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Introduction: Polygenic Risk Scores (PRS) are an emerging tool for predicting an
individual’s genetic risk to a complex trait. Several methods have been proposed
to construct and calculate these scores. Here, we develop a biologically driven
PRS using the UK BioBank cohort through validated protein interactions (PPI) and
network construction for psoriasis, incorporating variants mapped to the
interacting genes of 14 psoriasis susceptibility (PSORS) loci, as identified from
previous genetic linkage studies.

Methods: We constructed the PPI network via the implementation of two major
meta-databases of protein interactions, and identified variants mapped to the
identified PSORS-interacting genes. We selected only European unrelated
participants including individuals with psoriasis and randomly selected healthy
controls using an at least 1:4 ratio to maximize statistical power. We next
compared our PPI-PRS model to (i) clinical risk models and (ii) conventional
PRS calculations through p-value thresholding.

Results: Our PPI-PRS model provides comparable results to both clinical risk
models and conventional approaches, despite the incorporation of a limited
number of variants which have not necessarily reached genome-wide
significance (GWS). Exclusion of variants mapped to the HLA-C locus, an
established risk locus for psoriasis resulted in highly similar associations
compared to our primary model, indicating the contribution of the genetic
variability mapped to non-GWS variants in PRS computations.

Discussion: Our findings support the implementation of biologically driven
approaches in PRS calculations in psoriasis, highlighting their potential clinical
utility in risk assessment and treatment management.
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1 Introduction

Psoriasis is a common, chronic, inflammatory cutaneous
disease, displaying a varying prevalence amongst different
geographical locations and ethnicities, ranging from less than 1%
in Africa to 3% in western Europe (Parisi et al., 2020). The estimated
heritability of the disease was estimated as high as 70% in a large
Danish cohort (Lønnberg et al., 2013), further highlighting the
substantial implication of the genetic variability in its
pathogenesis. The HLA-Cw6 allele, mapped in the major
histocompatibility complex (MHC) at the 6p21 chromosome
region, has been thoroughly validated in numerous studies as a
susceptibility psoriasis locus, participating in the self-antigen
presentation in T cells, including the nucleic acid/LL-37 complex
and the melanocyte-secreted ADAMTS5 protein (Tsoi LC et al.,
2017; Capon F, 2017).

Nevertheless, the HLA-Cw6 allele exhibits a diverse worldwide
frequency (Chen and Tsai, 2018). Particularly, white Europeans with
psoriasis report increased HLA-Cw6 positivity compared to Asians
with psoriasis (Chen and Tsai, 2018), yet this disparity is not fully
aligned with disease prevalence, thus suggesting additional risk loci
that underlie the disease etiology. This polygenicity has been
unveiled from two, different approaches that have been
developed and implemented throughout the last decades, genetic
linkage analyses and association studies. Specifically, a recent
genome-wide association study (GWAS) on >19,000 cases of
European ancestry have unraveled part of the genetic architecture
of the disease, identifying 63 independent loci that account for more
than 28% of the estimated heritability (Tsoi et al., 2017). Functional
analysis of the significant loci revealed abundant inflammatory-
related pathways, including T cell differentiation and pro-
inflammatory cytokine secretion, such as the NF-κB cascade.
Contrary to GWA studies, linkage analyses investigate possible
risk loci transmissions within family members for a predefined,
heritable trait (Ott et al., 2015). While their incompatibility in
annotating the above modest-effect variants has limited their
application in multifactorial traits, linkage studies have uncovered
fifteen different genomic loci, known as psoriasis susceptibility loci
1–15 (PSORS1-15), that contribute to the pathogenesis of psoriasis,
as derived from the Online Mendelian Inheritance InMan (OMIM®;
http://www.ncbi.nlm.nih.gov/omim) (Amberger et al., 2009).
Protein-coding genes mapped in the respective PSORS loci
participate in both immune-related mechanisms, such as antigen-
presentation and cytokine/chemokine signaling pathways, as well as
mechanisms that govern the epidermal barrier and keratinocyte
proliferation (Gunter et al., 2019). Interestingly, not all these loci
have been identified from psoriasis GWAS with genome-wide
significance, such as PSORS8 and PSORS9 (Capon, 2017).

