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With the innovation and advancement of artificial intelligence, more and more
artificial intelligence techniques are employed in drug research, biomedical
frontier research, and clinical medicine practice, especially, in the field of
pharmacology research. Thus, this review focuses on the applications of
artificial intelligence in drug discovery, compound pharmacokinetic prediction,
and clinical pharmacology. We briefly introduced the basic knowledge and
development of artificial intelligence, presented a comprehensive review, and
then summarized the latest studies and discussed the strengths and limitations of
artificial intelligence models. Additionally, we highlighted several important
studies and pointed out possible research directions.
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1 Introduction

Artificial intelligence (AI) is defined as the intelligence exhibited by artificial entities to
solve complex problems, and is generally considered to be a system of computers or
machines (Kumar et al., 2012). With the emergence of big data and the improvement of
computing power, machine learning, artificial neural networks, and deep learning (Gao
et al., 2022; Song et al., 2022; Gao et al., 2023) have been developing rapidly and continued to
integrate other disciplines in recent years, achieving great success in theory and application
(Chaturvedula et al., 2019; Brown et al., 2020; Woschank et al., 2020; Alzubaidi et al., 2021;
Mohsen et al., 2023). Figure 1 shows the relationship between AI and related concepts such
as machine learning, artificial intelligence, and deep learning. Meanwhile, Figure 1 shows
the applications of artificial intelligence in pharmacology research.

The development of AI can be traced back to the 1940s, and its historical process and
development have been detailed in many previous reviews (Muggleton, 2014; Haenlein and
Kaplan, 2019). In recent decades, the widespread application of neural networks, such as
convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural
networks (GNNs) and deep neural networks (DNNs) (Gao et al., 2021; Lai et al., 2022), as
well as the development of deep learning algorithms, such as ResNet (He et al., 2015; Zhang
et al., 2024), Attention and Transformer (Vaswani et al., 2017; You et al., 2022b), have
driven the development of neural networks and deep learning, and further optimized the
application performance of AI algorithms in various fields (Alzubaidi et al., 2021). Figure 2
briefly extracts and exhibits the most important algorithms proposed during the
development of AI.
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The study of pharmacology originated in the mid-19th century
and it covers a very wide range of fields (Vallance and Smart, 2006).
The driving force of pharmacology is to understand and quantify the
effects of drugs on physiology, including exploring the action of

drugs, the mechanism of action of drugs, and the active ingredients
of drugs (Vallance and Smart, 2006). It is generally believed that the
scope of pharmacology (Vallance and Smart, 2006) is comprised of
drug discovery, design, explanation of mechanisms, drug

FIGURE 1
The relationship between artificial intelligence, machine learning, and deep learning and the applications of artificial intelligence in
pharmacology research.

FIGURE 2
Timeline of the development and application of artificial intelligence.
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metabolism and actual clinical research, etc., Therefore,
pharmacology is a very complex and comprehensive science.

The contribution of AI in pharmacology research does not
appear suddenly, but with the development of AI and
pharmacology themselves, mutual promotion and growth.
Research on the combination of AI and pharmacology has been
proposed for a long time (So and Karplus, 1996a; b). It is worth
noting that although methods such as neural networks were
proposed for use in QSAR (Quantitative Structure-activity
Relationship) models at that time (So and Karplus, 1996a), there
are at least some difference or progress for now, namely more
abundant and suitable AI models for different situations as
mentioned above, more standard data sets and research
community building (Su et al., 2019), more various kind of
descriptors and wider applications in pharmacology as
summarized below.

Pharmacology is a very complex study involving a lot of
computing, data statistics and analysis. A number of AI methods
(Zhang et al., 2019b; Zhang et al., 2021c; Zhang et al., 2021d; You
et al., 2022a; Zhang et al., 2023b) have been used in pharmacology
research, where the most widely used fields are AI-assisted drug
discovery and design (Paul et al., 2021), prediction of compound
pharmacokinetics (Obrezanova, 2023) and clinical pharmacology
(Johnson et al., 2023). Thus, this review will focus on the application
of AI in these three areas (shown in Figure 1), and introduce latest
research methods and models in the following sections.

2 AI-assisted drug discovery and design

Classical molecular drug discovery and design encounters
several problems and challenges such as long development time,
low clinical success rate and high cost. In general, it takes about
13.5 years for a drug molecule to be developed and approved for
marketing, and the total cost to develop a new drug is about
$2.6 billion (DiMasi et al., 2016). Moreover, it becomes more
difficult to develop a novel clinical drug due to these costs rising
every year (DiMasi et al., 2016).

Recently, the development and application of AI has facilitated
the research related to drug discovery and drug design, which is
reflected in three main aspects: 1. Using AI to predict the structure of
proteins and RNA; 2. AI-assisted drug discovery, and 3. Using AI for
drug design.

2.1 Using AI to predict the structure of
proteins and RNA

The analysis and investigation of the 3D structure of proteins
and the related molecules is the precursor for drug discovery and
design. It is highly accurate to obtain the 3D structure of proteins
and RNA by physical and chemical experimental methods, but it
requires a lot of manpower and financial resources. Therefore,
recent studies employ computing techniques to predict the 3D
structure of molecules (Huang B. et al., 2023).

Classical 3D structure prediction methods consist of de novo
modeling, fragment assembly, and homology modeling, the
mechanism of which are based on rule-based computing and

splicing but not using AI for 3D structure prediction (Li et al.,
2020; Huang B. et al., 2023). Thus, before AlphaFold was innovated,
the application of AI in structure prediction focused more on the
prediction of features related to primary and secondary structures
rather than very complicated 3D structures (Kuhlman and
Bradley, 2019).

