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Background: Juvenile idiopathic arthritis (JIA) is an autoimmune joint disease that
frequently co-occurs with other complex phenotypes, including cancers and
other autoimmune diseases. Despite the identification of numerous risk variants
through genome-wide association studies (GWAS), the affected genes, their
connection to JIA pathogenesis, and their role in the development of
associated traits remain unclear. This study aims to address these gaps by
elucidating the gene-regulatory mechanisms underlying JIA pathogenesis and
exploring its potential role in the emergence of associated traits.

Methods: A two-sample Mendelian Randomization (MR) analysis was conducted
to identify blood-expressed genes causally linked to JIA. A curated protein
interaction network was subsequently used to identify sets of single-
nucleotide polymorphisms (i.e., spatial eQTL SNPs) that regulate the
expression of JIA causal genes and their protein interaction partners. These
SNPs were cross-referenced against the GWAS catalog to identify statistically
enriched traits associated with JIA.

Results: The two-sample MR analysis identified 52 genes whose expression
changes in the blood are putatively causal for JIA. These genes (e.g., HLA,
LTA, LTB, IL6ST) participate in a range of immune-related pathways (e.g.,
antigen presentation, cytokine signalling) and demonstrate cell type-specific
regulatory patterns across different immune cell types (e.g., PPP1R11 in CD4+

T cells). The spatial eQTLs that regulate JIA causal genes and their interaction
partners were statistically enriched for GWAS SNPs linked with 95 other traits,
including both known and novel JIA-associated traits. This integrative analysis
identified genes whose dysregulation may explain the links between JIA and
associated traits, such as autoimmune/inflammatory diseases (genes at
6p22.1 locus), Hodgkin lymphoma (genes at 6p21.3 [FKBPL, PBX2, AGER]), and
chronic lymphocytic leukemia (BAK1).

Conclusion: Our approach provides a significant advance in understanding the
genetic architecture of JIA and associated traits. The results suggest that the
burden of associated traits may differ among JIA patients, influenced by their
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combined genetic risk across different clusters of traits. Future experimental
validation of the identified connections could pave the way for refined patient
stratification, the discovery of new biomarkers, and shared therapeutic targets.
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Introduction

Juvenile Idiopathic Arthritis (JIA) is an autoimmune disease
characterized by chronic joint pain and inflammation (Prakken
et al., 2011). Despite being known as a pediatric autoimmune
disease, up to 63% of JIA patients maintain active disease into
adulthood (Zak and Pedersen, 2000). The exact causes of JIA remain
unknown. However, it has high heritability (Li et al., 2015) and an
increased concordance rate in monozygotic twins (Savolainen et al.,
2000), strongly suggesting genetic contributions to disease
pathogenesis.

The majority of the genetic loci associated with JIA are located in
the non-coding regions of the genome (Thompson et al., 2012;
Hinks et al., 2013; López-Isac et al., 2021). Studies have
demonstrated that disease-associated variants (e.g., Single
nucleotide polymorphisms [SNPs]) are enriched within
regulatory DNA elements (Nicolae et al., 2010; Ernst et al., 2011;
Maurano et al., 2012). One of the key mechanisms of gene regulation
involves direct physical interaction between distal regulatory
elements and their target genes (Schoenfelder et al., 2010;
Panigrahi and O’Malley, 2021). Previous work by our group has
investigated how JIA-associated SNPs influence the expression of
distant genes through SNP-gene physical interaction (Pudjihartono
et al., 2023). While these findings provided valuable insights, they
fell short of providing statistical evidence for the causal involvement
of these genes in JIA. Recently, Mendelian randomization (MR) has
gained traction as an effective strategy for identifying genes that have
causal roles in disease pathogenesis (Davey Smith and Hemani,
2014; Hartwig et al., 2016). We contend that by using variants that
physically interact and are associated with gene expression (termed
“spatial eQTL SNPs”) as instrumental variables and GWAS data to
assess its impact on disease outcome, we can utilize MR to infer a
causal relationship between altered gene expression and specific
disease outcomes (Baiocchi et al., 2014).

Comorbidity between JIA and other conditions, such as type
1 diabetes (Szabłowski et al., 2022), inflammatory bowel disease (van
Dijken et al., 2011; Barthel et al., 2015), and cancers (Nordstrom
et al., 2012; Horne et al., 2019a) have been widely reported. This
suggests the existence of shared molecular pathways between these
traits (Nagy et al., 2018; Zolotareva et al., 2019). Understanding the
biological underpinnings of JIA and how they contribute to the
intersection with these associated conditions could illuminate the
mechanisms behind comorbid disease development and aid in
identifying shared therapeutic targets. However, the gene-
regulatory mechanisms linking JIA to many of its associated
(both positively and negatively associated) traits remain elusive.

In this study, we performed two-sample MR using spatial eQTLs
within a blood gene regulatory network (GRN) as instrumental
variables to identify 52 potential JIA causal genes. These genes are

involved in immune response-related pathways and exhibit
interesting patterns of gene regulation specific to various immune
cell types. We hypothesized that the association between different
traits could occur due to the dysregulation of common biological
pathways. Therefore, we identified sets of spatial eQTLs within the
blood GRN that regulate JIA causal genes or its protein interaction
partners. These SNPs were statistically enriched for 95 GWAS traits,
covering a range of autoimmune and inflammatory diseases,
cancers, and immune-related protein levels. Many of these traits
have previously been found to be positively associated with JIA (e.g.,
type 1 diabetes, blood cancers, C-reactive protein levels), while
others (e.g., sphingomyelin levels, platelet-to-lymphocyte ratio,
multiple sclerosis) represent potentially novel associations.
Notably, we identified gene clusters that might mediate the
association between JIA and different groups of traits (e.g.,
6p22.1 linked to certain autoimmune/inflammatory diseases,
6p21.3 linked to Hodgkin lymphoma). Collectively, our results
provide new insights into the biological mechanisms behind JIA
and its potential role in the emergence of associated traits.

