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Background: Diabetes mellitus (DM) is the common comorbidity with lung
cancer (LC), and metabolic disorders have been identified as significant
contributors to the pathogenesis of both DM and LC. The causality between
diabetesmellitus and lung cancer is still controversial. Hence, the causal effects of
DM on the risk of LC was systemically investigated, and the mediating role of
blood metabolites in this relationship was further explored.

Methods: This study utilized a comprehensive Mendelian randomization (MR)
analysis to investigate the association between diabetes mellitus and lung cancer.
The inverse variance weighted method was employed as the principle approach.
MR Egger and weighted median were complementary calculations for MR
assessment. A two-step MR analysis was performed to evaluate the mediating
effects of blood metabolites as potential intermediate factors. Simultaneously,
sensitivity analyses were performed to confirm the lack of horizontal pleiotropy
and heterogeneity.

Results: The two-sample MR analysis illustrated the overall effect of type
1 diabetes mellitus (T1DM) on lung squamous cell carcinoma (LUSC) (OR:
1.040, 95% CI: 1.010–1.072, p = 0.009). No causal connection was found
between T2DM and the subtypes of lung cancer. Two-step MR identified two
candidate mediators partially mediating the total effect of T1DM on LUSC,
including glutamine conjugate of C6H10O2 levels (17.22%) and 2-
hydroxyoctanoate levels (5.85%).

Conclusion: Our findings supported a potentially causal effect of T1DM against
LUSC, and shed light on the importance of metabolites as risk factors in
understanding this relationship.
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1 Introduction

Lung cancer (LC) has emerged as a huge health concern to the
lives and health of humans, and it is the leading cause of malignancy-
related death (Song et al., 2020). Several risk factors have been
reported for the development of LC, such as smoking and aging
(Alcaraz et al., 2021). In addition, diabetes mellitus (DM) has been
identified as an important risk factor for LC. DM, as a metabolic
systemic disease, could cause glucose and fatty acid disorders. DM
was the common comorbidity with LC (Danila et al., 2020). The
abnormality of the glucose, amino acid, and fatty acid metabolites
has been characterized as an important cause in the development of
cancer during the pathogenesis of LC (Wang et al., 2020). The
disorders in nutrient metabolism could be the intrinsic reason for
the incidence of DM and LC.

Diabetes mellitus is one of the most prevalent metabolic diseases
worldwide, which contributes considerably to the global disease
burden (Farshadpour et al., 2022). With the current changes in
lifestyles and environments, the prevalence of DM has been
increasing (Tan et al., 2023). DM is classified into two main
types, namely, type 1 DM (T1DM) and type 2 DM (T2DM).
T1DM is characterized by an autoimmune destruction of insulin-
producing cells in the pancreas and subsequently causes an absolute
lack of insulin (Adinortey et al., 2022). The central feature of T2DM
is insulin resistance with the progressive non-autoimmune loss of β-
cell insulin secretion (Qin et al., 2022). The control of glucose is
intimately connected with the cancer occurrence. A recent study
investigated the association of glucagon-like peptide-1 receptor
agonists with cancers and illustrated the evidence of this glucose
control drug with cancer risks (Sun et al., 2024).

Mendelian randomization (MR) is used to explore the potential
causal effects of exposure on outcomes via genetic variants (Zuber
et al., 2020). Compared with conventional clinical research methods,
MR is less affected by confounding factors and reverse causation
(Chen et al., 2023a). Furthermore, MR can be used to investigate the
potential mediators that could influence disease outcomes with
exposure factors (Fan et al., 2022). Although a previous study has
reported that the risk of lung cancer is genetically predicted with
regard to T2DM and fasting insulin concentrations (Pearson-
Stuttard et al., 2021), the underlying pathogenesis remains unclear.

Hence, we conducted an MR analysis to systemically investigate
the causal effects of DM on the risk of LC, and the underlying
mediating role of blood metabolites in this relationship.

2 Materials and methods

2.1 Study design

We performed this study using the STROBE-MR guidelines
(Supplementary Table S1) (Skrivankova et al., 2021). Genetic
variants satisfying the following three core assumptions of an
instrumental variable are required for the MR approach (Burgess
et al., 2015): 1. Exposures and instrumental variables (IVs) must be
significantly related, 2. IVs should not be associated with confounding
factors, 3. IVs should affect the outcome solely through exposure and
not through other pathways. All data have been approved by the
corresponding ethics committee during the enrolling stage, and are

publicly available. This study utilized a two-sample Mendelian
randomization analysis to investigate the association between
diabetes mellitus and lung cancer, as well as to explore the
potential mediating effects of blood metabolites on these
relationships using a two-step Mendelian randomization analysis.
The study design is showed in Figure 1.

