains An. coustani and An. tenebrosus

Coustani_group_cl2_f§ Potentially contains An. coustani and An. tenebrosus

Myzomyia_series_cl1_f^ Unnamed species in Myzomyia series

Rivulorum_subgroup_cl1_f^ Unnamed species in Rivulorum subgroup

Christya_series_cl1_f^ Unnamed species in Christya series

Leucosphyrus_group_cl1_f^ Unnamed species in Leucosphyrus group

An_squamosus† Strong geographic structure
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suffix is omitted (this is the case for 65 of 91 fine level species-
groups). Coarse level species-groups are named according to the
taxonomic series they represent for the subgenera Anopheles and
Cellia and according to the subgenus for the subgenera Kerteszia and
Nyssorhynchus. If there is a conflict between ANOSPP data and
taxonomic placement, the species-group name is appended with an
*. If a fine level species-group consists of several named species or an

intermediate level species-group consists of several named
complexes, the species-group name is appended with an §.
Species-groups representing unnamed species are appended by a .̂
Species-groups that show evidence of strong geographical structure
are appended by †. Table 1 provides detail on each affected species-
group with these symbols appended. Species-group labels without
any suffixes are highly confident.

FIGURE 1
Pairwise distances between samples in NNv2. The heatmap shows the pairwise k-mer distance between all individuals in NNv2. Individuals are in the
same order on the horizontal and vertical axes and are labelled by the fine-level species groups (labels are shown only for every third sample because of
size restrictions). The orange (threshold 0.1), yellow (threshold 0.3) and green lines in the upper triangle indicate the fine, intermediate and coarse level
species groups respectively. The coarse level species-group labels are displayed on the figure.
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FIGURE 2
Species tree from ANOSPP target sequence. Separately generated trees for each target were merged into a single species tree using ASTRAL. The
leaves are labelled by the fine level species-groups and the coarse level species-groups are indicated with coloured boxes. Branches are scaled by
substitution rate and bootstrap support values are indicated by the size of the purple circles.
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Results

Identified species-groups

The eleven coarse level species-groups follow the taxonomic
series within the subgenera Anopheles and Cellia and represent the
entire subgenus for the subgenera Nyssorhynchus and Kerteszia. The
normalised pairwise k-mer distances largely support this division
(Figure 1; Supplementary Figure S1). It is worth noting that the
Cellia Series does not form a separate cluster from the Pyretophorus
Series and exploration of the phylogenetic relationships of An.
squamosus and An. pharoensis with the species in the
Pyretophorus Series should be undertaken. Pairwise k-mer
distances also reveal that the Neomyzomyia Series consists of at
least four separate clusters; consistent with several phylogenetic
studies which reported that the Neomyzomyia Series is non-
monophyletic (Foley et al., 1998; Harbach, 2013; Makunin et al.,
2022). The species tree based on alignments of ANOSPP sequence
data also indicates that the Pyretophorus Series is paraphyletic with
respect to the Cellia and Paramyzomyia Series (Figure 2). The
species tree also supports the finding that the Neomyzomyia
Series is non-monophyletic.

The 53 species-groups at the intermediate level (0.3 threshold)
typically represent groups, subgroups or complexes within the
genus. However, if the intermediate level species-group in the
reference index contains a single fine level species-group, it is
labelled with the species name and not by the taxonomic unit
that species represents. Intermediate level species groups that are
in conflict with the taxonomy are listed in Table 1.

NNv2 contains 91 species-groups at the fine level, compared to
56 in NNv1. Most fine level species-groups correspond to a single
species, although some contain multiple closely related species,
while in other cases multiple species-groups represent different
clades of the same species (although this could be described or
undescribed cryptic variation within a species or species complex).
Table 1 lists all fine level species-groups that do not have one-to-one
correspondence with a single species. Supplementary Table S1
contains individual level information for the samples in NNv2.
Supplementary Figures S2–S7 show which pairwise distances
meet the intermediate and fine level thresholds.

Assignment of unrepresented species

The NNv2 reference index improves on the number of species
that are represented compared to the NNv1 reference index, but
there is some way to go to represent the complete genus Anopheles
(500 species). Until we have most species represented in the
reference index, it remains important to understand what
happens if we try to assign an individual where its species is not
represented yet in the reference index. Assuming that sufficiently
many targets are amplified (≥10), the sample will be either assigned
at the fine level, the intermediate level, the coarse level or not at any
level. Among the species that are not represented in NNv1, but are
represented in NNv2, we find examples of each of these scenarios.