Materials and methods

Creation of the blood GRN

The blood GRN was constructed by identifying spatial eQTLs
involving all common SNPs (MAF ≥ 0.05; n = ~40 × 106) present
within the whole blood eQTL dataset (from Genotype-Tissue
Expression Project [GTEx V8]) (Aguet et al., 2020). In this study,
spatial eQTLs are defined as SNPs that tag a locus, which regulates
the expression of target genes via physical interaction. This was
accomplished using the CoDeS3D pipeline (https://github.com/
Genome3d/codes3d-v2) (Fadason et al., 2017). In brief, high-
resolution Hi-C chromatin contact data from four primary blood
cell lines (Rao et al., 2014) (Supplementary Table S1) was used to
identify target genes that interact with restriction fragments
containing the input SNPs. Only SNP-gene interactions captured
in ≥1 Hi-C cell lines were included in subsequent eQTL analysis.
eQTL data from GTEx whole blood samples (Aguet et al., 2020) was
queried to identify spatial eQTLs. Multiple testing correction was
done using the Benjamini-Hochberg procedure, where spatial
eQTL – target gene pairs with an adjusted p-value ≤ 0.05 were
selected as significant.

Two-sample Mendelian randomization

To identify potentially causal genes for JIA within the blood GRN,
we conducted a two-sample Mendelian randomization using the
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TwoSampleMR R package (https://github.com/MRCIEU/
TwoSampleMR/, version 0.5.6) (Hemani et al., 2018). This analysis
adhered to the STROBE-MR guidelines (Supplementary Material)
(Skrivankova et al., 2021). MR relies on three main assumptions.
First, the genetic instruments (i.e., spatial eQTLs) must be robustly
associated with the exposure of interest (i.e., gene expression). Second,
these instruments should be independent of any potential confounders.
Third, the genetic instruments influence the outcomes solely through
their association with the exposure (i.e., no horizontal pleiotropy). To
satisfy the first assumption, we used only statistically significant spatial
eQTL-gene pairs within the blood GRN (adjusted p-value
≤0.05) as exposure instruments. Furthermore, to ensure that
instrumental variables for each exposure were independent, we
performed linkage disequilibrium (LD) clumping with r2 cutoff of 0.
001. For this, the European (EUR) population from the 1000 Genomes
project (Auton et al., 2015) served as the reference panel for LD analysis.
A recent JIA GWAS by López-Isac et al. (López-Isac et al., 2021),
comprising 3,305 JIA cases and 9,196 controls, was selected for the
outcome data (https://www.ebi.ac.uk/gwas/downloads/summary-
statistics) (Study Accession Code: GCST90010715). After
harmonizing the exposure and outcome data, genes with one
instrumental variable underwent 2SMR using the Wald test, whereas
those with two instrumental variables underwent two-sampleMR using
the inverse variance weighted (IVW) method, those with 3 or more
instrumental variables underwent two-sample MR using IVW and
weighted median methods. Genes whose MR p-value was equal to or
below the Bonferroni-corrected threshold (0.05/number of unique
exposure genes [13,640]) were considered statistically significant
(Supplementary Table S2). For genes with ≥2 instrumental variables,
Cochran’s Q was computed to quantify the variation in causal effect
estimates attributed to different instruments. A p-value ≤ 0.05 suggests
significant heterogeneity, which may indicate pleiotropy or other issues
such as invalid instrumental variables. For genes with ≥3 instrumental
variables we also performed an MR-Egger regression to test for
horizontal pleiotropy by evaluating its intercept. A significant non-
zero intercept (p-value ≤ 0.05) is considered evidence of horizontal
pleiotropy. Finally, exposure genes that failed to pass these sensitivity
analyses were removed from the final causal gene list
(Supplementary Table S3).

Genes previously associated with JIA

Genes previously linked with JIA were identified by referencing the
GWAS catalog (Supplementary Table S4, column =Mapped Gene) and
querying DisGeNET, a gene-disease association public repository
(Pinero et al., 2015). From DisGeNET, the “Curated gene-disease
associations” file (https://www.disgenet.org/; April 22nd, 2022) was
downloaded. Genes linked to JIA were isolated by extracting entries
corresponding to the disease names “Juvenile arthritis” or “Juvenile
Pauciarticular chronic arthritis” (Supplementary Table S5).

Gene Ontology and KEGG pathway
enrichment analysis

We employed g:profiler (Raudvere et al., 2019) (accessed onMay
17th, 2022, from https://biit.cs.ut.ee/gprofiler/gost) to discern

significantly enriched biological processes and pathway terms
among JIA causal genes. Our analysis encompassed both Gene
Ontology (specifically, the biological process category) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG pathway).
The Benjamini-Hochberg procedure was utilized for multiple
testing corrections, and terms with an adjusted p-value of 0.05 or
less were considered significant (Supplementary Tables S6, S7).

Immune cell type-specific analysis of causal
gene regulation

We assessed the eQTL effect of the instrumental variable (IV)
SNPs for each of the 52 causal genes across 15 immune cell types,
utilizing the Database of Immune Cell eQTLs (DICE). This analysis
was accomplished using the CoDeS3D pipeline. Multiple testing
correction was done using the Benjamini-Hochberg procedure,
where eQTL–target gene pairs with an adjusted p-value ≤ 0.05 in
each immune cell type were selected as significant
(Supplementary Table S8).