2.2 Data source

Genome-wide relationship studies (GWAS) data on T2DMwere
derived from 159,208 participants (2,676 cases and 132,532 controls)
(Scott et al., 2017). GWAS data on T1DM were derived from
520,580 participants (18,942 cases and 501,638 controls) (Chiou
et al., 2021). For LC, the GWAS data were obtained from FinnGen
Consortium (412,181 participants) (Kurki et al., 2023). The genetic
effect of the corresponding SNPs on blood metabolites was obtained
from 8,299 individuals from the Canadian Longitudinal Study on
Aging (CLSA) cohort (Chen et al., 2023b). All individuals included
in the study were of European ancestry and the information is shown
in Table 1.

2.3 Selection of instrumental variable

Genetic instruments that met the level of p-value <5 × 10−8 were
selected as primary single nucleotide polymorphisms (SNPs).
Linkage disequilibrium (LD) was generated due to the physically
closely located genetic variances in the genome that tended to be
inherited together. The assumption of independence and random
assignment was violated by the markers with LD. The genetic
instruments were removed the LD regions and the high LD
genomic loci were excluded from the selected SNPs to avoid
non-random associations (r2 < 0.001, kb = 10,000). The F-value
statistics reflected the strength of instrumental variables and were
calculated to remove the weak instrumental variables and the
threshold was set at 10. Finally, we aligned the effect alleles for
each SNP allele with the reference panels to ensure the accuracy and

FIGURE 1
Overview of the study design. A two-step MR analysis was
performed to evaluate the mediating effects of blood metabolites as
potential intermediate factors. First, the total direct effect of diabetes
mellitus on lung cancer risk was calculated by two-sample MR
analysis (β0). Second, we estimated the effect of diabetes mellitus on
blood metabolites (β1), and the effect of blood metabolites on lung
cancer (β2). The indirect effect (β1 × β2) was estimated. Finally, we
calculated the proportion of the mediated effect (β1 × β2/β0).
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consistency of the data. We harmonized the direction of SNPs and
removed palindromic sequences and incompatible SNPs.

2.4 MR and mediation analysis

Mendelian randomization is an epidemiological approach that
assesses the causal inference between the exposure and outcome
using instrumental variables from genomic variants. Two-sample
MR (TSMR) is applied to evaluate the causal effects of two
independent factors. We could perform similar randomizations
such as RCT using the TSMR method due to the random
segregation of alleles and subsequently compare the effects on
outcomes from corresponding groups. We performed the two-
sample MR analysis to assess the primary causal relationship
between DM and each subtype of LC. The inverse variance
weighted (IVW) method was employed as the principle approach
because of the robust statistic power when SNPs were valid (Lin
et al., 2021). The MR Egger and weighted median were
complementary calculations for MR assessment. The MR egger
method could estimate the effect for atypical SNPs; however, its
statistical power was relatively weak (Burgess and Thompson, 2017).
The weighted median method provided robust estimation when
valid SNPs were more than 50%, and it was suitable for high
pleiotropy (Bowden et al., 2016).

A two-step MR analysis was performed to evaluate the
mediating effects of blood metabolites as potential intermediate
factors. First, the total direct effect of DM on LC risk was calculated
by two-sample MR analysis (β0). Second, we estimated the effect of
DM on blood metabolites (β1), and the effect of blood metabolites
on LC (β2). The indirect effect (β1 × β2) was estimated. Finally, we
calculated the proportion of the mediated effect (β1 × β2/β0).

2.5 Sensitive analysis

We conducted the sensitive analyses using TwoSampleMR
(version 0.5.6) and MRPRESSO packages (version 1.0) in the R
software (version 4.2.2). Cochran’s Q test was used to detect the
heterogeneity. The random effect model was selected for high
heterogeneity, whereas the fixed effect model was selected for low
heterogeneity. We performed the MR Egger regression to estimate
the presence of horizontal pleiotropy to eliminate the IVs
influencing the outcome from alternative pathways other than

the exposure. MR-PRESSO was conducted to exclude outliers
and eliminate detected pleiotropy. The leave-one-out method was
employed to estimated the robust of the results. The reverse MR was
conducted to evaluate the existence of reverse-direction causal
association.