With the release of AlphaFold by DeepMind (Jumper et al.,
2021) and RoseTTAFold by David Baker’s team (Baek et al., 2021),
scientists proposed many novel ideas for 3D structure prediction of
proteins and molecules. A comparison that may be inappropriate
but illustrates the significance is: Tunyasuvunakool et al.
(Tunyasuvunakool et al., 2021) successfully predicted 98.5% of
human proteins by AlphaFold, and 58% of the residues had
confident prediction results and 36% of all residues predictions
had very high confidence. In contrast, decades of human structural
experiments have only determined 17% of all residues.

Moreover, Zhang et al. (2023f) investigated the virtual screening
performance for 37 common drug targets, which have
AlphaFold2 predicted structures and experimental structures. The
AlphaFold2 predicted structures show similar performance with
experimental structures in early enrichment in a subset of 27 targets.
It demonstrates that AlphaFold2 structures have great potential in
virtual screening after proper preparation and refinement.

For more details on the impact and changes AlphaFold has
brought to the field of structural biology, Yang et al. (2023)
summarized the related studies and applications in structural
biology, drug discovery, protein design and so on, and then they
considered that AlphaFold has achieved great success and
significantly remodeled structural biology (Bertoline et al., 2023;
Yang et al., 2023).

Despite the great success, AlphaFold has many limitations.
Besides static structures, it is very important for us to study and
predict the structural dynamics of unstructured molecules, such as
allosteric drugs and their active state, which is the conformational
ensemble (Fisher and Stultz, 2011; Nussinov et al., 2023). However,
AlphaFold and the related AI methods currently do not provide
such solutions.

There is no doubt that the emergence of AlphaFold has brought
great changes to the study of protein structure. As for now, an
optimized AlphaFold predicted structure can provide a reasonable
starting point for physical-based molecular dynamics simulations,
making them more effective in drug discovery (Gomes et al., 2022;
Schauperl and Denny, 2022; Nussinov et al., 2023). However, there
are still many limitations remaining to be solved and optimized. For
example, how to further advance and optimize AI methods to
predict structure and conformational ensemble for protein
complexes and unstructured proteins should be the most
important research direction in the future.

2.2 AI-assisted drug discovery

From the random screening and empirical observation of the
effects of natural products on disease to discover drugs, to the use of
high-throughput screening (HTS) to batch screen drugs against
molecular targets (Macarron et al., 2011), and to computer aided
drug design (CADD) (Yu and MacKerell, 2017), the approach to
discover novel drugs continues to be revolutionized.
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With the rapid development of the computational power and
algorithms of AI, as well as the rapid expansion of drug-like available
chemical space, a new revolution is coming for drug discovery (Maia
et al., 2020; Sadybekov and Katritch, 2023). Since computer-aided
drug discovery not only can decrease the drug development cycle,
but also it can reduce the cost of the clinical trial phase, related
studies were carried out to assist and accelerate drug discovery,
which include the development of virtual screening (Lavecchia and
Di Giovanni, 2013), molecular dynamic simulation (Durrant and
McCammon, 2011) and molecular docking (Meng et al., 2011; Fan
et al., 2019; Thafar et al., 2019).

In these studies, computer-aided drug development has been
categorized into two main approaches according to whether the
molecular structure is known or not. One is the structure-based
approach and the other is the ligand-based approach. Ligand-based
approaches use similarities of known active molecules to carry out
modeling and computing, whereas structure-based approaches
focus on computing and prediction for binding affinity. Next, we
will detail the application of AI methods for these two approaches
(Yu and MacKerell, 2017; Yang et al., 2019; Maia et al., 2020; Paul
et al., 2021).

For ligand-based approaches, similar to traditional ligand-based
QSAR methods, many researchers build up QSAR models (Neves
et al., 2018) to realize ligand-based virtual screening by using
artificial intelligence methods (Lima et al., 2016; Dai and Guo,
2019). Additionally, compared with traditional machine learning
methods, neural networks and other algorithms are used (as shown
int Table 1). For example, DNNs were employed to predict QSAR
models to screen new dipeptidyl peptidase-4 (DPP-4) inhibitors for
the treatment of diabetes mellitus type 2 (Bustamam et al., 2021).
Also, DNNs (Xiao et al., 2018) and various AI-driven ligand-based
virtual screening tools and platforms have been developed and used
(Amendola and Cosconati, 2021; Oliveira et al., 2023).

In addition to the above approaches, a recent study proposed a
deep learning-based deep docking platform (shown in Figure 3),
which can train a DNN model by employing a portion of selected
data from a huge number of molecular docking libraries. The DNN
model is used to predict the docking scores for optional 2-
dimensional molecular descriptors and candidate molecules from
the molecular docking libraries. According to the predicted score,
top-scoring candidate molecules will be selected to carry out further
docking (models with higher accuracy), and low-scoring molecules
will be filtered out. Since the computing load of virtual screening can
be decreased by using a DNN for pre-screening, it provides a novel

idea to explore the high-dimensional chemical space efficiently
(Gentile et al., 2022).

For structure-based approaches, a hot study direction is to
propose the binding affinity models [binding affinity scoring
functions (Meli et al., 2022; Sadybekov and Katritch, 2023)] from
the known ligand activities and corresponding protein-ligand 3D
structural data.

The scoring functions are categorized into the following four
types (Meli et al., 2022): Physics-Based (Force-Field Based) scoring
function, Empirical (Regression-Based) scoring function,
Knowledge-Based (Potential-Based) scoring function, and
Descriptor-based or Machine Learning-Based scoring function.

Descriptor-based and traditional machine learning scoring
functions have been proposed and used since the 1990s, which
are usually based on SVM, random forests, and gradient boosting
(Meli et al., 2022). They are often used to explore the nonlinear
relationship between descriptors and binding affinities (Meli et al.,
2022). With the development of neural networks and deep learning,
scientists have proposed many binding affinity models based on
feed-forward neural networks (Ashtawy and Mahapatra, 2015; Meli
et al., 2021), convolutional neural networks (Jiménez et al., 2018;
Stepniewska-Dziubinska et al., 2020), graph neural networks
(Gaudelet et al., 2021; Son and Kim, 2021), and other neural
networks (Ashtawy and Mahapatra, 2018; Jones et al., 2021).