Despite the considerable progress conducted in the
identification of the genetic predisposition of psoriasis, little
effort has been made towards the discrimination of individuals
through their germline genetic risk. Stratification of individuals
based on their genomic profile poses as an appealing strategy for
enhancing the clinical practice in the context of preventive medicine
and diagnosis. Polygenic risk scores (PRS) have been used
extensively for risk stratification for several complex diseases
including psoriasis. PRS use the genetic variation of an individual
weighted by the effect size estimated from GWAS to assess its

heritable risk of developing a specific complex disease (Lewis and
Vassos, 2020). In psoriasis, studies covering PRSs calculations have,
thus far, a minimal fraction of associated loci with SNPs selected
based on a p-value threshold (Tsoi et al., 2017; Yin et al., 2015; Chen
et al., 2011) excluding therefore an abundance of SNPs that might
interplay a further, uncharacterized functional role in the disease
etiology (Antonatos et al., 2023). However, aberrant interactions
occurring between the encoded proteins (protein-protein
interactions; PPIs) at a pathological state, perturbating the
individual’s homeostasis, leads to the onset and progression of
the disease, enabling the identification of the respective hub
genes that are implicated in the pathogenesis of psoriasis
(Kuzmanov and Emili, 2013).

Here, we evaluated the discriminative ability of a PRS model
based on the PPIs of the PSORS loci, compared to rigorous statistical
approaches through p-value threshold and a clinical risk model for
psoriasis in the United Kingdom Biobank (UKB) cohort. We
describe the process of constructing the PPI network, annotation
of the corresponding genes and we (i) calculate the magnitude of
strength of the association with psoriasis and (ii) its discriminative
ability through receiver operating characteristic (ROC) curves.

2 Materials and methods

2.1 Study participants

We selected participants from United Kingdom Biobank, a
population-based cohort study of over 500,000 individuals, aged
40–69 years old at baseline (Research Ethics Committee approval
number: 21/NW/0157), who were recruited from across the
United Kingdom and underwent an extensive genotypic and
phenotypic characterization (Sudlow et al., 2015). Genotyping of
the participants was performed using a custom Affymetrix array and
imputations were performed centrally. In total, genetic data for
487,410 participants were available. Detailed information of the
genotyping and imputation workflow is provided elsewhere (Bycroft
et al., 2018).

One random participant from each pair of at least third-degree
relatives (kinship coefficient>0.0884) as well as non-Europeans were
excluded from further analyses. We used the inpatient Hospital
Episode Statistics (HES) records to define psoriasis cases. All clinical
psoriasis cases (L40.0-L40.9) were selected through the International
Classification of Diseases, 10th Revision (ICD-10) medical coding
system (Steindel, 2010). From the group of healthy participants, we
randomly selected controls using an at least 1:4 ratio over cases to
achieve maximum statistical power.

2.2 Protein-protein interactions of the
PSORS loci

Protein-encoding genes, mapped to the PSORS loci, were
identified through the OMIM database (https://www.ncbi.nlm.
nih.gov/omim) (Amberger et al., 2009) and submitted to two
continuously updated meta-databases of protein interactions;
Protein Interaction Knowledge (PICKLE) 3.0 (Dimitrakopoulos
et al., 2021) and InnateDB (Breuer et al., 2013) (Access date:
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2 November 2021). PICKLE 3.0 includes both human and mouse
experimentally determined PPIs and highlights such direct
interactions via the reconstruction of the genetic ontology
network, utilizing the reviewed human proteome of UniProtKB/
Swiss-Prot as a reference panel (Apweiler et al., 2004), thus aiding to
the clarification of the interactome implicated in the cutaneous
inflammation. On the contrary, the predominant role of the innate
immune response in the pathogenesis of psoriasis through the
activation of dendritic cells and secretion of pro-inflammatory
cytokines (Sweeney et al., 2011) was covered by the InnateDB, a
manually curated meta-database which integrates interactions and
pathway information participating in the innate immunity. To
validate our exhaustive list of PSORS-interacting genes, we
submitted all identified protein-encoding genes to the STRING
v11.5 database (Szklarczyk et al., 2021). Considering the STRING
v11.5 database, we utilized both functional and physical interactions
between the submitted proteins, derived from seven different types
of evidence used to predict the associations, with an interaction score
at the default value of 0.4. Given the considerable variability in
interactomes and specific interconnected modules, analyses
conducted within such modules should be approached as
exploratory.

