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Introduction: Typical adolescent neurodevelopment is marked by decreases in
grey matter (GM) volume, increases in myelination, measured by fractional
anisotropy (FA), and improvement in cognitive performance.

Methods: To understand how epigenetic changes, methylation (DNAm) in
particular, may be involved during this phase of development, we studied
cognitive assessments, DNAm from saliva, and neuroimaging data from a
longitudinal cohort of normally developing adolescents, aged nine to
fourteen. We extracted networks of methylation with patterns of correlated
change using a weighted gene correlation network analysis (WCGNA).
Modules from these analyses, consisting of co-methylation networks, were
then used in multivariate analyses with GM, FA, and cognitive measures to
assess the nature of their relationships with cognitive improvement and brain
development in adolescence.

Results: This longitudinal exploration of co-methylated networks revealed an
increase in correlated epigenetic changes as subjects progressed into
adolescence. Co-methylation networks enriched for pathways involved in
neuronal systems, potassium channels, neurexins and neuroligins were both
conserved across time as well as associated with maturation patterns in GM, FA,
and cognition.

Discussion:Our research shows that correlated changes in the DNAmof genes in
neuronal processes involved in adolescent brain development that were both
conserved across time and related to typical cognitive and brain maturation,
revealing possible epigenetic mechanisms driving this stage of development.
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1 Introduction

Considered the second-most critical phase of neurodevelopment
in humans, adolescence is marked by improved cognitive
performance driven by widespread reorganization of the brain
(Steinberg, 2005). Animal studies have shown that there are
large-scale epigenomic changes happening during this phase of
heightened synaptogenesis (Mychasiuk and Metz, 2016), but we
are still just beginning to understand what role epigenetics plays in
the development of the adolescent human brain as well as the
associated cognitive improvements (Wheater et al., 2020). Until
recently, the bulk of this research in humans had been restricted to
fetal brain development, limited by the need to directly analyze brain
tissue (Schneider et al., 2016). Advancements in analysis tools have
made it possible to study the epigenetic mechanisms, such as DNA
methylation (DNAm), of neural development using peripheral
tissue samples such as blood or saliva (Walton et al., 2016; Lin
et al., 2018; Proskovec et al., 2020). Methylation of DNA occurs
when a methyl group attaches to a cytosine pyrimidine (CpG) ring
(Mangiavacchi et al., 2023; Moore et al., 2013; Perri et al., 2017). This
acts as one mechanism of gene expression regulation, for example,
when DNAm at a promoter region reduces overall transcription of a
downstream gene, decreasing its expression or causing alternative
splicing (Dupont et al., 2009).

Biomarkers of DNAm in peripheral tissue such as saliva and blood
have been directly associated with DNAm in brain tissues (Braun et al.,
2019a; Han et al., 2019). These peripheral tissue measures have been
associated with both structural and functional aspects of the brain
(Walton et al., 2016; Lin et al., 2018; Proskovec et al., 2020; Braun et al.,
2019a). Researchers using resected brain tissue from 27 subjects, as well
as their saliva, blood, and buccal samples, established that individual
CpG sites had high correspondence across tissue-types as well as an
epigenome-wide correlation between tissues as high as 0.90 (Braun
et al., 2019a). With this advancement, research into the epigenomic
mechanisms of adolescent development have expanded. A 2019 study
found significant change in the DNAm of 15k CpGs pre- and post-
adolescence from blood samples taken from a population spanning
10–18 years of age (Han et al., 2019). A study published in 2021 found
that measures of DNAm from blood samples significantly mediated the
relationship between childhood adversity and symptoms of depression
across adolescence (Smith et al., 2021). Investigation of correspondence
of DNAm in surrogate tissues (blood and saliva) as biomarkers for
DNAm in other places in the body extends beyond the brain. Research
published in 2020 has found that DNAm in blood reliably corresponds
to DNAm in bone tissues (Ebrahimi et al., 2020), which like the brain,
requires invasive procedures to ascertain directly. In 2024, a group of
researchers has also found strong associations between DNAm in blood
and DNAm regulation of genes involved in the brain associated with
Alzheimer’s disease (Mendonça et al., 2024). They also found
differential DNAm change in the blood of patients with Parkinson’s
that were strongly related to DNAm changes on genes mechanistically
related to Parkinson’s, demonstrating that DNAm changes in
peripheral tissue can be related to different disease states, suggesting
that this correspondence between tissues is not coincidental (Mendonça
et al., 2024).