Assignment to closely related species at fine level
Funestus_subgroup_cl2_f§ in NNv2 contains An. longipalpis

and An. parensis and with NNv1 these samples were assigned to
Anopheles_funestus at the fine level. Similarly, with NNv1 An.
leesoni was assigned to Anopheles_minimus_A at the fine level
(Figure 3). In NNv1, An. funestus and An. minimus are the only
representatives of their respective subgroups, meaning that even
though the samples we try to assign are of a different species, they are
much closer to Anopheles_funestus and Anopheles_minimus_A
respectively than to anything else in NNv1 and hence get
assigned at the fine level to the incorrect species. NNv2 contains
the fine level species-groups representing An. longipalpis and An.
parensis (together represented as Funestus_subgroup_cl2_f§) and
An. leesoni (An_leesoni). At the intermediate level, Funestus_
subgroup_cl2_f§ belongs to the Funestus_subgroup and An_
leesoni belongs to the Minimus_subgroup. Using NNv2, we
correctly assign An. longipalpis, An. parensis and An. leesoni
mosquitoes to their corresponding species-groups.

Two other species from the Funestus Subgroup, An. vaneedeni
and An. funestus-like, were also assigned to Anopheles_funestus
with NNv1. These species are more closely related to An. funestus
than An. longipalpis and An. parensis are (Small et al., 2020) and in
fact the normalised k-mer distance of An. vaneedeni and An.
funestus-like to An. funestus is below the 0.1 fine level threshold.
Therefore, these three species are now represented by a single fine
level species-group: Funestus_subgroup_cl1_f§. So compared to
NNv1, the new NNv2 reference index does not only add new
fine level species-groups, but it also reevaluates the certainty of
the labels and can change a label that represents a single species,
suggesting confident assignment to that species, into a label that
represents multiple species and no confident assignment to a single
species. In the case of the Funestus Subgroup this uncertainty is
somewhat alleviated by the likely restricted species ranges of all
species other than An. funestus (Dia et al., 2013).

Assignment to group at intermediate level
In NNv1, An. mascarensis, a species endemic from Madagascar

and Comoros (Meillon, 1947), was most similar to Anopheles_
marshallii_complex, Anopheles_marshallii_cp_sp1 and Anopheles_
theileri and it was assigned at the intermediate level to the
Anopheles_marshallii_group, which contains those three fine
level species-groups (Figure 3). NNv2 contains an An_
mascarensis* species-group and the samples now get assigned to
it at the fine level. At the intermediate level, the An_mascarensis*
species-group is part of the Marshallii_group, consistent with the
NNv1 assignment results.

Assignment to series at coarse level
An. pretoriensis could only be assigned at the coarse level to the

Myzomyia_Neocellia_series in NNv1. From the assignment
proportions, we see that it is most closely related to Anopheles_
maculipalpis, Anopheles_rampae and Anopheles_annularis, but it
did not meet the assignment threshold at the fine or intermediate
level (Figure 3). NNv2 contains an An_pretoriensis species-group
and the samples get assigned to it at the fine level.
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Rainbow samples
The assignment proportions for An. squamosus in NNv1 are

distributed over many different species, resulting in a colourful
pattern in the assignment proportions plot, which we refer to as
‘rainbows’. In NNv1An. squamosus samples could not be assigned at
any level. An. squamosus is in the Cellia Series in the subgenus Cellia
and NNv1 did not contain any samples representing the Cellia
Series, i.e., An. squamosus is quite distant from all the species in
NNv1. NNv2 contains an An_squamosus† fine level species-group
and the samples get assigned at the fine level.

Even if a sample does not get assigned at all, or only at the
coarse level, the assignment proportions can still be used to group
samples with similar rainbow patterns together, which can be
helpful in order to find out what species they are. The
NNv1 assignment proportions in Figure 3 show at least four
different rainbow patterns: An_rivulorum and Rivulorum_
subgroup_cl1_f^ (and maybe An_flavicosta because it has
similar colours but quite different proportions); An_rufipes
and An_pretoriensis; An_squamosus†, An_pharoensis_cl1_f
and An_pharoensis_cl2_f; An_pauliani and An_radama.