Both descriptors and models are the key factors for binding
affinity prediction, and impact the final prediction ability. Table 2
lists some researches with different descriptors and models, from
which it can be found that descriptors with strong expression ability
together with appropriate and powerful models, make up good
prediction models.

For descriptors, more detailed and accurate description for
protein-ligand interactions could lead to the improvement of
prediction ability. For example, Wójcikowski et al. (2019)
presented a Protein-Ligand Extended Connectivity (PLEC)
Fingerprint to encode protein-ligand interactions and build up
different models to predict protein–ligand affinities, including
linear regression, random forest and neural network. The
Pearson correlation coefficient obtained on the CASF-2016
benchmark is 0.817. Meli et al. (2021) proposed to employ
atomic environment vectors (AEVs) and feed-forward neural
networks to predict protein-ligand binding affinity, which
achieved RMSE of 1.22 and Pearson’s correlation coefficient of
0.83 on the CASF-2016 benchmark. Both researches focus on the
enrichment of descriptors, suggesting a research direction, but

TABLE 1 Table summaries for some ligand-based models.

Models Feature Targets Benchmark methods Citation

DNN 2D EGFR, SRC, mTOR, PIK3CA, MMP1 and MMP2 RF Xiao et al. (2018)

LBS 2D Inhibitors of Rho kinase 2 and HIV-1 integrase multimerization KNN, SVM Dai and Guo (2019)

DNN 2D Dipeptidyl peptidase-4 (DPP-4) inhibitors PCA, SPCA Bustamam et al. (2021)

RMD 2D DUD-E and MUV RF, GB, LR, NB Amendola and Cosconati (2021)

DNN 2D ZINC15 — Gentile et al. (2022)

Abbreviations: LBS, local beta screening; KNN, K-nearest neighbors; SVM, support vector machine; DNN, deep neural network; PCA, principal component analysis; SPCA, sparse principal

component analysis; RMD, random matrix discriminant; RF, random forest; GB, gradient boosting; LR, logistic regression; NB, naïve bayes.
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whether it works remains to be discussed, which will be
mentioned later.

Besides the descriptors study, it is very important to build up a
suitable and powerful model. Wang et al. (2023) developed
GraphscoreDTA, which adopts Vina distance optimization by
combining graph neural network, bitransport information
mechanism and physics-based distance terms. GraphscoreDTA
model obtained RMSE of 1.249 and Pearson’s correlation
coefficient of 0.831 on the CASF-2016 benchmark. Jiang et al.
(2021) proposed InteractionGraphNet (IGN), stacked by two
independent graph convolution modules, which are trained to
learn intramolecular and intermolecular interactions. IGN model
obtained the RMSE of 1.220 and Pearson’s correlation coefficient of
0.837 on the CASF-2016 benchmark in the best case.

For descriptors, despite numbers of descriptors for protein and
ligand presentation are proposed and discussed as mentioned above,
Volkov et al. indicated (Volkov et al., 2022) that providing more
docking details, such as an explicit description of protein-ligand
noncovalent interactions, cannot demonstrate an explicit advantage

when training neural network models rather than using only ligand
or protein descriptors. Especially, memory largely dominates the
learning process of deep neural networks in most cases. Thus, it will
become a meaningful research direction to investigate how to
represent the structures of ligands and proteins, and how to use
optimal descriptors to represent ligands and proteins (Meli et al.,
2022; Gu et al., 2023) rather than capturing information about their
binding. After that, choosing the suitable models to make better use
of the information provided by descriptors will also be an important
part of affecting the ability of the model.

Moreover, it is worth noting that the Pearson correlation
coefficient is used to evaluate the binding affinity prediction
ability of the scoring function, while RMSE is used to evaluate
the docking ability of the scoring function, which is, the ability to
select the native binding conformation of the ligand from a series of
poses (Vittorio et al., 2024). In molecular docking and virtual
screening practice, pose prediction and affinity prediction are two
complementary tasks. Better molecular docking results can be
obtained by constantly adjusting pose and calculating its binding

FIGURE 3
Illustration for pre-screening DNN model.

TABLE 2 Performance comparison for structure-based models.

Models Algorithm Descriptor Rp RMSE Citation

RFScore-V3 RF intermolecular contacts and Autodock Vina features 0.800 1.390 Li et al. (2015)

AGL-Score GBT algebraic graph descriptor 0.833 1.271 Nguyen and Wei (2019)

KDeep CNN 3D voxel representation 0.820 1.270 Jiménez et al. (2018)

PLEC NN PLEC FP 0.817 — Wójcikowski et al. (2019)

AEVs NN atomic environment vectors 0.83 1.22 Meli et al. (2021)

IGN GNN molecular graph 0.837 1.220 Jiang et al. (2021)

GraphscoreDTA GNN molecular graph 0.831 1.249 Wang et al. (2023)

Abbreviations: GNN, graph neural network; NN, neural network; CNN, convolutional neural network; RF, random forest; GBT, gradient boosting tree.
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affinity (Meli et al., 2022). Previous study shows that binding affinity
prediction ability and docking ability are not closely correlated for
many existing scoring functions (Vittorio et al., 2024). Predictions
for binding affinity are mostly based on single binding conformation
of the ligand found in the experimental complex, which may be
partly to blame for the underperformance of these scoring functions
in actual virtual screening tasks (Gabel et al., 2014; Shen et al., 2021),
and training the scoring functions using the structure of docking
pose (Francoeur et al., 2020), or the application of Data Set
Augmentation techniques (Scantlebury et al., 2020), may help to
improve the robustness of those scoring functions. In addition, most
of the current databases provide only well-bound protein and ligand
data, i.e., positive data, but lack suboptimal binding affinity,
i.e., negative data. Therefore, it will become a hot research
direction (David et al., 2020; Xu et al., 2020; Kimber et al., 2021;
Sadybekov and Katritch, 2023) to collect and provide these data to
improve the performance for AI models.