Our own previous research, using DNAmmeasures from saliva,
found that DNAm changes at seven CpGs located on genes involved
with excitatory and inhibitory mechanisms (GRIN2D, GABRB3,

KCNC1, SLC12A9, CHD5, STXBP5, and NFASC) were
significantly associated with grey and white matter maturation, as
well as with cognitive development during adolescence (Jensen et al.,
2023a; Jensen et al., 2023b). Those only included a small selection of
CpGs, so to further expand our understanding of epigenetic
influences on normal cognitive and brain development during
adolescence, our current study uses a weighted gene correlation
network analysis (WGCNA) (Langfelder and Horvath, 2008) to
explore the epigenome-wide mechanisms. The modules created
using this WGCNA highlight interconnected genomic regions
based on correlated methylation levels, which are clustered into
biologically relevant networks (Langfelder and Horvath, 2008).

Neural and cognitive development in adolescence is fairly well
documented. Multiple longitudinal MRI studies have shown that
grey matter volume (GM), as measured by structural MRI (sMRI)
decreases non-linearly (Gogtay et al., 2004) from the onset of
adolescence, followed by a slightly delayed increased in
myelination, which is reflected as an increase in fractional
anisotropy (FA), measured using diffusion MRI (dMRI) (Bava
et al., 2010). This structural and functional reorganization of the
brain is accompanied by improvement across a broad spectrum of
cognitive measures that include attention, memory and processing
speed (Shaw et al., 2006).

To explore how these correlated networks of DNAm might be
related to adolescent maturation, we used data collected from the
Developmental Chronnecto-Genomics (Dev-CoG): A Next-
Generation Framework for Quantifying Brain Dynamics and
Related Genetic Factors in Childhood, which is a longitudinal
cohort of roughly 200 typically developing subjects aged 9–14
(Stephen et al., 2021). This project collected brain imaging,
cognitive assessments, and saliva for DNAm analysis over three
time points, with roughly 1 year between each collection (Stephen
et al., 2021). Using this data in a previous study, we identified a small
subset of CpGs strongly related to cognitive development, grey and
white matter maturation (Jensen et al., 2023a; Jensen et al., 2023b).

The purpose of this study is to further expand on this initial
exploration by quantifying the relationships between co-
methylation networks, identified using a weighted correlation
network analysis, and neural and cognitive development in
adolescence. These co-methylation networks, representing clusters
of CpGs interconnected based on the changes in their methylation
across time, will be included in a multivariate analysis of covariance
to investigate the relationships between these networks of correlated
DNAm change, networks of GM volume and FA changes, and the
improvements on cognitive tests. We hypothesize that we will
identify modules of correlated DNAm changes at CpGs on genes
that will highlight biologically relevant pathways significantly related
the maturation of grey matter, white matter, and cognition.

2 Materials and methods

2.1 Cohort

The same cohort of subjects from our previous work (Jensen
et al., 2023a) was used in this analysis, recruited at the Mind
Research Network (MRN) and the University of Nebraska
Medical Center (UNMC) as part of the Dev-CoG study (Stephen
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et al., 2021), approved by the relevant institutional review board at
each data collection site (Advarrra IRB–MRN and UNMC
IRB–Nebraska). Data sharing was written into the consent forms
and the study protocols (Stephen et al., 2021). The inclusion criteria
for the study were: English speaking, age 9–14 years at enrollment
and both child and parent were able and willing to assent/consent to
the study. The exclusion criteria for the study were: current
pregnancy, unable to consent/assent, history of developmental
delays or disorders (or an individual education plan indicative of
a developmental delay/disorder), history of epilepsy or other
neurological disorders, parental history of major psychiatric or
neurological disorder, self-reported prenatal exposure to alcohol
or drugs, medication use, contraindication to MRI (MRI screening
form was reviewed), or metal orthodontia (e.g., braces or spacers)
(Stephen et al., 2021). Images, saliva samples, and cognitive tests
were collected from 200 participants over three time points, roughly
a year apart. See Table 1 for demographic information. Due to
participant dropout during longitudinal data collection, our
deltaT1 and deltaT2 analyses have different sample sizes. The
multivariate analyses of differences between time points included
145 subjects (mean baseline age 11.71 years old, 75 females,
70 males) for deltaT1, and 81 subjects (37 females, 44 males) for
deltaT2. To account for possible bias introduced by the attrition, a
chi-square test was performed between deltaT1 and deltaT2 biased
the groups with regards to gender—there was no significant
difference in the ratio of genders between the deltaT1 and
deltaT2. Similar tests were performed for SES and race, with no
significant differences found between groups. A t-test also
established that there were no significant differences in the
distribution of the baseline ages between groups.