Hierarchical clustering of the effect size (beta) of eQTL-target
gene pairs was performed using the pheatmap R package (version
1.0.12). It’s noteworthy that we limited our clustering analysis to the
same gene relationships identified in the two-sample MR analysis.
For instance, since SNP rs165256 served as the instrumental variable
for the PPP1R11 gene in our two-sampleMR analysis, we exclusively
considered the eQTL effect of rs165256 with the PPP1R11 gene only.
Here, the magnitude direction of the effect size for the eQTL – target
gene pair was determined by the risk allele of the eQTL SNP.
However, by default, CoDeS3D reports the effect size magnitude
based on the alternate allele of each SNP in dbSNP151 — a public
database detailing genetic variations aligned with the forward/+
strand of the GRCh38 reference genome. However, the alternate
allele might not always correspond to the risk allele. To determine
the risk allele of an SNP, we queried the “harmonized data” data
frame outputted by the “harmonise_data()” function in the
TwoSampleMR R package (Supplementary Table S9). Here, if the
“beta outcome” column shows a positive number, the alternate allele
of the related SNP is a risk factor for JIA. Conversely, a negative
number implies the risk allele is the SNP’s reference allele. In
instances where the risk allele of the eQTL SNP matches its
reference allele (and not the alternate allele), we adjusted the
effect size direction provided by CoDeS3D (i.e., switching −1 to
+1 or vice versa). This adjustment ensures the gene regulatory
direction (either up- or downregulation) aligns accurately with
the risk allele of each SNP.

Identification of traits sharing biological
interactions with JIA

Potentially associated (both positively or negatively) traits were
identified using a version of theMultimorbid3D (Pudjihartono et al.,
2024) pipeline (https://github.com/MichaelPudjihartono/
multimorbid3D), with the 52 JIA causal genes as the input.
Briefly, the STRING database (v11.5) (Szklarczyk et al., 2021)
was queried to create a protein-protein interaction (PPI) network
(Supplementary Table S10), encompassing both physical
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interactions and functional associations. The interaction data were
obtained using the following criteria: experiments, text-mining of
the scientific literature, previous knowledge in databases, co-
expression, neighborhood, gene fusion, and co-occurrence,
species limited to “Homo sapiens”, and interaction score > 0.9.

The resultant network extended beyond the initial 52 causal
genes, spanning two additional levels (levels 0–2). The “level
0”network comprised the proteins encoded by the 52 causal
genes, while each successive level encompassed proteins
interacting with those from the previous level (Supplementary
Table S11). At each level, the genes encoding the proteins were
queried to the blood GRN to identify spatial eQTLs regulating the
expression of the genes. The set of spatial eQTLs at each level were
then queried to the GWAS catalog to identify traits whose GWAS
SNPs overlap with the identified spatial eQTLs (or its LD partners
within r2 ≥ 0.8). This consideration of LD partners of a spatial eQTL
is to account for the fact that GWAS-identified SNPs usually
represent an entire genetic locus (Pudjihartono et al., 2022).
Then, at each level, statistically significant GWAS trait
enrichments were determined by hypergeometric test (P ≤ 0.05).
The Benjamini-Hochberg procedure was used to adjust the p-values
(FDR ≤ 0.05). Additionally, bootstrapping (n = 240) was performed
by randomizing the input gene set equal to the size of the original
input gene (i.e., 52 genes). For each trait, the bootstrapping p-value
was determined using the formula:

p � number of simulations forwhich the trait in question is significant + 1
240 + 1

Traits with hypergeometric adjusted p-value and
bootstrapping p-value ≤ 0.05 were deemed to be significantly
associated with JIA (Supplementary Table S12, S13). It should be
noted that because there is no constraint on the GWAS SNP
direction of effect, the identified traits could be positively or
negatively associated with JIA. To visualize the contributions of
different genes to various traits across each level of the PPIN,
hierarchical clustering on the log number of GWAS SNP of each
significant trait that overlaps with spatial eQTLs (or its LD
partners; Supplementary Table S14) targeting gene at different
PPIN levels was performed using the pheatmap R package
(version 1.0.12).

Results

Creation of the spatially constrained blood
gene regulatory networks (GRN)

The CoDeS3D pipeline (Fadason et al., 2017) was used to
analyse common SNPs in the human genome (Minor Allele
Frequency ≥ 0.05) to identify spatial eQTLs (i.e., SNPs that tag a
locus that physically interacts with a gene and associates with its
expression levels) within the GTEx whole blood eQTL dataset
(Aguet et al., 2020) (Figure 1A). We used Hi-C physical contact
data from four primary blood cell lines (Rao et al., 2014)
(Supplementary Table S1) in the construction of the GRN. The
resulting blood GRN comprised 1,713,885 spatial eQTL – target
gene interactions (1,077,379 SNPs and 14,871 target genes expressed
in whole blood (Zaied et al., 2023).