2.3 Using AI for drug design

Strictly speaking, drug discovery is to discover potential drugs by
computational, experimental, and clinical models, whereas drug
design is to design and develop new drugs based on known
signaling pathways and biological targets, i.e., designing
molecules that match their target molecules in shape and charge
(Zhou and Zhong, 2017). Here, we will focus on the applications of
AI in drug design, namely de novo drug design (Wang et al., 2022).

De novo drug design (Mouchlis et al., 2021) refers to generating a
series of new molecules that meet certain constraints by developing
generative algorithms. The advantage of this approach is that we can
design a drug in such a greater chemical space that could develop
more targeted drugs for the treatment of diseases. However, it
encounters such a challenge that is how to generate a new
molecule, which is stable and easy to produce without a starting
template. Traditional de novo drug design is comprised of structure-
based, ligand-based, sampling-based, and evolutionary algorithm-
based approaches, which are detailed by Mouchlis et al. (2021) due
to space limitations.

Generally, there are four basic types of models to do de novo
drug design, which are RNN-based model, Autoencoder-based
model (AE, also known as encoder-decoder model), GAN-based
model (Generative Adversarial Network), and reinforcement
learning-based model. In practice, most algorithms are based on
one or a combination of these four structures (Wang et al., 2022).

RNN related models (Li et al., 2018; Kotsias et al., 2020; Moret
et al., 2020; van Deursen et al., 2020) generate new molecules with
the highest probability by taking the output of the previous layer as
input, and iterate to continuously optimize its output molecules.

For example, Urbina et al. (2022) recently proposed MegaSyn,
which is a tool integrating generative molecular design and
automated analog design into synthetic viability prediction.
MegaSyn employed SMILES-based RNN generative model and its
performance is demonstrated by several case studies (Urbina
et al., 2022).

In addition, several studies combine RNN and reinforcement
learning (Popova et al., 2018; Liu et al., 2019; Ståhl et al., 2019;
Blaschke et al., 2020) to construct de novo drug design models. For

example, Hu et al. (2023) proposed a de novo drug design model
based on Stack-RNN, multi-objective reward-weighted sum and
reinforcement learning. By multi-objective reward-weighted sum, it
solved the potential conflicts between different properties of the
generated molecules. Moreover, since it is a multi-objective
optimization task, it also prevents the generated molecules to be
extremely biased towards a certain property. Their model achieved a
validity of 97.3%, an internal diversity of 0.8613, and increased
desirable molecules from 55.9% to 92%.

Autoencoder is an unsupervised learning model consisting of
the encoder and decoder (Gómez-Bombarelli et al., 2018). The
encoder converts the input molecules into vectors in the latent
space, and the decoder can revert the vectors into molecular
representations. Therefore, we can adjust the molecular design by
changing the vectors in the latent space. Variational autoencoder
(VAE) is the first AE framework for molecule design (Gómez-
Bombarelli et al., 2018). Several studies have subsequently made
improvements and enhancements based on this framework (Kusner
et al., 2017; Skalic et al., 2019; Ye et al., 2021). For example, Lim et al.
(2018) introduced several molecular properties into the latent space
to carry out conditional control and adjustment for the generated
molecules. Liu et al. (2018) introduced graph into variational
autoencoder, where both encoder and decoder are graph
structured. Moreover, deep generative model was introduced by
Samanta et al. (2019), which can effectively discover plausible,
diverse and novel molecules and generate molecules that
maximize the property of interest.

Furthermore, adversarial autoencoder (AAE) algorithms, which
is the combination of VAE and GAN, can generate target-specific
molecules (Kadurin et al., 2017; Polykovskiy et al., 2018; Prykhodko
et al., 2019). For example, Prykhodko et al. (2019) proposed a deep
learning architecture LatentGAN, which is able to generate both
drug-like compounds and target-biased compounds. A GAN is
trained to generate fake latent vector which is taken as the input
for the decoder in VAE and then generates new molecules for their
model. Besides the above models, some other studies based on AE
include Heteroencoder (Bjerrum and Sattarov, 2018), GTM-RNN
(Sattarov et al., 2019) and reinforcement learning based GENTRL
(Zhavoronkov et al., 2019).

GAN (Aggarwal et al., 2021) consists of a generator and a
discriminator, where the generator generates new molecules and
the discriminator distinguish whether the input molecules are real or
generated by the generator. Performance of the generator and the
discriminator can be improved by continuously training. And in
practice, GAN is often used together with other models.

Reinforcement learning (Nian et al., 2020; Pereira et al., 2021;
Atance et al., 2022; Korshunova et al., 2022; Fang et al., 2023)
consists of a generative model and a drug design agent model.
Generative model is generally constructed by a multi-layer neural
network, which generates a new state as an output based on the
results of the previous generation or the initial state by the neural
network. The outputs are evaluated by the drug agent model,
enabling iterations to optimize the designed molecule.
Reinforcement learning is not only always combined with other
generative algorithms like RNN mentioned above, but also works
with GAN, such as ORGAN (Guimaraes et al., 2017), ORGANIC
(Sanchez-Lengeling et al., 2017) and ATNC (Putin et al., 2018) to
construct de novo drug design models. Especially, Abbasi et al.
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(2022) proposed a framework comprising Encoder–Decoder
architecture, Wasserstein GAN with gradient penalty and
optimization step based on Feedback GAN (Pereira et al., 2021),
which can be regarded as the combination of autoencoder, GAN and
reinforcement learning. Their Encoder–Decoder model correctly
reconstructed 99% of the datasets, including stereochemical
information, and generated compounds with 62.3% validity,
0.88 internal diversity and 0.94 external diversity.