2.2 DNA methylation preprocessing

The preprocessing largely followed the ENIGMA epigenetics
protocol and was used in our previous studies (Jensen et al., 2023a;
Jensen et al., 2023b). DNAm from saliva was assessed for each
subject using the Illumina HumanMethylation850 (850k)
microarray, which measures CpG methylation across
~850,000 probes covering 99% of gene promoters. Standardized
quality control procedures and quantile normalization was
performed using the minfi Bioconductor package in R (version
3.6.2) (Aryee et al., 2014). Red and green channel intensities were
mapped to the methylated and unmethylated status, samples were

checked against the mean intensity to identify low quality. Beta
values, calculated for each CpG, for each subject, reflect the degree of
methylation using a range of zero, meaning no methylation, to one,
meaning completely methylated. To identify outliers, a principal
component analysis (PCA) was performed on the beta values. Any
sample with values more than three standard deviations away from
the median on any of the first four components was removed, as
were samples where the genetically determined sex differed from
self-report. 20 duplicate DNA samples were included in each batch
and checked to ensure measurement reliability. Samples processed
in different batches were merged at this stage. Stratified quantile
normalization was then applied across samples, using the minfi
PreprocessQuantile function. The cell proportions for each DNAm
sample were calculated by implementing the estimateCellCounts
function in minfi, using our modified reference panel of five types of
blood cells (B cells, CD8T and CD4T cells, NK-LGL cells,
monocytes, and granulocytes) and epithelial cells (GSE46573)
(Zheng et al., 2018). The proportion of total blood cells and
epithelial cells was strongly in alignment with EpiDISH (Zheng
et al., 2018) estimated immune cells and epithelial cells
(correlation >0.98). The cell type effect was regressed out from
all the samples to account for the change of cell proportion over
time. Batch effects were then corrected using the R package Combat,
which assumes normalized data and equalizes the mean from all
batches, making negative values possible (Johnson et al., 2007).

2.3 Weighted gene correlation
network analysis

After preprocessing, approximately 750K CpG sites were
retained. We kept only CpG sites with a standard deviation of
0.1 or higher at the first time point to ensure that methylation
variability across subjects exceeded measurement variability (Duan
et al., 2021). This resulted in 2,414 CpGs for this analysis. To
calculate the rate and amount of change, time point 1 (TP1) was
subtracted from time point 2 (TP2) to create the deltaT1 difference
map for each individual, and TP2 was subtracted from time point 3
(TP3) to create the deltaT2 difference map. To identify correlation
patterns within themethylation data,WGCNAwas performed using
the R package of the same name (WGCNA v. 3.3.3) (Langfelder and
Horvath, 2008). The WGCNA pipeline is as follows: (1) to down-
weight weaker correlations between CpGs, a soft threshold is chosen
appropriate to the scale-free topology of the data, which is based on

TABLE 1 General demographic information.

Demographics MRN (101) UNMC (102)

Mean age at enrollment (range) 11.3 (9–14) 11.2 (9–14)

Gender (M/F) 51M/50F 51M/51F

Race (Caucasian/BIPOC) 86/15 87/15

Ethnicity (% Hispanic) 41.6% 7.8%

Mean WASI-II IQ (Range) 108.6 (72–139) 112.1 (68–148)

Mean SES (Range) 42.6 (17–66) 48.2 (15–65)

MRN, Mind Research Network; UNMC, University of Nebraska Medical College; BIPOC, Black, Indigenous, and People of Color; WASI-II IQ,Wechsler Abbreviated Scale of Intelligence; SES,

Socioeconomic Score.
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the r̂2 as well as the mean connectivity (Langfelder and Horvath,
2008). For our analysis, a soft threshold of 10 fit both criteria. (2)
Adjacency matrices were computed, representing pairwise
correlation coefficients (Pearson’s r) transformed by the
aforementioned β to ensure a scale-free correlation structure.
These were unsigned matrices, transforming the absolute values
of the coefficients in order to preserve both positive and negative co-
methylation relationships. (3) Using the adjacency matrices,
topological overlap matrices (TOMs) were computed,
representing the interconnectedness between pairs of CpGs, both
directly and indirectly, with connection strengths mediated by
shared CpG neighbors that are one-step away (Langfelder and
Horvath, 2008). The values from the TOMs were used to
calculate a dissimilarity distance measure, DistTOM, effectively 1-
TOM. (4) Dendrograms were constructed for the 2,414 CpGs based
on hierarchical clustering of DistTOM scores using hclust in R.
Modules of co-methylated CpGs were then determined using
adaptive branch pruning based on minimum cluster size of
12 CpGs and a branch cut height of 0.75. (5) Module eigengenes
(ME) were computed, representing the first principal component of
methylation at CpGs assigned to a particular module (Langfelder
and Horvath, 2007). Linear models were used to check for sex, age,
and race effects. The subject loadings for each module were used in
our subsequent multivariate analyses. For interpretation of the
modules, gene set enrichment was done using Reactome
(Gillespie et al., 2022). Reactome is a peer-reviewed, open-source
and open access pathway database of metabolic and signaling
molecules and their biological processes and pathways, cross
referenced to more than 100 online bioinformatic resources that
include NCBI Gene, Ensembl, UniProt, UCSC Geneome Browser,
and the ChEBI small molecule databases (Gillespie et al., 2022).
Genes associated with the CpGs identified in each module (as
annotated by the Illumina MethylationEPIC) were entered into
the Reactome web-interface. A functional gene network analysis
was performed using GeneMANIA (www.genemania.org), a web-
based Cytoscape tool developed by Donnelly Centre for Cellular and
Biomolecular Research at the University of Toronto (Warde-Farley
et al., 2010). To further solidify our interpretation of the results, we
conducted a post hoc investigation of the cross-tissue
correspondence for the CpGs included in the gene enrichment
for neuronal pathways using the IMAGE-CpG database (Braun
et al., 2019b), which includes saliva-to-brain correspondence.