FIGURE 3
Resolved and persisting rainbow samples. Nearest neighbour assignment proportions using NNv1 (top) and using NNv2 (bottom) for 50 samples.
Samples are labelled by their species call from the respective version of the reference index. The number of recovered targets and the contamination risk
per sample is indicated along the horizontal axis between the two plots. The horizontal dotted lines indicate the assignment thresholds (0.8 for NNv1;
0.7 for NNv2).
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FIGURE 4
Assignment proportions for 760 mosquitoes from Madagascar. Assignment proportions for each individual are shown as vertical bars. Samples are
grouped by sequencing plate (eight 96-well plates, the final well in each plate is a negative control). Sample names are shown at the bottom of each plate,
the number of targets recovered at the top of each plate. The number of targets are coloured according to the contamination risk of the sample. The
dotted horizontal line indicates the assignment threshold of 0.7.
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However, with the representation of these species in NNv2, we
find that each of these four rainbow patterns in fact represents at
least two different fine level species-groups.

A few samples can only be assigned at the coarse level even with
NNv2. This can be due to contamination, in which case we would
typically flag the samples as having an increased contamination risk.

FIGURE 5
Species assignments for 1789 mosquitoes from Madagascar. The maps show the species of the mosquitoes collected at each location; each map
presents a different coarse level species-group. The number displayed at each collection location refers to the number of individuals collected there for
the focal coarse level species-group.
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Moreover, if the species of both the sample and the contaminant are
represented in the reference index, we would typically see high
assignment proportions for these two species and very low
assignment proportions for all other species. If we believe that
the pattern we observe is not driven by contamination, and in
particular if we see multiple samples with a repeated rainbow
pattern, it is likely that these samples are of a species or
population which is not represented in the reference index; that
is what we suspect for the five Cellia_series samples in Figure 3 (see
next section).

Madagascar case study

We performed species assignment for 1789 mosquitoes from
different collection sites in Madagascar (Figures 4, 5;
Supplementary Table S3). Assignment proportions for
760 individuals that were sequenced in one MiSeq run are
displayed in Figure 4; this visual summary provides a quick
overview of the species that are present. Of the entire dataset
from Madagascar, 20 individuals (1.1%) had fewer than
10 targets amplified and hence were not run through
NNoVAE. All other samples could be assigned at least at the
coarse level. Five individuals were assigned to Cellia_series at the
coarse level and could not be assigned at the intermediate level;
we believe that these individuals represent a species within the
Cellia Series that is not represented in NNv2. They were
morphologically identified to be An. coustani (n = 2) and An.
squamosus (n = 3). The majority of samples that could not be
assigned at fine level are samples in the Gambiae Complex. We
previously found that the NN method cannot confidently
distinguish between very closely related species (e.g., An.
gambiae and An. coluzzii) within species complexes and
therefore we designed a follow-up method using a variational
auto-encoder [VAE, see Boddé et al. (2022)] to identify species
within the Gambiae Complex. Using this method, we identified
166 An. arabiensis and 660 An. gambiae specimens and
229 individuals (12.8%) were identified as intermediates
between these two species. We believe that in most cases,
these intermediates reflect the uncertainty of the VAE
assignment method, rather than true hybrids between species.
Although the NN assignment threshold is usually not reached
for An. arabiensis and An. gambiae, the NN assignment
proportions do show a different pattern for An. arabiensis
(e.g., AYDI_098_E1 in Figure 4) and An. gambiae (e.g.,
AYDI_098_F1 in Figure 4). All other 1,477 mosquitoes
(82.6%) could be assigned at the fine level. Figure 5 shows the
collection locations of all individuals, split by coarse level series
and coloured by fine level species.

Population structure within the cellia series

In NNv2 the coarse level species-group Cellia_series consists
of three fine level species-groups: An_squamosus† with samples
from Ghana, Gabon, Madagascar and Tanzania; An_pharoensis_
cl1_f with samples from Senegal, Ghana, Madagascar and
Tanzania; and An_pharoensis_cl2_f with samples that occur

sympatrically in Tanzania with An_pharoensis_cl1_f.
Although there is some population structure visible within An.
squamosus, we found that if we included two separate clusters,
many samples would not meet the assignment threshold for
either clade at the fine level and could only be assigned to the
An_squamosus_i species-group at the intermediate level, which
contains both clades. For An. pharoensis, almost all individuals
were clearly assigned to one of the clades at the fine level.
Moreover, the two An. pharoensis clades occur sympatrically
in Tanzania, while the two An. squamosus clades occur on either
side of the continent and hence the latter could be due to strong
geographic population structure.