The applications of AI for de novo drug design are still in its
beginning stages, and their performance have not significantly
surpassed that of traditional and evolutionary algorithm-based
models (Wang et al., 2022; Zhang et al., 2023e). We still lack a
comprehensive target-specific de novo drug design platform, while a
large amount of work is currently on theoretical studies for the
development of new algorithms (Bai et al., 2021; Wang et al., 2022).

Additionally, synthetic feasibility is still an important question
without enough concerns. A reachable solution is to provide
synthesizability scoring, like synthetic accessibility (SA) score
(Ertl and Schuffenhauer, 2009) and synthetic complexity (SC)
score (Coley et al., 2018), which can easily compute scores of
syntheses for a target molecule and exclude unsynthesizable
molecules. Besides synthesizability scoring functions, there are
also ways to make sure the synthetic feasibility, like synthesis
planning, synthesis prediction and Fragment/synthesis-driven
molecular construction and generative models, which are detailed
in this review (Stanley and Segler, 2023).

In conclusion, AI shows great potential in de novo drug design,
but its research is still in its infancy. A great deal of research on
algorithmic exploration and practical application is yet to be
explored further in depth.

3 Artificial intelligence for compound
pharmacokinetics prediction

In scenarios such as drug development, drug design, and drug
dosage exploration, the pharmacokinetic studies of candidate
compounds, i.e., the studies of properties like drug absorption,
distribution, metabolism, excretion, and toxicity (ADMET), are
essential, because any drug candidate must be tested for ADMET
properties to guarantee the effectiveness and safety of the drug
(Tsaioun et al., 2009).

Therefore, we can significantly reduce the chemical searching
space, increase the success rate of drug development, and decrease its

cost (Tran et al., 2023c) by employing AI technology to build up
predictive models for pharmacokinetics, validate ADMET
properties for drug candidates in the early stages of drug
development, and screen out the undesired drugs, When
predicting ADMET and physicochemical properties, each process
is corresponding to a number of important features, including but
not limited to those shown in Table 3 (Dulsat et al., 2023). Both
traditional machine learning and neural network methods received
good predictive effect using these features. Due to the limitation of
space, the development process and detailed studies can be found in
these reviews (Chandrasekaran et al., 2018; Yang et al., 2019;
Danishuddin et al., 2022; Dulsat et al., 2023; Tran et al., 2023a;
Tran et al., 2023c; Tran et al., 2023b), and the following highlighted
several important studies and recent advances of AI in ADMET
prediction.

Since previous machine learning studies (Aleksić et al., 2022)
indicated that choosing different traditional machine learning
models and increasing the amount of training data cannot
significantly affect the prediction accuracy, it implied that limited
improvement can be achieved by using machine learning methods.
Therefore, many studies have started to use various neural network
models to predict pharmacokinetic parameters as described below.

For example, DNN (Sakiyama et al., 2021; Kumar et al., 2022;
Mazumdar et al., 2023), RNN (Alsenan et al., 2020) and CNN
(Alsenan et al., 2021) are used to predict blood-brain barrier
permeability. DNN is used to predict CYP450s inhibition (Park
et al., 2022). Multi-task CNN is used to predict in vitro clearance
from molecular images (Martínez Mora et al., 2022). GCN (Chen
et al., 2021) and multi-task DNN (Sharma et al., 2023) are used to
predict toxicity. These studies show that modelling with neural
networks is commonly used to predict the ADMET and
physicochemical properties of compounds.

More importantly, unlike independently constructed models
that predict single or partial properties of ADMET, recent studies
(Dulsat et al., 2023) can predict multiple important features of
ADMET and physicochemical properties by integrating multiple
models. Representative works include ADMETlab (Dong et al.,
2018), ADMETlab 2.0 (Xiong et al., 2021), admetSAR (Cheng
et al., 2012), admetSAR 2.0 (Ye et al., 2019), FAF-Drugs4
(Lagorce et al., 2017), FP-ADMET (Venkatraman, 2021),
Interpretable-ADMET (Wei et al., 2022), and HelixADMET
(Zhang et al., 2022).

In these works, ADMETlab (Dong et al., 2018) can predict a
wide range of coverage with good accuracy and precision (Dulsat

TABLE 3 Important features for ADMET and Physicochemical properties.

Important features

Absorption Human intestinal absorption (HIA), Human oral bioavailability (HOB, F%), P-Glycoprotein inhibitor/substrate, Caco-2/MDCK
permeability

Distribution plasma protein binding (PPB), fraction unbound in plasma (Fu), blood–brain barrier (BBB), volume of distribution (Vd)

Metabolism Cytochrome P450 isoforms (CYP450s) inhibitor/substrate, Human liver microsomes (HLM), Metabolites and Sites

Excretion Clearance (Cl), Half-Life (T 1
2
)

Toxicity Acute toxicity, Carcinogenicity, human ether-a-go-go-related gene (hERG), and Ames test

Physicochemical Properties Lipophilicity (log P), Aqueous Solubility (log S), Acid dissociation constant (pKa)
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et al., 2023), which has 31 ADMET endpoints prediction in
ADMETlab Version 1.0, and increases to 88 in ADMETlab
Version 2.0. Furthermore, ADMETlab Version 2.0 (Xiong et al.,
2021) increases the quality and quantity of data for model
construction.