2.4 Structural imaging data

T1-weighted structural MRI (sMRI) images were collected at the
MRN site on a Siemens 3T TrioTim scanner, and at UNMC site on a
Siemens 3T Magnetom Skyra and Prisma scanners, all with a 32-
channel radio frequency coil. Scanning parameters were equilibrated
as much as possible. The sMRI images were reoriented and
registered to a cohort specific template, created using the ANTS
multivariate template generator, and resampled to 2 mm × 2 mm ×
2 mm (Andersson et al., 2007a; Andersson et al., 2007b; Sanchez
et al., 2012; Avants et al., 2008). Using FAST in FSL, a high-
dimensional normalization pipeline, the non-brain tissues were
removed, and the grey matter, white matter, and cerebral spinal
fluid segmented, leaving normalized, modulated, Jacobian-scaled

grey matter images (Zhang et al., 2001) that were smoothed by a
4 mm × 4 mm × 4 mm full width at half maximum Gaussian kernel
(Smith and Brady, 1997). The resultant grey matter images then had
scanner differences regressed out using a simple linear regression
with age and sex as covariates. Two subjects were removed due to
movement (framewise displacement from rs-fMRI) above
3 standard deviations from the mean of the group. To calculate
the rate and direction of change across time points, grey matter
volumes from TP1 were subtracted from TP2 to create the
deltaT1 difference map for each individual, and TP2 was
subtracted from TP3 to create the deltaT2 difference map. An
independent component analysis (ICA) performed via the GIFT
toolbox (SBM v1.0b; http://trendscenter.org/software/gift) (Xu et al.,
2009) was then applied to the difference maps to extract
components/brain networks, where distributed brain regions
showed covarying patterns of GM volume changes. The
components’ associated loadings reflect these brain regions
variation across subjects. Using the minimum description length
(MDL) criterion (Calhoun and Adali, 2009), seven components were
extracted from the GM volume changes of deltaT1, identifying our
brain networks of interest for this study. The direction of the ICA
loadings were confirmed through a voxel-based morphometry
(VBM) analysis in FSL (Smith et al., 2004), where positive
loadings indicate increases in GM volume and negative loadings
indicate decreases in GM volume. The spatial maps of these seven
components were projected onto the subjects’ deltaT2 GM images to
ensure uniformity of comparison. ICA component maps were
projected into MNI space for anatomical atlas region
identification. Refer to Supplementary Figure 1A to see the
complete ICA results for GM, and Supplementary Table 2 for a
detailed listing of the brain regions. These regions were identified
using the Harvard-Oxford cortical and subcortical structural atlases
(Makris et al., 2006; Frazier et al., 2005; Desikan et al., 2006;
Goldstein et al., 2007) and the probabilistic cerebellar atlas
(Diedrichsen et al., 2009). As shown in our previous study
(Jensen et al., 2023a), GM volume decreased across parietal
regions and increased in the cerebellum and ventral pre-
frontal cortex.

2.5 Diffusion imaging data

Diffusion MRI (dMRI) was collected with phase reversed blips.
b-null volumes were extracted and used to estimate off resonance
fields using FSL (v6.0.3) tool topup (Andersson et al., 2003; Smith
et al., 2004). These were used to correct the dMRI volumes for head
movement, EPI distortions, and eddy current-induced distortions
using FSL tool eddy (Andersson and Sotiropoulos, 2016). Advance
motion correction was also performed in eddy to detect motion-
induced signal dropout and intra-volume (slice-to-volume)
movement (Andersson et al., 2017). Using the AFNI (v.19.1.00)
tool 3dDWItoDT, fractional anisotropy (FA) maps were
constructed (Le Bihan et al., 2001). The dMRI derivative images
were reoriented and registered to a cohort specific template,
created using the ANTS multivariate template generator
(Andersson et al., 2007a; Andersson et al., 2007b; Sanchez et al.,
2012; Avants et al., 2008). The resultant FA values then had the
scanner differences regressed out using a simple linear regression
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that included age and sex as covariates. To calculate the rate and
direction of change over time, the FA values from TP1 were
subtracted from TP2 to create the deltaT1 difference map, and
TP2 was subtracted from TP3 to create the deltaT2 difference
map. An independent component analysis (ICA) built in the GIFT
toolbox (SBM v1.0b) (Xu et al., 2009) was then applied to the
difference maps to extract components/brain networks, where
distributed brain regions showed covarying patterns of
longitudinal FA changes. Using the minimum description
length (MDL) criterion (Calhoun and Adali, 2009), four
components were extracted from the FA changes in deltaT1,
identifying our brain networks of interest. The components’
associated loadings reflect the variation of FA change networks
across subjects. The direction of the ICA loadings was confirmed
using the FSLmeants function to extract the average FA within the
component networks, where positive loadings indicated increases
in FA and negative loadings indicated decreases in FA. The spatial
maps of these four components were projected onto the subjects’
deltaT2 FA images to ensure uniformity of comparison. ICA
component maps were projected into MNI space for anatomical
atlas region identification. Refer to Supplementary Figure 1B to see
the complete ICA results for FA, and Supplementary Table 3 for a
detailed listing of the brain regions. These regions were identified
using the JHU DTI-based white-matter atlas (Mori et al., 2005;
Wakana et al., 2007; Hua et al., 2008) as well as the Harvard-
Oxford cortical and subcortical structural atlases (Makris et al.,
2006; Frazier et al., 2005; Desikan et al., 2006; Goldstein et al.,
2007) and the probabilistic cerebellar atlas (Diedrichsen et al.,
2009). Our previous research (Jensen et al., 2023b) showed that FA
increased across networks of white matter tracts that include the
corpus callosum, parietal, and temporal regions.