Most samples in the Cellia Series can be assigned to a species-
group at the fine level, except five samples from Madagascar that
are assigned at the coarse level to the Cellia_series, but could not
be assigned at the intermediate or fine level. Pairwise distances
show that they are clearly distinct from the three fine level
species-groups in the Cellia series (Figure 6A). If we treat each
unique target sequence as a separate haplotype and record in
which other populations in the Cellia Series these haplotypes
occur, we find that these five fine level unassigned samples do not
share exact sequence with any other samples in the Cellia series
for the majority of the 62 targets (Figure 6B). They also form their
own cluster in the PCA which is clearly different from An_
squamosus†, An_pharoensis_cl1_f, and An_pharoensis_cl2_
f (Figure 6C).

Pairwise distances reveal considerable geographic structure
between the An_squamosus† samples; we see one cluster
containing individuals from Ghana and Gabon and another
cluster with individuals from Tanzania and Madagascar (Figures
6A, C). This shows that the ANOSPP sequence captures a
geographic signal within An. squamosus.

Sanger sequencing using only the ITS2A forward primer yielded
incomplete sequences for An. squamosus and An. pharoensis and
resulted in sequence length variation between individuals. The
consensus sequences from combining the chromatograms
sequenced from both the forward and reverse primer resulted in
more consistent sequence length between individuals. The ITS2 tree
from Cellia individuals shows a clear split between An. squamosus
and An. pharoensis individuals (Figure 6D). Unfortunately, we do
not have any ITS2 information for the five Cellia_series individuals
that could only be assigned at coarse level. We have ITS2 sequences
for An_pharoensis_cl2_f individuals from Tanzania, but not for any
sympatric An_pharoensis_cl1_f individuals; in fact the only
confirmed An_pharoensis_cl1_f individual with ITS2 information
is from Senegal and it forms a clade together with six individuals
from Madagascar for which we have not yet generated ANOSPP
data. However, we have only encountered An_pharoensis_cl2_f in
Tanzania and we have previously sequenced three An_pharoensis_
cl1_f mosquitoes from Madagascar, so it is likely that these
individuals in the tree will be assigned to An_pharoensis_cl1_f.
In summary, ITS2 barcodes clearly differentiate between An.
pharoensis and An. squamosus and there is a hint of the
geographic structure in An. squamosus and the two different
clades in An. pharoensis, but the structure does not stand out as
clearly using ITS2 data as it does using ANOSPP, supporting
ANOSPP as a valuable approach to understand within species-
group structure.
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Discussion

Historically, the classification of the species of the genus
Anopheles is based on morphological characteristics such as wing
spots, leg coloration and head anatomy. DNA based phylogenetic
studies report cases of concordance as well as discordance (Harbach,
2013; Sallum et al., 2020) with themorphological taxonomy.We find

that the coarse structure of the pairwise distances between samples
in NNv2 mostly agrees with the series level (subgenus level for
Kerteszia and Nyssorhynchus) of the Anopheles taxonomy. However,
we find that the Cellia and Pyretophorus Series cannot be separated;
it would be interesting to investigate the phylogeny of the species in
those series using complete genome assemblies which are underway.
The Neomyzomyia Series does not form a single cluster, consistent

FIGURE 6
Structure and diversity within the Cellia Series. (A) Heatmap of pairwise distances between samples in the Cellia Series. Sample labels are a
concatenation of their species assignment (Asqua: An_squamosus†, Apha1: An_pharoensis_cl1_f, Apha2: An_pharoensis_cl2_f at fine level and Cellc:
Cellia_series at coarse level) and the country of collection (SN: Senegal, GH: Ghana, GA: Gabon, TZ: Tanzania, MG: Madagascar). White squares group
together samples with the same label. (B) Haplotype sharing of Cellia_series individuals. We treat each distinct target sequence carried by the
individuals that could not be assigned at the fine level as a haplotype and check for each haplotype in which other populations it occurs. The bar plot
shows the number of alleles (2 per individual) with their sharing pattern. (C) Projection along the first two principal components computed on variable 8-
mers summed over all targets. The percentage of explained variance is shown in the axis label. (D) ITS2 three of mosquitoes in the Cellia Series. Those in
black have been assigned using NNv2 to the species-group indicated by the brackets on the right (pha_cl2: An_pharoensis_cl2_f, pha_cl1: An_
pharoensis_cl1_f). For those in grey we do not have ANOSPP data yet. The grey sample in the An. squamosus clade was not identifiedmorphologically; of
the lower six grey samples, four were morphologically identified as An. pharoensis and two as An. squamosus. The collection country is indicated with
black brackets.
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with reports of it being non-monophyletic (Foley et al., 1998;
Harbach, 2013; Makunin et al., 2022). Moreover, three species
which, according to the taxonomy, belong to the Neomyzomyia
Series, An. rhodesiensis, An. mascarensis and An. jebudensis, cluster
with the Myzomyia Series in our results.