Two-sample MR identified 52 potential JIA
causal genes enriched within immune-
related pathways in the blood GRN

We conducted a two-sample MR analysis using spatial eQTLs
from the blood GRN as genetic instrumental variables and JIA
GWAS summary statistics (3,305 cases and 9,196 healthy
controls) (López-Isac et al., 2021) as the outcome data
(Figure 1B). This analysis was conducted in accordance with
the STROBE-MR guidelines (Skrivankova et al., 2021)
(Supplementary Material). Our analysis identified 52 genes
whose expression changes in the blood were putatively causal
for JIA (hereafter referred to as “causal genes”; Table 1;
Supplementary Table S2). Most of the identified genes (n =
44; 85%) were located within the HLA locus on chromosome
6 (i.e., 6p21.3 – 6p22.1; Figure 2; Supplementary Table S2), which
is the most variable region in the genome and known for its
immune-regulatory functions (Shiina et al., 2009). While
previous GWAS findings have shown that variants within this
locus are associated with JIA (Hinks et al., 2013; López-Isac et al.,
2021), our study provides evidence for the causal impact of
altered gene expression within this locus. Notably, the vast
majority (n = 51; 98%) of the identified causal genes have not
been previously linked to JIA, either in DisGeNET (Pinero et al.,
2015) (Supplementary Table S5) or through the “nearest genes”
approach represented in the GWAS catalog (Supplementary
Table S4; Supplementary Figure S1).

Gene enrichment analysis [g:Profiler (Raudvere et al., 2019)] of
the causal genes revealed enrichment in 51 biological processes
(Gene Ontology) and KEGG pathway terms (FDR < 0.05;
Supplementary Table S6). These terms are pre-dominantly
immune system-related processes, pathways, or diseases (e.g.,
antigen processing and presentation; immune system process;
immune cell activation and proliferation; cytokine signalling; type
1 diabetes; autoimmune thyroid disease). Notably, all
51 significantly enriched terms included HLA class I or II genes,
consistent with recognized roles for HLA genes in the immune
system (Choo, 2007). To explore the functional impact of non-HLA
genes, we excluded the 7 HLA class I or class II genes from the gene
set and repeated the enrichment analysis. We identified three
immune-related Gene Ontology terms that exhibited significant
enrichment; two of them are related to the regulation of cytokine
signaling (Supplementary Table S7; 9 genes; GPSM3, AGPAT1, LTB,
AGER, IL6ST, PPP1R11, HSP90AB1, MOG, LTA).

Cell type-specific eQTL data reveals distinct
patterns of causal gene regulation across
15 immune cell types

Human blood is a heterogeneous tissue consisting of
specialized cells that include different immune cell lineages.
To investigate the cell type-specific regulatory patterns of the
52 causal genes that were identified in whole blood, we tested the
instrument SNPs of each causal gene for eQTL effects using the
Database of Immune Cell eQTLs (DICE (Schmiedel et al., 2018);
Supplementary Table S8). This was accomplished using the
CoDeS3D pipeline. Of the 52 causal genes, the transcript
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levels of 15 genes were associated with the same SNPs within the
DICE dataset, as they were in two-sample MR. Hierarchical
clustering of these eQTL–target gene pairs identified four
visually distinct clusters (Figure 3). Cluster 1 includes target
genes that are upregulated by eQTLs across most immune cell
types, whereas clusters 2 and 4 consist of genes that are
downregulated in most immune cell types. For instance, the
ERAP2 transcript levels are upregulated by rs2927608, while
the BAK1 transcript levels are downregulated by
rs210142 across 15 immune cell types. By contrast, cluster
3 consists of target genes that exhibit cell-type specific
regulatory patterns. For instance, the instrumental variable
rs165256 was associated with the downregulation of the
PPP1R11 gene specifically in activated CD4+ T helper cells.
We contend that understanding the functional role of these
cell type-specific genes is crucial for comprehending how
different immune cell types contribute to the etiology of JIA.

Spatial eQTLs regulating JIA causal genes
and their protein interaction partners show
enrichment for JIA-associated traits

We posited that a subset of JIA causal genes exhibit pleiotropy
(i.e., a single gene influences two or more phenotypic traits). Given
that proteins operate interdependently, it was conceivable that these
genes, along with their protein interaction partners, might form the
biological link connecting JIA with other complex traits. Therefore,
the STRING database (Szklarczyk et al., 2021) was used to create a
protein-protein interaction (PPI) network centered on the causal
genes (Figure 1C). This PPI network extends beyond the initially
identified JIA causal genes by two levels, where each level contains
proteins that interact with proteins encoded by genes from the
preceding level (Supplementary Table S10). The resulting PPI
network consisted of 52 proteins in level 0, 495 proteins in level
1, and 3,846 proteins in level 2 (Supplementary Table S11).

FIGURE 1
Overview of the analytical approach used in this study. (A) The blood-specific gene regulatory network (GRN) was generated using the CoDeS3D
pipeline (Fadason et al., 2017). (B) Two-sample Mendelian randomization uses SNPs associated with gene expression changes (i.e., spatial eQTLs from the
blood GRN) to infer causal relationships between gene expression and JIA outcomes. (C) To identify JIA-associated traits, the STRING (Szklarczyk et al.,
2021) database was queried to identify proteins that interact up to two edges away (levels 1 and 2) from the JIA causal genes (level 0). The blood GRN
was queried to identify the sets of spatial eQTLs that regulate the expression the genes on each level. Finally, these sets of spatial eQTLs and their linkage
disequilibrium (LD) partners (r2 ≥ 0.8) were tested for overlap and enrichment for SNPs associated with different traits in the GWAS Catalog.
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Subsequently, the blood GRN was queried to identify the set of
spatial eQTLs that regulate the expression of the genes on each level.
These sets of spatial eQTLs and their LD partners (r2 ≥ 0.8) were
tested for overlap and enrichment for SNPs associated with traits in
the GWAS Catalog using a hypergeometric test (adjusted p-value
and bootstrapping p-value ≤ 0.05). Across the three PPIN levels
(level 0–2), we identified enrichment for 95 GWAS traits (Figure 4;
Supplementary Table S12). The largest category of associated traits
was “autoimmune or inflammatory diseases” (22 traits at level 0;
3 traits at level 1) and included conditions such as rheumatoid
arthritis, psoriatic arthritis, eczema, and asthma. This was followed
by “immune-related protein levels” (13 traits at level 0; 5 traits at
level 1; 2 traits at level 2; e.g., complement system protein levels, IgE
levels). We also observed traits associated with infection (10 traits at
level 0; e.g., hepatitis B/C, shingles), cancers (9 traits at level 0; 1 trait
at level 2; e.g., lymphomas, leukemias, carcinomas), and lipid
metabolite levels (3 traits at level 0 and 2; 1 trait at level 1).
Interestingly, our analysis identified numerous traits and diseases
with established links to JIA (refer to Table 2), as well as others