2.6 Cognitive data

The age-uncorrected standard scores from the following NIH
cognitive toolbox tests (Denboer et al., 2014) were collected from
each subject: the Picture Sequence Memory (TBPSM) test for 8+
(episodic memory), the Pattern Comparison Processing Speed
(PCPS) test for 7+ (processing speed), the Flanker Inhibitory
Control and Attention (TBFICA) test for 8+ (executive function),
the Dimensional Change Card Sort (TBDCCS) for 8+ (executive
function). The Cognition Total Composite Score (COGTC), the
Cognition Fluid Composite Score (COGFC) reflecting capacity
for new learning, and the Cognition Crystallized Composite
Score (COGCC) reflecting past learning were computed. Age-
uncorrected scores were used to preserve the sensitivity to
differences in age. Scores were corrected for site differences
using a linear regression with age and sex as covariates. To
calculate the rate of change across time points, scores from
TP1 were subtracted from TP2 to create the deltaT1 difference
map, and TP2 was subtracted from TP3 to create the
deltaT2 difference map. As shown in our previous study
(Jensen et al., 2023a), linear mixed-effects repeated measures
models confirmed the expected significant improvements in
cognitive performance over time (Jensen et al., 2023b).
Supplementary Figure 1C highlights the cohort’s improvement
in Total cognition across all three time points.

2.7 Statistical tests

Amultivariate analysis of covariance (MANCOVA) was conducted
to explore the relationship between the co-methylation modules and
brain maturation. This was performed on data from deltaT1 and
deltaT2 separately using the jmv package in R (version 4.1.2) (R:
MANCOVA), the subjects’ loadings from seven GM and four FA
networks as the dependent variables, the subjects’ loadings for the
eigenmodules from the co-methylation analysis as the independent
variables, and sex and baseline age as the covariates. MANCOVA
results were further tested with linear regression tests for each GM and
FA network for potential interactions with sex using the emmeans
package in R (version 4.1.2) (RDocumentation, 2024).

Similarly, a multivariate analysis was used to explore the
relationship between the cognitive measures and the co-
methylation modules. The MANCOVA analysis was performed
on data from deltaT1 and deltaT2 separately, where the subjects’
cognitive scores were the dependent variables and the subjects’
loadings for the eigenmodules were the independent variables,
with sex and baseline age as covariates.

3 Results

3.1 Diversity of co-methylation patterns
increases over time

From the 2,414 CpGs used in the co-expression analysis, there were
six modules of co-methylation identified in deltaT1 and 16 modules of
co-methylation in deltaT2 (each deltaT has a grey module, which is the
module for non-correlated genes). Figures 1A, B highlight the cluster
dendrogram from each deltaT, while Figures 1C, D display the
respective module sizes. There were no effects for sex, age, or race
in any of the modules from either deltaT. The gene enrichment analysis
showed significant results for one module in deltaT1, Blue, where
correlated patterns of co-methylation were found enriched in gene
transcription, neuronal systems, sodium/proton exchangers, NOTCH
signaling, and circadian clock pathways. There were eightmodules from
deltaT2with significant gene enrichment results: Blue, Turquoise, Cyan,
Brown, MidnightBlue, Tan, Red and Pink. Some pathways with
correlated patterns of co-methylation included neuronal systems,
gene transcription, immune systems, signal transduction, axon
guidance, and NOTCH signaling. For a more extensive list of the
gene enrichment analysis for each module, see Supplementary Table 1.
No significant results were found for race or social-economic status in
any of the modules.