Functional enrichment of the identified proteins from both
databases was incorporated in our study as an additional
validation method for the respective pathways, performed
through over-representation analysis (ORA) using the Reactome
Pathways database (Yu and He, 2016) with the R package
clusterprofiler v.4.2.2 (Wu et al., 2021). p-values regarding the
enrichment analysis were calculated with the hypergeometric test
and controlled with the Benjamini and Hochberg false discovery rate
(FDR) method; adjusted p-value ≤ 0.05 were considered as
statistically significant.

2.3 Annotation of the PPI SNPs

Genomic locations of the PSORS-interacting genes were
downloaded from the Ensembl database (Cunningham et al.,
2022), including solely exonic and intronic regions to assess the
discriminative ability of variants mapped to coding sequences.
Genetic markers of the summary statistics were filtered for their
chromosomal location, based on the genes under study for the PPI
approach. Genome was split into 1703 non-overlapping
approximately independent autosomal genomic loci as computed
from the Berisa and Pickrell (2016) study using LDetect in the
1,000 Genomes Phase 1 dataset (Berisa and Pickrell, 2016), and
widely used in further studies (Li et al., 2023).

2.4 Identification of highly
interconnected modules

The interacting network from the 1,575, non-overlapping
autosomal genes between both databases submitted into the
STRING v11.5 database was visualized with the Cytoscape
v3.9 software (Shannon et al., 2003). Highly interconnected
clusters in the derived network were identified via the molecular
complex detection (MCODE) algorithm using the default

parameters (Bader and Hogue, 2003); We arbitrarily chose the
top 6 identified clusters for additional PRS calculations.

2.5 Statistical analyses

All PRS in our study were constructed using a penalized
regression (least absolute shrinkage and selection operator;
LASSO) model, implemented in the lassosum v.0.4.5 R package
(Mak et al., 2017), using weights from a published GWAS of
psoriasis with 19,032 cases and 286,769 controls (Tsoi et al.,
2017) from 8 different cohorts without UKB participants. Due to
general access constraints, we used meta-analysis results without the
23andMe samples, including in total 13,229 cases and
21,543 controls. PRSs were adjusted for covariates including age,
sex, first 4 genetic principal components and two major risk factors
for psoriasis (Chalitsios et al., 2023), referring to smoking status
(Data Field UKB code: 20116) and body mass index (BMI) (Data
field UKB code: 21001).

Our primary analysis included comparisons of several models:
(1) SNPs acquired from liberal p-value thresholding, including
both relaxed and strict thresholds (p-value ≤ 0.1, 0.05, 0.005 and
5 × 10−8); (2) PPI-derived SNPs, where no p-value threshold was
applied; (3) clinical risk model including age, sex, BMI and
smoking status and (4) clinical risk model and PRS models.
Secondary analyses encompassed (i) SNPs mapped to the top
6 highly interconnected modules identified in our gene list, (ii)
SNPs mapped to the distinct protein-coding PSORS loci (1–9,
11–15) and (iii) two distinct analyses considering the p-value ≤
0.1 and PPI-derived approaches without variants mapped in the
PSORS1 locus.

Specifically, we calculated odds ratios (OR) and 95% confidence
intervals (CIs) for each PRS model through logistic regression using
standardized PRS values. TheWilcoxon signed-rank test was used to
perform pairwise comparisons between the major PRS models.
Discriminative ability of each PRS was assessed through the area
under the curve (AUC) where we computed the c-statistic and the
respective 95% CI with Delong’s method (DeLong et al., 1988), via
2000 stratified bootstrap replicates of the ROC curve through logistic
regression. Briefly, the c-statistic provides the estimate that a
randomly selected case has a higher PRS, or any other
discriminative factor, than a randomly selected control.
C-statistic values range from 0.five to one, with higher values
indicating better classification. Ten-fold cross validation was also
applied in our UKB dataset and c-statistics, accompanied by the
respective 95% CIs. The pROC R package was used for the
calculations of the c-statistic and corresponding 95% CIs (Robin
et al., 2011). All statistical analyses were performed in the R software,
version 4.1.2. A sample code for all analyses is provided at
Supplementary File.