whose connections to JIA remain to be validated (e.g.,
Sphingomyelin levels, IgA nephropathy, giant cell arteritis).

Shared dysregulation of pleiotropic JIA
causal genes connects JIA to
associated traits

Hierarchical clustering was used to organize gene-trait
associations at different levels of the PPIN (Supplementary Figure
S2). This analysis yielded insights into the contributions of various
genes to different groups of associated traits. For example, at level 0
(see Figure 5), clusters 1 and 2 comprised two highly pleiotropic
HLA class II genes whose expression levels were linked to spatial
eQTLs that were GWAS-associated with most level 0 traits. Cluster
5, which includes genes at 6p22.1 (HLA-A, HCG4P5, HLA-T, MOG,
TRIM26, HCG9, IFITM4P), demonstrated further connections
between JIA and a subset of autoimmune/inflammatory traits
(i.e., type 1 diabetes, asthma, eczema, and severe COVID-19 or

TABLE 1 Two-sample MR results using spatial eQTLs within the blood GRN and JIA GWAS. The odds ratio shows the multiplicative effects of each unit
increase in gene expression on the odds of the disease. Therefore, anOR > 1(red) signifies that increased expression of a gene is associated with elevated JIA
risk, whereas an OR < 1 (blue) denotes the opposite effect. The full table is in Supplementary Table S2.

Gene Instrumental variables Method Odds ratio MR p-value

HLA-DQB2 rs2621331 Wald ratio 9.60 1.90E-45

HLA-DRB1 rs9469220 Wald ratio 0.02 6.13E-23

LTA rs3219190 Wald ratio 10.81 6.09E-21

HCG4P5 rs2517714 Wald ratio 1.89 1.56E-17

AGER rs204995 Wald ratio 0.15 9.80E-17

PBX2 rs204995 Wald ratio 7.94 9.80E-17

IFITM4P rs9368609 Wald ratio 1.48 1.37E-16

FKBPL rs12153855 Wald ratio 0.31 6.71E-16

MSH5 rs2395153, rs7764682 Inverse variance weighted 0.06 7.15E-13

TRIM26 rs929156 Wald ratio 0.24 1.56E-12

HLA-A rs9260114 Wald ratio 3.88 1.01E-11

HCG9 rs1610586 Wald ratio 1.82 1.94E-11

GPSM3 rs28752784 Wald ratio 0.004 3.55E-11

IL6ST rs13186299 Wald ratio 0.17 7.96E-11

TAP1 rs3763348 Wald ratio 4.40 5.64E-09

HLA-T rs9265961 Wald ratio 1.43 2.35E-08

MOG rs1611284 Wald ratio 0.42 3.12E-08

PPP1R11 rs165256 Wald ratio 0.16 3.44E-08

LTB rs2239704 Wald ratio 0.08 3.81E-08

TRIM39 rs2516719 Wald ratio 0.17 4.98E-08

PRRC2A rs2844472 Wald ratio 3.49 2.22E-07

HSP90AB1 rs10807029 Wald ratio 13.82 1.27E-06

AGPAT1 rs3134950 Wald ratio 0.05 1.40E-06

BAK1 rs210142 Wald ratio 0.78 1.41E-06
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FIGURE 2
Manhattan plot of JIA causal genes identified using spatial eQTLs within the blood GRN and JIA GWAS. The red dashed line indicates the Bonferroni-
corrected MR causal effect p-value threshold (p = 3.607 × 10−6). Each dot represents the starting coordinate of a gene.

FIGURE 3
Instrumental variable (IV) SNPs exhibit immune cell type-specific causal gene regulatory effects. eQTL – target gene pairs in 15 DICE immune cell
types were hierarchically clustered according to eQTL beta coefficient. The beta coefficient (red: upregulation; blue: downregulation) was shown
according to the risk allele of each instrumental variable SNP.
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FIGURE 4
Integrating protein-protein interactions and GRN with GWAS data identifies traits associated with JIA. A total of 95 traits were identified as enriched
(hypergeometric tests, FDR ≤ 0.05, and bootstrapping n = 240) within the spatial eQTLs that target JIA causal genes (level 0), genes directly interacting
with causal genes (level 1) and genes interacting with level 1 genes (level 2). Physiologically similar traits are color coded and grouped. The X-axis
represents the different PPIN levels.