3.2 Co-methylation module enriched for
neuronal systems conserved across time

To explore the possibility of conserved epigenetic change across
time, a post hoc comparison between the significantly enriched Blue
module in deltaT1 and significantly enriched modules in
deltaT2 was done. We found 96% overlap between the Blue
module in deltaT1 and the Brown module in deltaT2, with 69 of
the 72 CpGs in the Blue module also included in the 270 CpGs in the
Brown module. The gene enrichment analysis of these 69 CpGs
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revealed the conserved pathways were FBXW7 mutants, tyrosine
kinase signaling in B-cells, neuronal system, voltage-gated
potassium channels, neurexins and neuroligins. See Table 2 for
details of the gene enrichment results of the conserved co-
methylation module. Figure 2A highlights the functional gene
network analysis of the conserved genes and their relationship to
the gene enrichment analysis (Figure 2B) from GeneMANIA.
Table 3 contains the results of the post hoc investigation of the
CpGs involved in the neuronal-related gene enrichment pathways.

3.3 Conserved co-methylation module
associated with brain maturation

The relationships between the co-methylation networks, GM
volume, FA, and cognition were investigated using a MANCOVA

analysis. Over the first change in time, deltaT1, the Blue module was
significantly related (multivariate: F = 6.55, p < 1.4e-6) to three
networks of GM volume change: Comp3 (univariate: F = 9.50, p <
0.002), Comp4 (univariate: F = 26.43, p < 1.0e-6), and Comp6
(univariate: F = 19.83, p < 1.8e-5). During deltaT2, the Brown
module was significantly related (multivariate: F = 3.92, p < 0.009) to
one network of FA increases, Comp3 (univariate: F = 12.91, p < 8.6e-
4). Figure 3 highlights these networks of brain maturation and the
conserved genetic pathways.

3.4 Unique module related to cognitive
maturation

One unique module in deltaT2, the MidnightBlue module,
significantly enriched for calcium-gated potassium channels, was

FIGURE 1
Weighted co-methylation network analysis—(A, B) Dendrograms of the WGCNA module assignment for deltaT1 (six modules) and deltaT2
(16modules) respectively. Each leaf (short vertical lines) in the dendrogram corresponds to a CpG. The branches are modules of highly correlated groups
of CpGs with a color (below the dendrogram) to indicate its module assignment. (C, D) Graphs of the modules by color, indicating the number of CpGs
per module for the WGCNA analysis for deltaT1 and deltaT2 respectively.

TABLE 2 Gene enrichment results for conserved co-methylation module.

Pathway name Found Ratio FDR p-value

Loss of function of FBXW7 in cancer and NOTCH1 signaling 2/6 3.88̂-4 0.02

FBXW7 mutants and NOTCH1 in cancer 2/6 3.88̂-4 0.02

RUNX1 regulates transcription of genes in BCR signaling 2/7 4.52̂-4 0.02

Neuronal system 8/490 0.03 0.02

Voltage-gated potassium channels 3/44 0.003 0.02

Neurexins and Neuoligins 3/60 0.004 0.05
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related (multivariate: F = 2.66, p < 0.041) to the increase in the
cognitive measure for processing speed, PCPS (univariate: F = 5.04,
p < 0.028). Figure 4 highlights this relationship as well as the gene
enrichment result.

4 Discussion

While the reorganization of the brain and the concurrent
improvements in cognitive function that occur during
adolescence have been thoroughly researched (Steinberg, 2005),

little is known about the underlying epigenetic mechanisms that
may be driving this phase of diverse and profound
neurodevelopment. Our investigation of the co-methylation
patterns across time and their relationships to brain maturation
and cognitive development offers insights into possible molecular
underpinnings of adolescent development. The weighted correlation
analysis of the changes in DNAm showed an increase in the number
of networks of co-methylation as this cohort aged. This paralleled
our earlier research, in which we found dramatic decreases in
methylation occurring between time points 2 and 3 for small
subset of genes from this cohort undergoing changes in DNAm
(Jensen et al., 2023a; Jensen et al., 2023b). To better understand the
possible cause, as well as rule out that these changes might be caused
by a batch effect within the DNAm data, subsamples of subjects with
data from all three time points within the same batch were analyzed.
The same precipitous drop in methylation between the last two time
points was observed. This, coupled with an increase in the diversity
of co-methylation networks in deltaT2 found in this study, suggests
a biological mechanism, possibly related to pubertal status, worthy
of future research. The gene enrichment analysis of the modules
reflected a myriad of biological systems undergoing developmental
plasticity during adolescence that include neuronal, microbiome,
endocrine, immune, and cellular signaling (Gillespie et al., 2022).
Despite the increase in diversity between the timepoints, 96% of the
CpGs identified in the Blue module in deltaT1 were conserved
within the Brown module in deltaT2. This further suggests a
progression of developmental epigenetic changes, particularly

FIGURE 2
Functional Gene Network Analysis of Conserved Network—(A) this network shows the genes whose co-methylation patterns were conserved
module across time. Different color links indicate different functional links: purple links indicate genes found in co-expression networks, red indicates
protein-to-protein interactions, green indicated gene-gene interactions, orange indicates predicted protein interactions and gray indicates pathway
relationships. (B) highlights the Reactome pathway relationships within this functional gene network analysis, consistent with the gene enrichment
analysis that was performed separately.