Series are usually separated based on the cibarial armature, a
structure located near the mouth (Gillies and De Meillon, 1968). It
has previously been questioned whether the cibarial armature is a
reliable characteristic to differentiate between taxonomic series in
the genus Anopheles (Rahola et al., 2014). In light of our results, it
would be interesting to investigate the evolutionary origin of the
distinctive features or the cibarial armature and other morphological
characteristics used for taxonomic classification with whole
genome data.

One of the powers of NNoVAE is that when a species is not
represented in the reference index, it gives an indication which
species in the reference index are closest to it. Comparing the
assignment results generated with different reference index
versions, we observed the different scenarios that can occur when
a species is not represented in the reference index. If it is also not
represented by any close relatives in the reference index, it will only
be assigned at the coarse level or it will not be assigned at all. In these
cases, the assignment proportions form a characteristic rainbow
pattern, which acts like a fingerprint; it is possible to group samples
according to the rainbow patterns, even if it is not yet possible to put
species names on these groups. We found that samples with similar
rainbow patterns are indeed of related species, but it is difficult to
distinguish the rainbow patterns of closely related species if neither
of them are present in the reference index.

One of the remaining rainbow patterns we see in assignments
with NNv2 are samples assigned at the coarse level to the Cellia
Series. These samples likely represent another species within the
Cellia Series; candidates are An. argenteolobatus, which has a wide
geographic spread, from Burkina Faso to Tanzania to South-Africa
(Irish et al., 2020), but has not previously been recorded in
Madagascar, or An. cydippis, which has previously been found on
Madagascar (Andrianaivolambo et al., 2010), although we might
expect this species to bemore similar toAn. squamosus than what we
see for these samples. In our data we see considerable population
structure within the other species in the Cellia Series. In Tanzania,
An. pharoensis clearly forms two separate clusters. There are several
sites where these two clades occur sympatrically. It is possible that
the Tanzania-specific clade represents cryptic variation within An.
pharoensis or that it is in fact another species in the Cellia Series, e.g.,
An. swahilicus, which occurs in Tanzania and Kenya (Irish et al.,
2020), An. argeneolobatus or An. cydippis, although the latter species
we would rather expect to be closer to An. squamosus than An.
pharoensis based on morphological taxonomy (Coetzee, 2020). An.
squamosus displays strong geographic structure. This result shows
that ANOSPP can be a useful tool to identify which species display
strong population structure, which can be used to design follow up
studies for species of interest. One has to bear in mind that all
ANOSPP targets together amount to approximately 10 kb of
sequence, so if population structure is driven by only a fraction
of the genome it is possible that none of the ANOSPP targets are
close enough to tag it. Nevertheless, here we demonstrate that
ANOSPP captures geographic structure within An. squamosus
and previously it has been shown that it captures geographic

structure within An. gambiae, An. coluzzii and An. arabiensis
(Boddé et al., 2022).

Here we presented an updated reference index for NNoVAE,
NNv2, together with a clarified approach for future updates as we
generate data for species that are not yet represented in NNv2. The
updated reference index makes it possible to assign many more
species with the NN method. Because the assignment threshold has
been decreased compared to the earlier NNoVAE version, even
some species within the Gambiae Complex, e.g., An. melas and An.
merus, can already be assigned with the NN method without the
need to be run through the Gambiae complex VAE. On the other
hand, we found that some species-groups that we thought
represented a single species actually represent several species that
cannot be distinguished by the NN method, e.g., Funestus_
subgroup_cl1_f§ represents three species in the Funestus
Subgroup: An. funestus, An. funestus-like and An. vaneedeni. We
plan to implement a tailored follow up method for each group of
species that the NN method cannot differentiate. For groups where
we have many samples available of known species identity, we could
design a VAE like we did for the Gambiae Complex (Boddé et al.,
2022). For groups with fewer available samples it would be more
feasible to look, for example, for diagnostic k-mers for each of the
known species, similar in spirit to the Ancestry Informative Markers
(Anopheles gambiae 1000 Genomes Consortium et al., 2017).
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SUPPLEMENTARY FIGURE S1
Pairwise distances between samples in NNv2. The heatmap shows whether
the pairwise k-mer distances between all individuals in NNv2 are below the
threshold values for the coarse (<0.5, shown in eggplant), intermediate
(<0.3, shown in mauve rose) and fine (<0.1, shown in light peach) assignment
levels. Individuals are ordered the same as in Figure 1 and are labelled by the
fine-level species groups (labels are shown only for every third sample
because of size restrictions). The orange and yellow and green squares
indicate the fine, intermediate and coarse level species groups respectively.