3 Results

3.1 PSORS-interacting proteins

To construct the PPI-PRS, we identified 81 protein-coding
PSORS genes mapped to 14 different chromosomal locations
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(Supplementary Table 1) through the OMIM database. We
further investigated protein-protein interactions of PSORS
genes using PICKLE 3.0 (Dimitrakopoulos et al., 2021) and
InnateDB (Breuer et al., 2013), discovering a total of
1,373 and 1,045 interacting genes, respectively. More than half
of the above genes were shared between both databases (728),
with PICKLE exhibiting a larger divergence (645 genes)
compared to InnateDB (317). Results from both meta-
databases are presented in Supplementary Table 2. Overall,
our systematic search revealed 1,575 non-overlapping PSORS-
interacting proteins encoded by 1,575 autosomal genes
(Supplementary Table 3). Genotyped autosomal SNPs,
acquired from the largest GWAS on European psoriasis cases
(Tsoi et al., 2017), were mapped to the PSORS-interacting gene
list, corresponding to 360,710 independent variants; enrichment
for the PSORS-interacting proteins, encoded by their respective
genes, revealed 691 statistically significant enriched pathways
(Supplementary Table 4), while the top 15 enriched Reactome
pathways, according to their false discovery rate (FDR) adjusted
p-value, are presented in Figure 1. Multiple toll-like receptor
(TLR) and immune-related signaling pathways were significantly
enriched in our gene list, such as signaling by interleukins and
NF-κB activation, characterizing the inflammatory cascade
observed during the psoriasis pathogenesis, while cellular,
mitotic-associated processes including the transcriptional
regulation by TP53, cellular senescence and keratinization
further validated the aberrant hyperproliferation of
keratinocytes in the cutaneous inflammation.

3.2 Comparison of PPI-PRS against
conventional methods

Our study consists of 4,434 psoriasis cases of European ancestry
and 35,566 randomly selected unrelated controls from the UKB
database. Descriptive characteristics are provided in Supplementary
Table 5. Kernel density plot of the p-values of SNPs utilized in the
PPI approach displayed various distribution peaks, with an average
p-value of 0.5 (Figure 2A). Only 40,216 out of the
360,710 incorporated PPI SNPs (11%) had a significance level of
less than 0.1, while 800/360,710 SNPs (4.2%) passed the threshold of
p-value ≤ 5 × 10−8. We found that the PPI-PRS model is significantly
associated with increased risk for psoriasis per 1-SD increase (log (OR)
(95% CI) = 0.496 (0.468–0.524; p-value = 2.43 × 10−261; Supplementary
Table 6), a result comparable with the conventional PRS approaches
(overlapping 95% CIs) constructed by including SNPs with p-value ≤
0.1 (log (OR) (95% CI) = 0.525 (0.497–0.553), p-value < 6.99 × 10−290)
and p-value ≤ 5 × 10−8 (log (OR) (95% CI) = 0.461 (0.434–0.488),
p-value = 2.9 × 10−247; Figure 2B). The Wilcoxon sign-ranked sum test
indicated minimal, nevertheless significant differences between both
p-value ≤ 0.1 (p-value = 0.001) and p-value ≤ 5 × 10−8 (p-value = 0.002)
models. Increasing deciles of all major PRS approaches were also
associated with a higher OR for psoriasis (Figure 2C).

All major PRS models showed overlapping distributions between
psoriasis cases and non-cases (Figure 3A). The discriminative ability of
the PPI-PRS model was estimated at 0.641 (95% CI: 0.632–0.650) as
measured by the c-statistic (Figure 3B) (Table 1). This is almost identical
with the c-statistic of the clinical risk model (c-statistic 95% CI): 0.648

FIGURE 1
The top 15 enriched pathways based on the Reactome database for the 1,575 autosomal PSORS-interacting genes implemented in our approach.
The x-axis represents the -log10 of the False Discovery Rate (FDR) adjusted p-value.
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(0.640–0.657); Δc-statistic (95%CI): 0.007 (−0.004-0.006)), p-value ≤
0.1 threshold (c-statistic (95% CI): 0.649 (0.640–0.658); Δc-statistic
(95% CI): 0.008 (0.001–0.015)) and p-value≤5 × 10−8 (c-statistic (95%
CI): 0.634 (0.625–0.643); Δc-statistic (95%CI): 0.006 (−0.012-0.0002))
reporting overlapping 95% CI in all cases (Figure 3B). Ten-fold cross
validation analyses across UKB dataset provided similar results
(Supplementary Table 7). Stricter p-value thresholds, despite
reducing the abundance of the genetic variants included, exhibited
similar associations (Supplementary Tables 5, 6) and discriminative
power (Supplementary Table 8) with overlapping 95%CIs compared to
our primary PSORS-interacting approach.