TABLE 3 IMAGE-CpG cross-tissue correspondence results.

CpG Gene IMAGE-CpG average correlation

cg20227471 ADCY3 0.926187

cg14859324 GABRB3 0.8638013

cg21734356 DLGAP1 0.6796473

cg01483824 GRIN2D 0.953338

cg26703758 KCNC1 0.9468902

cg23167863 EPB41L5 0.9515299

cg22500730 KCNG3 0.9780846

cg14467816 ROBO1 0.9505681
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FIGURE 3
Co-methylation and brain results—(A) The Reactome gene enrichment results for deltaT1 Blue module and deltaT2 Brown module. The neuronal
systems gene enrichment (p < 0.02, fdr corrected) includes pathways for chemical and electrical synapses at both pre- and postsynaptic junctions,
metabolic and inotropic receptors, as well as protein-protein interactions at the synapses. See Supplementary Table 1 for a complete list of significant
gene enrichment for each module. (B) Three components of GM maturation were significantly related in deltaT1 to the Blue module (multivariate:
F = 6.55, p < 1.4e-6). These were components 3 (univariate: F = 9.50, p < 0.002), 4 (univariate: F = 26.43, p < 1.0e-6), and 6 (univariate: F = 19.83, p < 1.8e-
5). (C) FA maturation highlighted in component 3 that was significantly related during deltaT2 to the Brown module multivariate: F = 3.92, p < 0.009,
(univariate: F = 12.91, p < 8.6e-4) Both GM and FA components are thresholded from −7 < z < −3 (blue to green) and from 3 < z < 7 (red to yellow).
Blue—green are areas of GMor FA decrease over time, red—yellow are areas of GMor FA increase. See Supplementary Tables 2, 3 for a comprehensive list
of regions. (D) The Reactome gene enrichment results for deltaT1 Blue module and deltaT2 Brown module. The potassium channels included in the
voltage-gated potassium channel gene enrichment pathway (p < 0.03, fdr corrected). See Supplementary Table 1 for a complete list of significant gene
enrichment for each module.

FIGURE 4
Co-methylation and cognition results: (A) The Reactome gene enrichment results for the Midnight Bluemodule from deltaT2, significantly enriched
for calcium-gated potassium channels (p < 0.007, fdr corrected). (B) The relationship between increases in processing speed (PCPS) and the
deltaT2Midnight Bluemodule (multivariate: F = 2.66, p < 0.041, univariate: F = 5.04, p <0.028). See Supplementary Table 1 for a complete list of significant
gene enrichment for each module.

Frontiers in Genetics frontiersin.org08

Jensen et al. 10.3389/fgene.2024.1451150

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1451150


since the majority of the conserved co-methylation pathways were
ones associated with well-established patterns of brain and cognitive
maturation.

The conserved epigenetic co-methylation patterns between the
Blue and Brown modules were enriched in pathways for neuronal
systems, voltage-gated potassium channels, as well as neurexins and
neuroligins (Supplementary Table 1; Figure 3A). Neuronal systems
within the Reactome (Gillespie et al., 2022) pathway analysis refers
to gene enrichment for chemical and electrical synapses at both pre-
and postsynaptic junctions, metabolic and ionotropic receptors, as
well as protein-protein interactions at the synapses (Fitzpatrick et al.,
2001). Potassium channels are responsible for regulating the
excitability of neurons, and are expressed throughout the brain,
particularly in the axon, axon nodes, axon terminals, and
somatodendritic sites (McKeown et al., 2008). Neurexins and
neuroligins are synaptic cell-adhesion molecules that mediate
trans-synaptic signaling in excitatory glutamatergic as well as
inhibitory GABAergic synapses (Craig and Kang, 2007). The
functional gene network analysis also confirmed the Reactome
results, showing similar significant neuronal pathways. Our post
hoc cross-tissue analysis, using the IMAGE-CpG data set, also
confirmed that the DNAm of the CpGs from saliva highlighted
in these modules and significantly enriched for genes involved in
neuronal process correspond strongly to the DNAm of these same
CpGs in the brain. The networks of GM volume change and FA
increases found in the neuroimaging analyses of this cohort are
aligned with our current understanding of adolescent brain
maturation (Gogtay et al., 2004; Bava et al., 2010; Tiemeier et al.,
2010). The brain networks significantly related to the Blue module
included GM volume increases in the cerebellum and prefrontal
cortex covarying with maturation-related GM volume decreases in
the frontal and occipital poles, as well as dorsal parietal cortices. One
year later (deltaT2), FA increases in the middle cerebellar peduncle,
the posterior limb of the internal capsule, the splenium of the corpus
callosum, and the superior corona radiata, were significantly
associated with the Brown module. Recent research suggests that
GM volume loss measured in healthy adolescents is actually cortical
thinning due to increases in axon myelination (Natu et al., 2019),
possibly explaining why GM volume changes in our cohort are
related to epigenetic changes in neuronal pathways in the earlier
time point, followed by associations between the same epigenetic
changes and FA increases later. Our previous research, focused on a
small subsample of seven CpGs located on genes expressed highly in
the brain, also found these same components of GM volume change
and FA increases were significantly related to changes in DNAm of
genes for myelination, voltage-gated potassium channels, and solute
channels (Jensen et al., 2023a; Jensen et al., 2023b).