SUPPLEMENTARY FIGURE S2
Pairwise distances between samples in the Myzomyia Series. The heatmap
shows whether the pairwise k-mer distances between all Myzomyia Series
individuals in NNv2 are below the threshold values for the coarse (<0.5,
shown in eggplant), intermediate (<0.3, shown in mauve rose) and fine (<0.1,
shown in light peach) assignment levels. Individuals are ordered the same as
in Figure 1 and are labelled by the fine-level species groups (labels are
shown only for every second sample because of size restrictions). The orange
and yellow squares indicate the fine and intermediate level species groups
respectively.

SUPPLEMENTARY FIGURE S3
Pairwise distances between samples in the Neocellia Series. The heatmap
shows whether the pairwise k-mer distances between all Neocellia Series
individuals in NNv2 are below the threshold values for the coarse (<0.5,
shown in eggplant), intermediate (<0.3, shown in mauve rose) and fine (<0.1,
shown in light peach) assignment levels. Individuals are ordered the same as
in Figure 1 and are labelled by the fine-level species groups (labels are
shown only for every second sample because of size restrictions). The orange
and yellow squares indicate the fine and intermediate level species groups
respectively.

SUPPLEMENTARY FIGURE S4
Pairwise distances between samples in the Cellia, Pyretophorus and
Paramyzomyia Series. The heatmap shows whether the pairwise k-mer
distances between all individuals from the Cellia, Pyretophorus and
Paramyzomyia Series in NNv2 are below the threshold values for the coarse
(<0.5, shown in eggplant), intermediate (<0.3, shown inmauve rose) and fine
(<0.1, shown in light peach) assignment levels. Individuals are ordered the
same as in Figure 1 and are labelled by the fine-level species groups (labels
are shown only for every second sample because of size restrictions). The
orange, yellow and green squares indicate the fine, intermediate and
coarse level species groups respectively.

SUPPLEMENTARY FIGURE S5
Pairwise distances between samples in the Neomyzomyia Series. The
heatmap shows whether the pairwise k-mer distances between all
Neomyzomyia Series individuals in NNv2 are below the threshold values for
the coarse (<0.5, shown in eggplant), intermediate (<0.3, shown in mauve
rose) and fine (<0.1, shown in light peach) assignment levels. Individuals are
ordered the same as in Figure 1 and are labelled by the fine-level species
groups (labels are shown only for every second sample because of size
restrictions). The orange and yellow squares indicate the fine and
intermediate level species groups respectively.

SUPPLEMENTARY FIGURE S6
Pairwise distances between samples in the Christya, Anopheles and
Myzorhynchus Series. The heatmap shows whether the pairwise k-mer
distances between all individuals from the Christya, Anopheles and
Myzorhynchus series in NNv2 are below the threshold values for the coarse
(<0.5, shown in eggplant), intermediate (<0.3, shown inmauve rose) and fine
(<0.1, shown in light peach) assignment levels. Individuals are ordered the
same as in Figure 1 and are labelled by the fine-level species groups (labels
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are shown only for every second sample because of size restrictions). The
orange, yellow and green squares indicate the fine, intermediate and
coarse level species groups respectively.

SUPPLEMENTARY FIGURE S7
Pairwise distances between samples in the subgenera Kerteszia and
Nyssorhynchus. The heatmap shows whether the pairwise k-mer distances

between all individuals from the subgenera Kerteszia andNyssorhynchus in
NNv2 are below the threshold values for the coarse (<0.5, shown in eggplant),
intermediate (<0.3, shown in mauve rose) and fine (<0.1, shown in light
peach) assignment levels. Individuals are ordered the same as in Figure 1
and are labelled by the fine-level species groups. The orange, yellow and
green squares indicate the fine, intermediate and coarse level species
groups respectively.
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