When the clinical risk model was added to the PRS models, the
95% overlapping CIs were retained (Figure 3B). Notably, the Δc-
statistic (95% CIs) of all combined models overlapped the null when
compared to the PPI-PRS model (Table 1).

3.3 PRS of PSORS loci

To assess the association and the discriminative ability of the
PSORS loci, we examined all variants mapped to the 81-protein
encoding PSORS loci on our selected cohort. In total,
39,526 independent variants showed an association per 1-SD
increase (log (OR) (95% CI): 0.427 (0.398–0.456); p-value =
3.45 × 10−183), generating a c-statistic of 0.615 (95% CI:
0.605–0.624). When considering each locus independently,

PSORS1 (nsnps = 147) locus was associated with increased
psoriasis risk (log (OR) (95% CI): 0.392 (0.364–0.420); p-value =
2.90 × 10−164), as well as the highest c-statistic with a marginal
difference to the combined PSORS c-statistic (c-statistic (95% CI):
0.599 (95% CI: 0.590–0.608); Δc-statistic (95% CI): −0.015
(−0.018–0.011). Results from the association analyses, as well as
ten-fold cross validation and c-statistics from the selected UKB
patients for all independent PSORS loci are presented in
Supplementary Tables 6, 7, 8.

3.4 Module-derived PRS

We further performed computations on highly interconnected
modules present in our PPI network, visualized from the STRING
v11.5 database as derived from the MCODE algorithm incorporated
into the Cytoscape app. We arbitrarily explored the top 6 identified
modules and performed PRS calculations on the incorporated genes.
A gene list of all the highly interconnected modules identified from
theMCODE algorithm is provided at Supplementary Table 9. Out of
those, the fifth module encompassing the PSORS1 locus was
associated with increased psoriasis (log (OR) (95% CI): 0.421
(0.393–0.450); p-value = 3.4 × 10−187), displaying the highest
discriminative ability (c-statistic (95% CI): 0.613 (0.604–0.622)
including 36,463 SNPs compared to all modules. The lowest
discriminative ability was observed in the fourth module

FIGURE 2
Associations between adjusted polygenic risk scores and psoriasis. (A) Kernel density plot of the variants’ p-values incorporated into the PPI model.
(B) Forest plot showing the log (odds ratios) (log (OR)) and 95% confidence intervals (95% CIs) comparing the protein-protein interactions (PPI) model to
p-value ≤ 0.1 and p-value ≤ 5 × 10−8 thresholding models. (C) Discriminative performance of our major polygenic risk score (PRS) models summarized
according to OR. Estimated ORs and 95% CIs within each decile were estimated from logistic regression.
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referring to keratin associated proteins, with a log (OR) of 0.052
(95% CI: 0.021–0.083; p-value = 8.7 × 10−4) and a c-statistic of 0.512
(95% CI: 0.503–0.521) encompassing 138 SNPs. All results are
presented in Supplementary Tables 6, 7, 8.

The paramount contribution of the PSORS1 locus in the genetic
predisposition of psoriasis, as displayed through both our module-
derived PRS and our PSORS-PRS led us to the investigation of the
discriminative accuracy of both major approaches excluding
variants mapped in the above locus. The absence of the
PSORS1 variants showed overlapping 95% CIs for both
association and c-statistic computations compared to our primary
approaches (Supplementary Tables 6, 7, S8), at both baseline risk
models and when combining PRS and the clinical risk
model (Table 1).