DeltaT2 also saw a significant relationship between the increase
in subjects’ processing speed and the Midnight Blue module.
Commonly defined as the time it takes for an individual to
perceive, process, and respond to a stimulus, processing speed
generally increases throughout childhood and adolescence,
peaking around 15 years of age (Coyle et al., 2011). The
Midnight Blue module of co-methylation patterns from
deltaT2 contained enrichment for genes involved in calcium-
activated potassium channels that are expressed in neurons. This
distinct subfamily of potassium channel is fundamental to the

regulation of neuronal excitability, being both sensitive to voltage
as well as modulated by calcium (Alam et al., 2023).

One of the hallmarks of adolescent brain maturation is the
change/refinement of the ratio of excitatory versus inhibitory (E/I)
inputs throughout the brain (Caballero et al., 2021). This occurs
through the adolescent maturation of GABAergic signaling,
particularly parvabelbumin (PV)-positive interneurons, reducing
the E/I ratio through an increase in inhibitory synapses (Larsen
et al., 2022). Increased inhibition creates a stronger signal-to-noise
ratio through suppression of spontaneous activation in local
neuronal circuitry (Craig and Kang, 2007). Imbalances in either
direction lead to serious neural dysfunction in the form of either
hyper- or hypoexcitibilty or seizures, impairing information
processing (Craig and Kang, 2007). Several of the genes and
pathways experiencing changes in DNAm that were highlighted
in this study may be contributing to this process. For example, the
possible changes in expression of receptor subunits of GRIN2D and
GABRB3 due to the changes in their DNAm may be involved, but
synergies between other genes could also be at play. Neurexins and
neuroligins regulate GABAergic synaptogenesis, shape synaptic
plasticity and efficacy in both excitatory and inhibitory synapses
(Südhof, 2008; Boxer and Aoto, 2022). Changes in the DNAm of
genes involved in neurexins and neuroligins, as one example, may be
part of the complex orchestration of adolescent brain maturation.

While more research remains to be done to directly connect the
changes in DΝAm of the genes found in these co-methylation
modules related to brain and cognitive development in
adolescence, the changes occurring in the associated neural
systems are well understood. Synaptic pruning, increased
myelination, and the shifts in connectivity that result in a more
dynamic and efficient brain (Spear, 2013) would seem to require
changes in gene expression in the pathways found in our analysis.
Studies in mammalian neuronal development also highlight an
interconnectedness between myelination and potassium channels
(Zhou et al., 1998), with clustering of the potassium channels
determined by the extent of myelination present, both
contributing synergistically to the excitability of the neuron
(Rasband and Peles, 2016). The role calcium-activated potassium
channels play in synaptic plasticity as part of a calcium modulation
feedback loop (Kim and Hoffman, 2008) could explain why DNAm
changes in this gene enrichment pathway were related to
improvements in cognitive performance in our study.

5 Limitations

Stage of puberty could not be included in this study because
there was no measure of hormonal change available. Future
researchers should include this essential marker of adolescent
development to ensure the completeness of the model. The
imbalance in subjects between deltaT1 and deltaT2 was due to
attrition, which is not an uncommon problem in longitudinal
studies. Although our results are still informative despite this,
replication with more subjects would be important going
forward. Also, our understanding of what effect these changes in
methylation will have on downstream gene expression is still limited
(Mangiavacchi et al., 2023), but this study offers many targets for
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future research into the epigenetic drivers of adolescent
development.

6 Conclusion

Understanding how changes in DNAm might be driving the
changes in adolescent neural development is still a fairly unexplored
field. Our research, while exploratory, indicates that there are
dynamic relationships between correlated networks of
methylation change and adolescent brain and cognitive
development. These relationships between DNAm changes in
pathways enriched for neuronal systems, potassium channels,
neurexins and neuroligins and patterns of grey and white matter
maturation, as well as improvements in subjects’ processing speed
performance across time provide a first look at epigenetic drivers of
neuronal and cognitive development in adolescence.
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