In terms of modeling methods, ADMETlab Version 1.0 uses
traditional machine learning algorithms, including random forest
(RF) (Cao et al., 2012), support vector machine (SVM) (Cao et al.,
2015), recursive partition regression (RP) (Strobl et al., 2009), partial
least squares (PLS) (Cao et al., 2010), naïve Bayes (NB) (Jiang et al.,
2018), and decision tree (DT) (Xia et al., 2018), to build QSAR
regression models and classification models for ADMET properties.
ADMETlab Version 2.0 employs attention mechanism and graph
convolutional neural network to simultaneously learn the regression
and classification tasks in ADMET prediction. And it proposes a
multi-task graph attention (MGA) framework, where different
attention layers can be generated for various tasks to generate
specific feature maps (customized fingerprints).

Compared with Version 1.0, ADMETlab Version 2.0 not only
increases its precision and accuracy, but also improves
computational efficiency by employing graphs to represent
molecules instead of the traditional descriptor-based
representation. Table 4 shows the comparisons between
ADMETlab Version 1.0 and Version 2.0, which is a portrayal of
the comparison between neural network model and traditional
machine learning methods. More detailed comparisons and
evaluations between different works can be found in this review
(Dulsat et al., 2023).

ADMETlab Version 1.0 took more than 2 hours while
ADMETlab Version 2.0 only took 84 s in the computational test
for 1,000 molecules, since ADMETlab Version 2.0 improved the
performance of regression and classification for many properties
(shown in Table 4). For examples, the R2 of Log D7.4 increased from
0.874 to 0.892, the R2 of PPB increased from 0.682 to 0.733, and the
R2 of VD increased from 0.556 to 0.782. In the classification task, the
AUC of HIA increased from 0.831 to 0.866, and the AUC of hERG
increased from 0.873 to 0.943. However, the performance of several
properties was decreased, such as BBB, Pgp-substrate, Log S, Caco-2
and so on, which may be due to the use of different datasets. Besides
the above, several properties, which are assessed ambiguously in
ADMETlab Version 1.0 due to the limitation of algorithms, like CL
and Half-Life, are well predicted and evaluated in ADMETlab
Version 2.0. And then, the regression task of ADMETlab Version
2.0 for CL obtained R2 of 0.678 and RMSE of 3.375. The
classification task for Half-Life obtained AUC of 0.801 and
accuracy of 0.727 for ADMETlab Version 2.0.

Similar to the modeling for ADMETlab Version 2.0,
Interpretable-ADMET uses graph convolutional neural networks
and graph attention networks (Wei et al., 2022), and HelixADMET
is based on graph neural networks (Zhang et al., 2022). The above
methods have made great progress in ADMET prediction, which
have also been compared and evaluated by Dulsat et al. (Dulsat et al.,
2023) in detail. Since these works employ graph presentation and
graph neural networks, it suggests feasible directions for subsequent
studies on ADMET prediction for both molecular expression and
model selection. The wide use of these ADMET prediction tools also
demonstrates the great potential for deep learning and graph neural
networks in ADMET prediction.

4 Artificial intelligence for clinical
pharmacology

Besides the above work related to drug discovery, drug design
and pharmacokinetics prediction, AI has many applications in
clinical pharmacology, such as using AI to optimize clinical trial
design, simulate clinical trial results, optimize drug treatment
process, predict drug interactions and adverse reactions, and so on.

4.1 AI in clinical trials

Clinical trial is an important stage in the development of drugs.
The failure during clinical trials will result in a huge loss of time and
cost. Thus, using AI to assist clinical trials will effectively improve
efficiency and success rate (Askin et al., 2023).

As we know, it is one of the most challenging steps to recruit the
relevant patients during the clinical trial design. For this reason, we
usually employ machine learning algorithms to screen the patients,
match them to the trial’s inclusion criteria through multiple aspects
of data, and guarantee that the included patients are suitable for that
clinical trial (Harrer et al., 2019; Beck et al., 2020; Beaulieu et al.,
2021; Vazquez et al., 2021; Weissler et al., 2021).

Also, AI can be used to predict and select these patients who will
progress and reach the endpoint more quickly. And then, the
duration of drug trials can be potentially reduced (Lee and Lee,
2020). When the trial is in progress, AI can predictively determine
participants who may drop out midway through the electronic
medical record, and to improve the completion rate of the trial
(Krittanawong et al., 2019) by reminding the experimentalist to pay
extra attention to these participants.

More notably, with the development of large language models,
AI becomes increasingly capable of simulating human-like
responses and behaviors in social science research, to the point
where AI can be used to complete certain trials instead of humans
(Grossmann et al., 2023). Like oncology drug research, AI
algorithms can predict drugs’ performance in clinical trials.

One of the previous studies (Kolla et al., 2021) used Causal AI to
build in silico trials, which employed clinical data to construct
simulated cohorts to simulate the treatment effects for both
control and trial groups. The simulated cohort data not only can
provide more information for patient recruitment and
determination of the actual trial protocols, but also can increase
the success rate and safety of the subsequent trial sessions.

Although we still lack the high-quality datasets and are unable to
completely replace clinical trials, it is potential for us to employ drug
clinical trials simulation to increase drug development efficiency
(Kolla et al., 2021).

4.2 AI in optimizing drug treatment

Besides the applications related to clinical trials, AI can be used to
optimize the therapeutic effects of drugs, which is important for clinical
pharmacology. These applications include but are not limited to dosage
of drug recommendations, individualized medical recommendations
and effect prediction, adverse drug reactions, and prediction of drug-
drug interactions (Johnson et al., 2023).
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For drug dosage recommendations, both traditional machine
learning (Vinks et al., 2020; van Gelder and Vinks, 2021; Bououda
et al., 2022; Labriffe et al., 2022) and neural network (Yauney and
Shah, 2018; Rödle et al., 2020) methods are widely used to estimate
the amount of drugs. And then, we can optimize the efficacy of
treatment while satisfying various constraints. For example, Rödle
et al. (2020) developed an ANN model with backpropagation and
genetic learning algorithm to predict the dosages of Ibuprofen,
Paracetamol and Cefotaxime. The deviations of predicted dosage

from real dosage of each medicine are 13%, 20% and 33%. As
discussed by Rödle et al. (2020), it is urgent for this study area to
have higher quality datasets, more indicators and outcome
parameters to guarantee better development and application for
drug dosage recommendation. Additionally, AI models are widely
used in individualized treatment both in the static setting and time-
dependent setting, including treatment recommendation, treatment
outcome prediction, and individualized dose-response estimation.
Potential data include patients’ personal information, electronic