3 Results

3.1 Total effect of DM on lung cancer

As shown in Figure 2A, two-sample MR analyses illustrated the
overall effect of T1DM on lung squamous cell carcinoma (LUSC)
(OR: 1.040, 95% CI: 1.010–1.072, p = 0.009). Each SD increase in
genetically predicted T1DM was associated with a 4.0% higher risk
of LUSC. The funnel, scatter and leave-one-out plots were shown in
Supplementary Figures S1–S3. None of the causal linkages were
found in lung adenocarcinoma (LUAD) and small cell lung cancer
(SCLC) (Supplementary Table S2). No causal effect of LUSC on
T1DM was found for reverse MR (Supplementary Table S3).
Three methods of MR displayed adequate consistency. No
significant heterogeneity was observed (p = 0.505). The MR
Egger regression analysis revealed no potential horizontal
pleiotropy (p = 0.103).

For T2DM, no causal connection was found between T2DM and
the subtypes of LC (Figure 2B). The overall effect of two-sample MR
showed that genetic predisposition to T2DM is not associated with
the risk of LUAD (OR: 0.868, 95% CI: 0.752–1.002, p = 0.053), LUSC
(OR: 1.038, 95% CI: 0.888–1.213, p = 0.641), and SCLC (OR: 0.958,
95% CI: 0.747–1.229, p = 0.737). The details of the results were
shown in Supplementary Table S2.

3.2 Effect of metabolites on lung cancer

The genetically predicted effects of blood metabolites on each
subtype of LC are depicted in Supplementary Table S4. A total of
1,400 bloodmetabolites was used to calculate the causal effect on LC.
We screened 873 positive results that met the selecting criteria of P
(IVW method) < 0.05. The direction of three MR methods was
consistent. Significant associations were noted in higher LC for each
SD increased in genetically predicted metabolites. The heterogeneity
and horizontal pleiotropy analyses are shown in Supplementary
Tables S5, S6, respectively.

TABLE 1 Overview of GWAS data used in the MR Analyses.

GWAD ID/
Consortium

Trait Year Population Sample
Size

Case Sex (%
Female)

Age
(years)

PMID Author

Exposure GCST90014023 T1DM 2021 European 520,580 18,942 54.48% - 34012112 Chiou J

Exposure GCST004773 T2DM 2017 European 159,208 26,676 55.88% 54.7 28566273 Scott RA

Outcome FinnGen R10 LUSC 2023 European 412,181 1,510 11.59% 71.3 36653562 Kurki MI

Outcome FinnGen R10 LUAD 2023 European 412,181 1,590 34.09% 69.5 36653562 Kurki MI

Outcome FinnGen R10 SCLC 2023 European 412,181 717 18.55% 70.4 36653562 Kurki MI

Mediator CLSA Metabolites 2023 European 8,299 8,299 50.9% 62.4 36635386 Chen YH

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell lung cancer.
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3.3 Effect of DM on metabolites

The effects of genetically predicted T1DM on blood metabolites
were estimated by two-sample MR analysis (Supplementary Table
S7). Seven metabolites exerted a causal effect on T1DM and met the
selecting criteria of P (IVW method) < 0.05; the direction of MR
methods was consistent (Supplementary Figure S4). Six metabolites
exerted a positive causal effect and one negative effect.

3.4 Mediating effect of metabolites

As a mediator, the effect of each metabolite is shown in Table 2.
Glutamine conjugate of C6H10O2 levels explained 17.22% of the
total effect of T1DM on LUSC. The 2-hydroxyoctanoate levels
accounted for 5.85% of the total effect. The individual mediated
effect of metabolites explained the causal association between T1DM
and LC. The results of reverse MR validated causal evidence between

FIGURE 2
Forest plot ofMendelian randomization results of diabetesmellitus on lung cancer. (A) T1DM. (B) T2DM. Abbreviations: LUAD: lung adenocarcinoma,
LUSC: lung squamous cell carcinoma, SCLC: small cell lung cancer.

TABLE 2 Proportion of the effect of type 1 diabetes mellitus on lung squamous cell carcinoma mediated by blood metabolites.

Mediation Exposure Outcome Total
effect
β0

Direct
effect A

β1

Direct
effect B

β2

Mediation
effect

β

Mediated
proportion

%

Glutamine conjugate of
C6H10O2 levels

T1DM LUSC 0.039
(0.010–0.069)

0.014
(0.001–0.026)

0.499
(0.121–0.877)

0.007 17.220

2-hydroxyoctanoate levels T1DM LUSC 0.039
(0.010–0.069)

0.014
(0.001–0.026)

0.168
(0.019–0.317)

0.002 5.850

Total effect: T1DM, on LUSC, Direct effect A: T1DM, on mediation, Direct effect B: mediation on LUSC.