Frontiers in Genetics frontiersin.org08

Pudjihartono et al. 10.3389/fgene.2024.1448363

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1448363


rheumatoid arthritis). Additionally, these cluster 5 genes also
contributed to other traits including the platelet-to-lymphocyte
ratio, IgE level, general cognitive ability, and shingles (see Figures
5a,b). Some of these traits (i.e., platelet-to-lymphocyte ratio, general
cognitive ability) as well as Crohn’s disease are further linked to JIA
through the neighbouring cluster 6 genes (HLA-FAS1, BAK1, CLN3,
SGF29). We observed the distinct association between “severe
COVID-19 or rheumatoid arthritis” with JIA that was mediated
by a subset of 6p21.3 genes within cluster 8 (AGPAT1, PSMB8,
TAP1, HCG4P11, HLA-DMB; Figure 5c). Among cancer traits, in
addition to the highly pleiotropic genes in clusters 1-4, JIA has a
unique association with “nodular sclerosis Hodkin lymphoma”
through a subset of genes in cluster 8 (FKBPL, PBX2, AGER;
Figure 5e) and with “chronic lymphocytic leukemia” through the
BAK1 gene in cluster 6 (Figure 5d).

Protein-protein interactions reveal a novel
gene regulatory link between JIA and
psoriatic arthritis

The identification of enriched traits for spatial eQTLs at the outer
level of the PPIN (i.e., level 1–2) indicated that the convergence between

JIA and associated traits occurred indirectly through protein-protein
interactions. One notable example is “psoriatic arthritis” (level 1).
Juvenile psoriatic arthritis (or JPsA) is one of the 7 subtypes of JIA
recognized by the International League of Associations of
Rheumatology (ILAR) (Petty et al., 2004). Individuals with Juvenile
psoriatic arthritis experience joint inflammation and exhibit extra-
articular symptoms associated with psoriasis (e.g., scaly and itchy
skin plaques). Our result showed that 10 proteins within level 1 of
JIA PPIN that are regulated by spatial eQTLs associated with psoriatic
arthritis (Figures 6A, B) interact with proteins encoded by 9 JIA causal
genes (level 0; Figure 6B). These protein interactions suggest that
dysregulation of a shared pathway potentially explains the link
between JIA and psoriasis.

Discussion

In this study, we conducted a two-sample MR analysis on JIA by
integrating large-scale GWAS and spatial eQTL data obtained from
whole blood samples. Our analysis identified 52 genes with potential
causal roles in JIA, most of which are located within the HLA locus
on chromosome 6p21.3–6p22.1. The two-sample MR method
considers both GWAS and eQTL p-values to assign causality to a

TABLE 2 Identified traits that have known positive associations with JIA. Here, we consider evidence of comorbidity and correlations with disease severity.

Trait Level (0–2) References(s)

Type 1 diabetes 0 Hermann et al. (2015), Szabłowski et al. (2022)

Crohn’s disease 0 van DIJKEN et al. (2011), Barthel et al. (2015)

Asthma 0 and 1 Lin et al. (2016)

Psoriatic arthritis 1 Brunello et al. (2022)

Atopic dermatitis 0 Keskitalo et al. (2023)

Multiple sclerosis* 0 Tseng et al. (2016)

Complement C4 levels 0 Jarvis et al. (1993), Gilliam et al. (2011)

Complement factor B levels 0 Jarvis et al. (1993)

Cathepsin B levels* 2 Ikeda et al. (2000), Behl et al. (2022)

C-reactive protein levels 1 Gwyther et al. (1982), Gilliam et al. (2008), Swart et al. (2016)

Platelet-to-lymphocyte ratio* 0 Milovanovic et al. (2004), Zha et al. (2006), Fu et al. (2015), Gasparyan et al. (2019)

Epstein Barr virus infection/plasma antibody level 0 Opoka-Winiarska et al. (2020)

LILRB2 protein level* 1 Huynh et al. (2007)

IgE levels 0 Poddighe et al. (2021)

Shingles 0 Nimmrich and Horneff (2015)

Pneumonia 0 Beukelman et al. (2012)

Hepatitis B* 0 Chen et al. (2018)

General cognitive ability 0 Mena-Vázquez et al. (2022)

Lymphoma and leukemia 0 Marwaha et al. (2010), Zombori et al. (2013), Horne et al. (2019a)

Tonsillectomy 1 Astrauskiene et al. (2009)

Sphingomyelin levels* 2 Beckmann et al. (2017)

Traits marked with an asterisk (*) are known to be associated with adult arthritis but have not been definitively linked to JIA.
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gene (Zhu and Zhou, 2021). Therefore, the abundance of causal
genes within the HLA locus is consistent with previous GWAS
results, which showed the strongest association signals for SNPs
within the extended HLA region (Hinks et al., 2013; López-Isac et al.,
2021). The novelty of our finding lies in the identification of “causal”
evidence for altered expression for genes within this locus. Most of
these genes have not been associated with JIA before, and are
involved in immune functions, including antigen processing,
presentation, and cytokine signalling. Given the established

associations between JIA and various diseases and traits, we
hypothesized that the regulation of JIA causal genes and their
interacting proteins could serve as biological connections to these
traits. To investigate this, we integrated data from the blood GRN,
PPIN, and GWAS, to identify 95 traits intersecting with JIA. Many
of these traits had previously reported associations with JIA
(Table 2). Furthermore, our approach pinpointed genes whose
genetically regulated expression form the intersection between
JIA and these associated traits. Overall, our findings deepen the

FIGURE 5
Clusters of JIA causal genes drive associations with level 0 traits. Gene-trait associations was hierarchically clustered according to the number of
GWAS SNPs that overlapped (or were in LD r2 ≥ 0.8 with) spatial eQTLs regulating different level 0 genes. Genes are color-coded according to their
chromosomal location. Traits are categorized and color-coded as in Figure 3. See Supplementary Table S14 for raw data.
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understanding of the underlying biological mechanisms governing
JIA and its associated traits, offering candidates for new biomarker
discovery and shared therapeutic targets for patients with
multimorbidity.