TABLE 4 Comparisons between ADMETlab Version 1.0 and Version 2.0

Regression ADMETlab version 1.0 ADMETlab version 2.0

Model R2 RMSE Model R2 RMSE

LogS RF 0.979 0.712 MGA 0.854 0.850

LogD7.4 RF 0.874 0.605 MGA 0.892 0.462

Caco-2 RF 0.824 0.290 MGA 0.746 0.307

PPB RF 0.682 18.044 MGA 0.733 0.135

VD RF 0.556 0.948 MGA 0.782 0.670

Classification ADMETlab Version 1.0 ADMETlab Version 2.0

model AUC ACC model AUC ACC

HIA RF 0.846 0.782 MGA 0.866 0.924

F20% RF 0.759 0.689 MGA 0.833 0.75

F30% RF 0.715 0.669 MGA 0.848 0.802

BBB SVM 0.948 0.926 MGA 0.908 0.862

Pgp-inhibitor SVM 0.908 0.848 MGA 0.922 0.867

Pgp-substrate SVM 0.899 0.824 MGA 0.84 0.768

CYP1A2-inhibitor SVM 0.928 0.849 MGA 0.928 0.852

CYP1A2-substrate RF 0.801 0.702 MGA 0.737 0.649

CYP3A4-inhibitor SVM 0.901 0.817 MGA 0.921 0.832

CYP3A4-substrate RF 0.835 0.757 MGA 0.776 0.713

CYP2C19-inhibitor SVM 0.893 0.822 MGA 0.913 0.839

CYP2C19-substrate RF 0.816 0.74 MGA 0.758 0.654

CYP2C9-inhibitor SVM 0.9 0.837 MGA 0.919 0.841

CYP2C9-substrate RF 0.819 0.728 MGA 0.725 0.707

CYP2D6-inhibitor RF 0.868 0.793 MGA 0.892 0.824

CYP2D6-substrate RF 0.823 0.748 MGA 0.847 0.775

hERG RF 0.879 0.844 MGA 0.943 0.889

H-HT RF 0.71 0.689 MGA 0.814 0.72

Ames RF 0.89 0.82 MGA 0.902 0.807

Skin Sensitization RF 0.76 0.706 MGA 0.707 0.775

DILI RF 0.904 0.84 MGA 0.924 0.894

FDAMDD RF 0.904 0.832 MGA 0.804 0.736

Abbreviations: RF, random forest; SVM, support vector machine; MGA, Multi-task graph attention.
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health records, diagnose data and so on. Detailed algorithms and
methods of those studies are listed in the review by Bica et al. (2021).

Adverse drug reactions (ADR) (Martin et al., 2022) are also
extremely important in the actual use of drugs, which means
unexpected or unwanted effects caused by drugs. Improper use of
drugs can lead to adverse reactions, causing additional illnesses or even
deaths (Mohsen et al., 2021). Most of adverse drug reactions can be
identified by toxicity-related predictions during pharmacokinetic
parameter estimation (Basile et al., 2019), but some of them yet
need to be predicted by AI models based on patients’ feedback and
physiological data (Martin et al., 2022; Liu and Rudd, 2023). For
example, Martin et al. (Martin et al., 2022) built up a predictive
model for both ADR identification and seriousness assessment from
structured and unstructured free-text information filled by patients,
which employed TF-IDF + LGBM and Cross-lingual Language Model
(XLM) to predict ADR identification. Here, XLM is an attention-based
neural network and takes unstructured text data, while TF-IDF +
LGBM takes additional structured data, like age, sex and so on.
XLM and TF-IDF + LGBM both achieved an AUC of 0.97 on
external validation, indicating the possibility to use of AI in the
automatic pre-coding of pharmacovigilance reports. Meanwhile, the
AI-based prediction and early detection of adverse drug reactions can
effectively prevent the occurrence of adverse drug reactions andmitigate
their consequences (Syrowatka et al., 2022).

Recently, it has becomemore andmore common to adopt multi-
drug combination therapy, but multiple drugs can easily inactivate
some of them to affect the efficacy or even produce toxicity and
cause additional complications. Therefore, the prediction of drug-
drug interactions (DDIs) (Ryu et al., 2018; Zhang et al., 2023d) has
become increasingly important.

With the increasing abundance of DDI-related databases, many
machine learning and neural network models have been proposed to
predict DDI and make great progress, which are detailed reviewed
by Zhang et al. (2023d).

It is worth noting that the order of drugs administered may also
affect the occurrence of DDIs, leading to asymmetric drug
interactions. For example, a recent work by Feng et al. (2022)
employs the directed graph attention network model DGAT-DDI
to predict asymmetric drug interactions, in which source role
encoder, target role encoder and self-role encoder are designed to
represent how drugs influence and be influenced by other drugs and
their chemical structures. Meanwhile, aggressiveness and
impressionability are designed to capture the number of
interaction partners and interaction tendencies. DGAT-DDI
(Feng et al., 2022) achieved an AUC of 0.951, an AUPRC of
0.943 and an accuracy of 0.886 in the direction-specific task, and
achieved an AUC of 0.867, an AUPRC of 0.854 and an accuracy of
0.795 in the direction-blind task. In the case study, seven of the top
ten drug candidates in the model are validated by DrugBank, which
demonstrates the practical capabilities of the model and the
importance of further study on asymmetric drug interaction
prediction (Feng et al., 2022; Zhang et al., 2023d).