Abbreviations: T1DM: type 1 diabetes mellitus, LUSC: lung squamous cell carcinoma.
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the selected mediating metabolites on both LUSC and T1DM
(Supplementary Table S8).

4 Discussion

In this MR study, we used a comprehensive assessment of the
causal connection between DM on LC. T1DM is significantly
correlated with an elevated risk of developing LUSC. Furthermore,
a two-step MR analysis revealed that the blood metabolites partially
mediated the causal effect of T1DM and LUSC. Our findings shed
light on the importance of metabolites as risk factors in understanding
the relationship between T1DM and LUSC.

The large metabolic profile data provided high throughput
screening and detection in diabetes mellitus (Ottosson et al.,
2020). During DM, the contents of different metabolites could
cause systemically distinct alterations in blood (Wang et al.,
2022a). The risk of diabetic complications and other severe
diseases was significantly increased due to the abnormal
metabolic changes. Previous research had reported that DM was
the risk factor for certain types of cancers, especially lung,
pancreatic, breast, and liver cancer (Shahid et al., 2021; Su et al.,
2022). Additionally, effective glycemic control treatment has been
shown to improve survival rates of post-diagnosis and reduce the
risk of developing lung cancer (Duncan and Schmidt, 2009).

Lung cancer constitutes a principal cause of cancer-related
mortality globally, underscoring the importance of comprehending
its risk factors for effective early screening and prevention strategies.
Tobacco smoking represents the predominant risk factor for lung
cancer, with empirical evidence indicating a positive correlation
between lung cancer incidence and both the duration of smoking
and the quantity of daily tobacco consumption (Durawa et al., 2024).
Age emerges as a pivotal risk factor, with elderly individuals exhibiting
a markedly elevated risk of developing lung cancer (Gallina et al.,
2022). Moreover, gender is an independent risk factor, with men
demonstrating a greater susceptibility to lung cancer than women.
This disparity is likely attributable to differences in smoking habits
and environmental exposures (Shrestha et al., 2022). Additionally,
factors such as environmental pollution, occupational exposure, and
chronic pulmonary diseases are recognized as potential risk factors for
lung cancer (Leiter et al., 2023).

The coexistence of diabetes and lung cancer is frequently observed
in clinical settings, leading to increased complexity in disease
management. Diabetes and lung cancer share several risk factors,
including smoking, advanced age, and metabolic syndrome, which
contribute to the complex interplay in their pathogenesis (Li et al.,
2024a). Diabetes has an impact on various histological types of lung
cancer. A study indicated that patients with SCLC who also had
diabetes exhibited significantly shorter survival rates compared to
those without diabetes (Tas et al., 2024). In the context of LUAD,
diabetes notably raised the risk of developing this type of cancer,
potentially as a result of metabolic disturbances associated with the
diabetic condition. (Chen et al., 2023c). In LUSC, an observational
study demonstrated that the severity of diabetes was significantly
associated with prognosis (Su et al., 2022). For large cell carcinoma,
the current research was relatively limited, but studies on NSCLC
indicated possible connections between their risk factors and prognosis.
This underscores the need for further clinical investigation in this area.

The pathogenesis of LC has gained widespread attention and
therefore, metabolic abnormalities have been emerging as a valuable
research direction (Zhong et al., 2023). The rapid growth and
proliferation of tumor cells require nutrient acquisition, which
has been characterized as an aberrant metabolic mechanism
(Wang et al., 2022b). Diabetes mellitus could induce the
disorders of glycometabolism and lipid metabolism (Feng et al.,
2015). Further metabolomics evidence has demonstrated the
increasing glucose and decreasing lactate and phospholipid levels
in patients with LC (Louis et al., 2016), and phospholipid
composition was the important biomarkers for lung cancer
(Marien et al., 2015). Therefore, metabolites possess considerable
potential to serve as a conduit for further research on the
relationship between diabetes mellitus and lung cancer.