This study has several limitations. Firstly, MR depends on
three key assumptions: the instrumental variables (spatial
eQTLs) must be robustly associated with the exposure (gene
expression); they should be free from confounders; and their

FIGURE 6
Protein-protein interactions reveal gene regulatory links between JIA and associated traits. (A) Hierarchical clustering of gene-trait associations
occurring at level 1 of the JIA PPIN. Clustering was based on the number of GWAS SNPs that overlapped (or in LD r2 ≥ 0.8 with) spatial eQTLs regulating
level 1 genes. (B) Protein-protein interaction between JIA causal genes and genes regulated by psoriatic arthritis-associated spatial eQTLs. Protein
interactions are represented by edges. Proteins that share the same interactions are grouped together. Proteins are color-coded based on their
cellular functions.
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influence on outcomes must occur solely through the exposure
(i.e., no horizontal pleiotropy). We selected significant spatial
eQTLs within the blood GRN (adjusted p-value ≤ 0.05; see
methods) as instruments, likely fulfilling the first assumption.
Verifying the second and third assumptions is challenging, but
the use of randomly allocated genetic variants as instruments
should naturally mitigate confounder effects (Smith and
Ebrahim, 2004; Davey Smith and Hemani, 2014).
Furthermore, several sensitivity analyses, including the
Cochran Q statistic and MR-Egger (see methods;
Supplementary Table S3), helped to remove exposures with
potential horizontal pleiotropy (Burgess et al., 2023), reducing
biases and errors in the downstream analyses. Secondly, our
method to identify JIA-associated traits has its limitations: 1)
the identified traits could be biased towards common traits that
have been studied by GWAS; 2) any regulatory connections
associated with genes without known PPIs in STRING
(Szklarczyk et al., 2021) would be missed; 3) the identified
traits should not be solely construed as having a positive
association with JIA (such as comorbidity); negative
associations (implying a protective effect) are also possible, as
our approach did not account for the specific risk allele associated
with the GWAS SNPs for each trait. Lastly, our analysis centered
on the expanded PPI network within the blood GRN. However,
we acknowledge that genetic variation might influence JIA risk
through other cells or tissues, such as muscle, adipose, lung, or
synovial fibroblast (Pudjihartono et al., 2023). Thus, future
studies should incorporate GRNs from other tissues to obtain
a more complete picture of the JIA disease process. Despite these
limitations, our approach represents a step forward in
understanding how genetic variations contribute to JIA and
connect traits that intersect with JIA through shared
molecular pathways.

Of the 52 causal genes identified, seven belong to the HLA
class I or II gene family. HLA genes are integral to immune
system regulation as they encode cell surface proteins, which are
crucial for presenting self and foreign antigens to T-cells. Studies
consistently rank genetic variations within the HLA genes as
major contributors to the susceptibility of various autoimmune
diseases (Simmonds and Gough, 2009), including JIA (Hersh and
Prahalad, 2015; Hou et al., 2020). Moreover, dysregulation of
HLA class I and II gene expression has been reported in the
affected joints (Haas et al., 2009) and immune cells (Prigione
et al., 2011; Imbach et al., 2023) of JIA patients. Notably, even
after excluding the seven HLA genes from our functional
enrichment analysis, there was still enrichment in immune-
related terms (e.g., cytokine signalling pathways). Thus, our
observations provide additional evidence for the involvement
of the immune system in JIA, particularly in relation to aberrant
antigen presentation and cytokine signalling.

Among causal genes involved in cytokine signaling, LTA
(lymphotoxin-alpha or LTα) and LTB (lymphotoxin-beta or
LTβ) stand out as they encode proteins that belong to the
tumor necrosis factor (TNF) cytokine superfamily. LTα and
LTβ interact to form a membrane-anchored heterotrimeric
complex called the LTα1β2, which binds to and activates
lymphotoxin-beta receptors (LTβR) (Bauer et al., 2012). Upon
activation, LTβR initiates downstream signalling pathways

resulting in the release of pro-inflammatory cytokines and
chemokines (Nakano et al., 1996; Degli-Esposti et al., 1997;
Chang et al., 2002; Piao et al., 2021). Interestingly, our MR
results identified divergent gene-regulatory patterns for LTA
and LTB as risks for JIA, with LTA being upregulated and
LTB being downregulated (Table 1; Supplementary Table S2).
We propose that downregulation of LTBmay allow for more LTα
proteins to exist in a soluble form (i.e., not associated with
membrane-bound LTβ). LTα shares a structural similarity
with TNFα, in its soluble form LTα exhibits a high affinity for
binding to both TNF receptors 1 and 2 (TNFR1 and TNFR2)
(Medvedev et al., 1996). Importantly, the functional ability of
LTα to induce chemokine secretion and inflammatory gene
expression through TNFR1 may be more potent than the
effects of the LTα1β2 complex through LTβR (Williams-
Abbott et al., 1997). Therefore, our results support the
hypothesis that blocking LTα may serve as a viable target for
JIA treatment, echoing previous suggestions for rheumatoid
arthritis management (Buch et al., 2004; Calmon-Hamaty
et al., 2011a; Calmon-Hamaty et al., 2011b). Likewise, specific
inhibitors of TNFR1 could be useful to treat autoimmune
diseases including JIA (Zhang et al., 2020).