4 Discussion

In this study, we assessed a biological-driven approach as an
additional way to shrink the abundance of genetic variants utilized
in the calculation of PRS in the context of psoriasis, an inflammatory
cutaneous disease with a divergent prevalence amongst geographical
and genetic background (Parisi et al., 2020). PRS computational
methods in psoriasis have, thus far, utilized a small fraction of the

germline genetic variability via statistical thresholding (Antonatos
et al., 2023). We hypothesized that the identification of
experimentally validated protein interactions of the PSORS loci
would allow us to study a wider spectrum of the disease
pathogenesis, diminishing concurrently the genome-wide
polymorphisms to pathogenesis-related ones. To evaluate the
performance of our approach, we compared the magnitude of
strength of the association and discriminative ability with
conventional approaches at various p-value thresholds.

To fine-tune our model, we identified the protein interactions
of the PSORS loci incorporating two meta-databases and
explored the association and discriminative ability of our
proposed SNP selection approach in the UKB cohort, using a
total of 40,000 unrelated participants of European ancestry,
including almost 4,500 psoriasis cases. We postulated that by
identifying experimentally validated protein interactions of the
PSORS loci, we would be able to investigate a more
comprehensive spectrum of disease pathomechanisms while
concurrently reducing remarkably the number of SNPs
assessed. Indeed, functional enrichment of the 1,575 identified
PSORS-interacting genes revealed multiple inflammatory
pathways, mainly associated with antigen-presentation and
cytokine signaling, as well as cell cycle pathways, representing
the abnormal proliferation and differentiation of keratinocytes in

FIGURE 3
Distribution and discriminative ability of the clinical risk model, adjusted polygenic risk scores (PRSs) and the combined approach for psoriasis. (A)
Standardized PRS distributions across the three primary models between psoriasis cases and noncases. (B) Forest plot showing the c-statistic and
corresponding 95% confidence intervals (95% CIs) comparing the protein-protein interactions (PPI) model to conventional clinical risk model, p-value ≤
0.1 and p-value ≤ 5 × 10−8 thresholding models and the combined approach. The clinical risk model includes age, sex, body mass index (BMI) and
smoking status. Discrete color scales were used to discriminate between models. Discrete shape scales were used to discriminate between baseline and
combined approaches.
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psoriasis (Antonatos et al., 2023) (Figure 1). In addition, the
independent SNPs mapped to the 1,575 autosomal PSORS-
interacting genes evinced a heterogeneous p-value kernel
distribution plot (Figure 2A); the PPI-PRS model composed
largely overlapping 95% confidence intervals compared to
both baseline clinical risk model and conventional p-value
thresholding models (Supplementary Table 8). Strikingly, the
Δc-statistic (95% CI) between the PPI-PRS model and p-value
thresholding approaches overlapped the null in the combined
approach (Table 1). Our above comparative analyses support the
integration of prior biological insights during the selection of the
germline genetic variants submitted to PRS models, thereby
providing the framework for similar investigations in diseases
with a complex genetic architecture, as well as application in
cross-ancestry frameworks with available summary statistics and
appropriate methodologies (Ruan et al., 2022).

We then sought to characterize the genetic risk of our PPI
network through 6 highly interconnected modules and examine
each PSORS locus independently. Despite the exploratory
approaches conducted in the interconnected modules, we
observed that PRS calculations regarding the PSORS1 locus
(nSNPs = 147), the protein-coding genes of all PSORS loci
(nSNPs = 39,562) and the 5th module regarding our module-
derived PRS computations -incorporating the PSORS1 locus-
(nSNPs = 36,463) showed nearly identical associations and
discriminative ability, prompting us to investigate the implication
of the PSORS1 locus in our primary PRS models. Notably, exclusion
of the 147 PSORS1 SNPs resulted in highly similar associations and
discriminative abilities with overlapping 95% CIs (Table 1),
highlighting thus the contribution of the genetic variability
mapped to non-GWS loci in the PRS computations.