Diabetes mellitus has been reported as an independent risk factor
for LC (Lee et al., 2013). The association between T2DMand LC is still
controversial (Harding et al., 2015). However, the incidence of LC was
significantly elevated for T1DM (Sona et al., 2018), which was
consistent with our results. We investigated the genetically
predicted causal effects between DM and LC through metabolites.
The systemic MR analysis provided evidence of the causal effects on
T1DM and LUSC, indicating the increased cancer risk for this patient
population. The available data are insufficient for T2DM to confirm
the genetically prediction of the causal relationship by MR analysis.
However, the presence of insulin resistance could elevate the risk of
LC (Argirion et al., 2017). Insulin resistance state enhanced the
inflammatory responses and promote the proliferation and
invasion of tumor cells (Iyengar et al., 2016). Insulin resistance
could result in the abnormal IGF axis; its phosphorylation
promotes phosphatidylinositol-3 kinase (PI3K) and mitogen-
activated protein kinase (MAPK) pathways and enhances the
epithelial–mesenchymal transition (EMT) (Zhan et al., 2024).
These findings may offer empirical support for future
investigations into the relationship between T2DM and lung cancer.

Our study demonstrated the causal effect of T1DM and LUSC
could be mediated by two kinds of serum metabolites. 2-
Hydroxyoctanoate is a kind of hydroxy fatty acid. Although no
direct experimental evidence exists for the biological effect on
T1DM or LUSC, previous studies have reported the potential
relationship between them. Hydroxy fatty acids could be linked
to other fatty acids by an ester bond, thereby forming a fatty acid
complex called fatty acid esters of hydroxy fatty acids (FAHFAs) (Li
et al., 2024b). FAHFAs are the newly identified potential biomarkers
for DM (Bogojevic et al., 2024), and they also play an important role
in tumor progression. The levels of certain FAHFAs are significantly
lower in breast cancer patients compared to healthy individuals,
suggesting their potential as cancer biomarkers (Qin et al., 2023;
Playdon et al., 2017). Additionally, FAHFAs can inhibit the NF-κB
signaling pathway, reducing the secretion of pro-inflammatory
cytokines and thus altering the tumor immune microenvironment
(Li et al., 2024b; Deng et al., 2016). Moreover, FAHFAs have been
observed to exert anti-apoptotic effects in colon cancer cells, thereby
promoting tumor formation (Rodríguez et al., 2019).

Glutamine-conjugated complexes have been identified as new
risk factors for both T1DM and LUSC. As an important participant
in amino acid metabolism, abnormal glutamine levels have been
associated with the risk of DM (Sriboonvorakul et al., 2021).
Glutamate and glutamine metabolism exert a huge burden on the
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cardiovascular system, insulin sensitivity, and microvascular
complications associated with T1DM (Mathew et al., 2019).
Glutamine metabolites are one of the main nutrients for cancer
survival and growth (Venneti et al., 2015). Targeting glutamine
metabolism with glutamine analogs has been proposed for treating
cancer (Corchado-Cobos et al., 2022). Altogether, our findings on fatty
acids and amino acids supported the linkage between T1DM and LC,
and provide epidemiological clues for further exploration. The causal
effect of T1DM on LUSC could be mediated by serum metabolites.

To our knowledge, this is the first MR analysis to evaluate the
relationship between DM and LC risk and assess the mediating
effects of blood metabolites. In all, we provide evidence of the
relationship between T1DM and LUSC through genetically
predicted effects. T1DM could increase the risk of LUSC, and
fatty acid and amino acid metabolites could exert the mediating
effect. Reverse MR helps to clarify the direction of causal
relationships for more reliable inferences. Our study confirmed
that the causal link between T1DM and LUSC is unidirectional:
T1DM may raise the risk of LUSC, but LUSC does not influence
T1DM. Similarly, reverse MR analysis of blood metabolites also
demonstrated the unidirectionality of the mediating effect. The
results dismisses reverse causality, strengthening our causal link
between T1DM and LUSC, and implies that diabetes-related
mechanisms like insulin resistance and metabolic syndrome may
significantly influence the risk of LUSC.

This study has certain limitations. First, our study only included
the European population, which could influence the generalization of
the results to other populations. Second, the TSMR research involved
only the analysis of GWAS summary data, further stratification analysis
including more covariates, such as age, gender, and stage, could be
required. Our findings did not demonstrate a causal relationship
between T2DM and lung cancer, potentially due to the presence of
confounding factors. Furthermore, despite our efforts to control for
potential pleiotropy, completely eliminating such influences in the MR
analysis process remains challenging, which may have also impacted
the results. Third, the MR analysis indicated the exposure levels of the
full life duration and could not reflect the accurate influence of
exposure changes.

5 Conclusion

Our findings supported a potentially causal effect of T1DM
against LUSC, and shed light on the importance of metabolites as
risk factors in understanding this relationship.
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