5 Discussion and conclusion

AI have advanced many researches in biology (Zhang and
Zhang, 2017; Zhang et al., 2018; Zhang et al., 2021e), disease

(Li et al., 2017; Zhang et al., 2023a), cancer (Zhang et al., 2017a;
Zhang et al., 2017b; Zhang et al., 2021b) and so do pharmacology.
This review has briefly introduced the basic concepts of AI and the
history of its development, and then summarized the applications of
AI in pharmacology from three aspects: drug discovery and design,
pharmacokinetic parameters estimation, and clinical pharmacology
(Xia et al., 2017; Zhang et al., 2019a; Zhang et al., 2021a).

For these three aspects, we have listed relevant applications and
major breakthroughs of AI in specific research fields, such as
structure prediction, drug discovery, de novo drug design, clinical
trial, and clinical drug therapy optimization. Although several
research fields have not been mentioned, such as the application
of AI in drug repositioning, drug manufacturing, and drug
distribution, we listed them in the following articles (Paul et al.,
2021; Tanoli et al., 2021; Yang et al., 2022).

It is noteworthy that AlphaFold has made great success in
molecular structure prediction. Benefiting from the highly
accurate prediction for 3D structures of a large number of
molecules, it is easier for us to obtain structural information of
targets in downstream drug discovery and design studies, thus
providing the necessary prerequisite foundation for the discovery
and design of novel drugs (Borkakoti and Thornton, 2023), and in
turn, bringing a lot of new opportunities and ideas for drug
discovery and design.

Therefore, it has become a widely discussed question: Can AI
technologies and models, represented by AlphaFold, completely
change the research of drug discovery and design?

Although most of the answers are “No”, we must note that AI
research in drug discovery and design is constantly advancing and
evolving, and AI models do not need to completely replace the
research work of human. It’s a great advancement even if we just use
AI models and tools to help accelerate the research for drug
discovery and design, which will have great study potential in the
distant future (Nussinov et al., 2023).

As discussed above, AI models have many advantages, including
but not limited to the following: 1) AI models can perform more
efficient calculations and predictions, and it can be demonstrated by
ADMET online prediction tools such as AlphaFold and ADMETlab
Version; 2) It is easier for us to employ deep learning language
models to process unstructured text data than traditional machine
learning, which is aforementioned by using XML to predict drug
adverse reactions; 3) AI models have the potential to explore novel
scientific knowledge and patterns, as evidenced by the graph-based
attention network model DGAT-DDI mentioned above, which can
be used to compute and explore asymmetric drug interactions.

However, there are still remaining many limitations and
problems for AI models to solve. With the progress and success
of AI models, how to collect data for AI model training becomes an
increasingly important issue. The number of databases containing
information on molecular structures, drug parameters, and drug
interactions (Danishuddin et al., 2022; Sadybekov and Katritch,
2023; Zhang et al., 2023d) is fast increasing, which not only can
provide a greater chemical space to explore new drugs, but also offer
more data for better AI model training. However, it is worth noting
that the large language model represented by ChatGPT and many
other studies have pointed out that the quality of data is one of the
most important factors in training an AI model, which suggests
while expanding the amount of data, we should pay attention to the
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screening and quality control of the data (Aldoseri et al., 2023;
Huang et al., 2023b; van der Lee and Swen, 2023; Whang et al.,
2023). Moreover, with more and more databases available, the
problems of overfitting, underfitting (Ying, 2019; Aliferis and
Simon, 2024) and data imbalance (Krawczyk, 2016; Werner de
Vargas et al., 2023) in AI deserve attention and vigilance. How to
use some methods to avoid these problems as much as possible, such
as cross-validation (Charilaou and Battat, 2022), regularization
(Salehin and Kang, 2023), and data argumentation (Mumuni and
Mumuni, 2022; Alomar et al., 2023), is also an important part of
AI research.

Meanwhile, the interpretability of AI models deserves attention,
though most of the current AI research does not take the model
interpretability into consideration, such as face recognition or image
processing (Zhang Q. et al., 2023). However, the interpretability of
AI models has become a controversial issue for healthcare-related
fields (Amann et al., 2020; Kırboğa et al., 2023). Many AI models are
complex and lack explanations of the decision-making process
causing these models to be termed as “Black-Box,” but
explainable AI (XAI) models are trying to enhance transparency
(Hassija et al., 2024). Research on XAI not only can alleviate people’s
concerns about AI in drug research, but may also help medical and
life science researchers discover the mechanisms and theories for the
drugs and drug metabolism. Current research on XAI models has
made great progress and has been applied in pharmacology related
fields, but more exploration is still needed (Jiménez-Luna et al.,
2020; Vo et al., 2022; Kırboğa et al., 2023; Hassija et al., 2024).

Also, the representation of molecules and drugs remains an
important problem to be further discussed and studied. New
algorithmic architecture that uses graph structure to represent
molecules and employ graph neural networks to construct models
has been wildly investigated with good progress, like ADMETlab,
InteractionGraphNet, DGAT-DDI and many other methods
mentioned before, but using graph structure to represent molecules
still suffers predicament from insufficient expressive ability or toomuch
complexity in some opinions (An et al., 2022). More practices and
research are needed to explore the differences and applicable cases for
both graph and traditional representation.

Despite the above problems and challenges, the applications of
AI in pharmacology and medicine are still very valuable. As AI has
made great success and breakthroughs in structure prediction, drug
discovery and design, and pharmacokinetic parameter estimation, it
is possible for us to build up an automated drug discovery and design

platform by integrating these three research directions, a vision for
future research. Moreover, it is foreseeable that AI models will
gradually replace many previous traditional models, and even part of
the work of humans. In this process, how to supervise, control and
reasonably develop AI models will be an important issue to address
and a future study direction.
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