Our study has a few caveats. In specific, our UKB cohort
comprised of almost 4,500 individuals with psoriasis,
disregarding for clinical subtypes with a possible distinct genetic
background, fact that may affect the interactome utilized in our
study. Assessment of such sub-phenotypes, for example, through the
evaluation of biopsy specimens could further alter the discriminative
ability of our proposed PRS model. Moreover, increasing research
interest in protein interactions, leading to a pathological state, results
in a continuous update of the meta-databases which could
consequently alter our derived gene list. In addition, the protein
interactome represents a substantial, nevertheless incomplete
fraction of the deregulated mechanisms that lead to the onset of
complex diseases. Implementation of the regulome, including
noncoding RNAs (ncRNAs), could unveil genetic variants
associated with the disease progression; SNPs mapped to such
non-coding regions affect their gene expression and binding
affinity, thereby contributing to the pathogenesis of psoriasis.
Noncoding DNA regions are further referred to regulatory
elements of a protein-coding gene, including enhancer/promoter
regions, as shown in the largest genome-wide meta-analysis in
psoriasis, where 13 loci were mapped to enhancers in cell types
of the adaptive immune response (Tsoi et al., 2017; Antonatos et al.,
2023). Additionally, GWASs have uncovered ample associated loci
that map to genomic regions several kilobases away from protein-
encoding genes, displaying their functional role via chromatin
looping (Antonatos et al., 2023).

In summary, the development and application of a biological-
driven PRS computation via the protein-interactions of the
PSORS loci displayed a similar discriminative power compared
to the rigorous, p-value thresholding approach. Both approaches,
despite their relatively high predictive ability, are based on

TABLE 1 Number of Single Nucleotide Polymorphisms as well as c-statistic for the major approaches incorporated in our study. The reported Δc-statistic
(95% CIs) corresponds to the PPI model.

Approach Model C-statistic (95% CI) Number of SNPs ΔC-statistic (95% CIs)

Baseline model Clinical risk model 0.648 (0.640–0.657) N.A. 0.007 (−0.004-0.006)

p-value ≤ 0.1 threshold 0.649 (0.640–0.658) 1,015,916 0.008 (0.001–0.015)

p-value ≤ 0.05 threshold 0.648 (0.640–0.657) 504,457 0.007 (−7.25 × 10−6-0.014)

p-value ≤ 0.005 threshold 0.647 (0.638–0.656) 90,613 0.006 (−7.06 × 10−4-0.012)

p-value ≤ 5 × 10−8 threshold 0.634 (0.625–0.643) 18,898 0.006 (−0.012-0.0002)

PPI 0.641 (0.632–0.650) 360,710 N.A.

Non-PSORS1 p-value ≤ 0.1 threshold 0.649 (0.640–0.658) 1,015,769 0.008 (7.79 × 10−4-0.015)

Non-PSORS1 PPI 0.641 (0.633–0.650) 360,563 0.00 (0.00–0.00)

PRS + Clinical risk model p-value ≤ 0.1 threshold 0.709 (0.701–0.717) 1,015,916 0.008 (−0.0001-0.016)

p-value ≤ 0.05 threshold 0.709 (0.701–0.717) 504,457 0.007 (−0.0004-0.015)

p-value ≤ 0.005 threshold 0.708 (0.700–0.716) 90,613 0.006 (−0.015-0.001)

p-value ≤ 5 × 10−8 threshold 0.700 (0.692–0.708) 18,898 −0.006 (−0.015-0.001)

PPI 0.704 (0.696–0.712) 360,710 N.A.

Non-PSORS1 p-value ≤ 0.1 threshold 0.704 (0.701–0.717) 1,015,769 0.008 (2 × 10−4-0.015)

Non-PSORS1 PPI 0.704 (0.697–0.712) 360,563 0.00 (0.00–0.00)

Abbreviations: SNP, single nucleotide polymorphism; CI, confidence intervals; PPI, Protein-Protein Interactions; N.A., not applicable; PSORS1, Psoriasis Susceptibility Locus 1.
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common variants provided by large-scale GWA studies. Our
proposed pipeline provides biologically-driven insights into
the genetic predisposition of psoriasis that could be further
enhanced through the inclusion of rare variants and
functional SNPs mapped to non-coding regions. Furthermore,
the identification of PSORS-interacting genes linked to
inflammatory and cell cycle pathways provides the framework
for the discovery of novel therapeutic targets. By elucidating
molecular mechanisms underlying psoriasis pathogenesis, these
findings could guide future therapeutic interventions aimed at
modulating these pathways, ultimately enhancing personalized
treatment approaches for individuals with high genetic risk.
Incorporation of such functional variants, combined with the
heterogeneous environmental and clinical factors into a PRS
model may aid the screening of individuals, especially those
with a high germline genetic risk, and therefore precede the
personalized risk prediction.
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