Disease-associated gene regulation can be cell type-specific and
does not uniformly affect an entire heterogeneous tissue (GTEx
ConsortiumLaboratory Data Analysis &Coordinating Center
LDACC—Analysis Working GroupStatistical Methods
groups—Analysis Working GroupEnhancing GTEx eGTEx
groupsNIH Common FundNIH/NCI et al., 2017). Thus, we
sought to examine the gene-regulatory impacts of the SNPs that
regulate the causal genes using an immune cell-type specific eQTL
database (Schmiedel et al., 2018). Our analysis unveiled both shared
and cell type-specific regulatory patterns amongst the causal genes
(Figure 3). We propose that causal genes regulated across multiple
immune cell types could contribute to JIA by influencing patients’
systemic inflammation profiles. For instance, ERAP2 was
upregulated by rs2927608 across all immune cell types. ERAP2
encodes an intracellular enzyme responsible for trimming
endogenous (self) proteins before presentation on HLA class I
(de Castro and Stratikos, 2019). The upregulation of ERAP2
might cause over-trimming of endogenous antigen (Mpakali
et al., 2015; Venema et al., 2021), possibly leading to the
production of antigens recognized by autoreactive CD8+ T cells
(Pudjihartono et al., 2023). BAK1, a pro-apoptotic member of the
BCL-2 protein family, was downregulated by rs210142 in all
immune cell types. Apoptosis plays a crucial role in
counteracting autoimmunity by maintaining cell counts and
eliminating autoreactive immune cells (Chervonsky, 1999;
Hutcheson et al., 2008; Croker et al., 2011). Indeed, disruption of
the BAK1-mediated homeostatic mechanism in immune cells has
been demonstrated to result in autoimmunity in mice upon BAK1
deletion (Takeuchi et al., 2005). Conversely, genes with cell type-
specific regulatory effects provide insights into the contributions of
specific cell types to JIA aetiology. For example, PPP1R11 was
specifically downregulated by rs165256 in activated CD4+ T cells.
PPP1R11 encodes an inhibitor for protein phosphatase 1 (PP1)
(Zhang et al., 1998), a pro-inflammatory protein whose activity
augments activation-induced cytokine expression in CD4+ T cells
(Mock, 2012). Indeed, silencing PPP1R11 in CD4+ T cells renders
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them resistant to regulatory T cell-mediated suppression (Joshi et al.,
2019). Therefore, our observations suggest that targeting the
PPP1R11 pathway in CD4+ T cells may modulate T cell
activation and thus may be of therapeutic potential in JIA patients.

Our analysis revealed that JIA causal genes (level 0) and their
interacting proteins (levels 1–2) are regulated by spatial eQTLs
significantly enriched for 95 other GWAS traits. This suggests
that these traits could be connected to JIA through the
dysregulation of common biological pathways. Many of these
traits have known associations with JIA (Table 2). However, we
also identified traits with less clear connections to JIA, including
platelet-to-lymphocyte ratio, sphingomyelin levels, cathepsin B
levels, LILRB2 protein levels, multiple sclerosis, and giant cell
arteritis. Interestingly, traits like platelet-to-lymphocyte ratio
(Milovanovic et al., 2004; Zha et al., 2006; Fu et al., 2015;
Gasparyan et al., 2019), sphingomyelin (Beckmann et al., 2017),
cathepsin B (Ikeda et al., 2000; Behl et al., 2022), and LILRB2 protein
levels (Huynh et al., 2007) have been positively associated with
rheumatoid arthritis. These novel associations warrant further
exploration in population-based studies, as they could serve as
potential biomarkers for JIA. Additionally, identifying previously
unknown disease-related traits, such as multiple sclerosis and giant
cell arteritis, could inform a more comprehensive, multidisciplinary
approach to managing JIA patients.

Through hierarchical clustering of gene-trait associations, we
discovered clusters of pleiotropic genes (in level 0) whose
genetically-regulated expression might underpin the connection
between JIA and specific trait groups. Notably, two HLA class II
genes (HLA-DQB2, HLA-DRB1) form the major links between JIA
andmost level 0 traits. This finding aligns with the highly pleiotropic
nature of HLA genes, which has been implicated in various
autoimmune diseases, and cancers (Dehaghani et al., 2002;
Simmonds and Gough, 2009; Goebel et al., 2017; Zhong et al.,
2019; Tamaki et al., 2021). Furthermore, we identified a group of
genes located within chromosome 6p22.1 (HLA-A, HCG4P5, HLA-
T, MOG, TRIM26, HCG9, IFITM4P; cluster 5) that underlies the
association between JIA and a specific subset of traits. This subset
includes autoimmune/inflammatory traits such as type 1 diabetes,
asthma, eczema, severe COVID-19, and rheumatoid arthritis, in
addition to other traits (e.g., platelet-to-lymphocyte ratio, IgE level,
and shingles). Importantly, the known functions of these genes may
provide valuable insights into the biological connections between
JIA and autoimmune/inflammatory diseases. For example, TRIM26
encodes an E3 ubiquitin ligase that negatively regulates innate
antiviral responses and the production of type 1 interferon
(Shrivastav and Niewold, 2013; Wang et al., 2015). IFITM4P has
also been shown as a positive regulator of innate antiviral immunity
(Xiao et al., 2021). Defective innate antiviral responses could
predispose individuals to autoimmunity or trigger a flare of an
existing autoimmune disease (Stergioti et al., 2022).

JIA patients are at elevated risk of developing
lymphoproliferative (e.g., lymphoma, leukemia) and other cancers
(Nordstrom et al., 2012; Horne et al., 2019b). However, the reasons
behind the development of malignancies in autoimmune patients
are still debated. On one hand, certain immunosuppressive drugs to
treat autoimmune diseases may weaken the immune system for
eliminating cancer cells, consequently increasing cancer risk
(Kinlen, 1985). Alternatively, there may be shared biological

mechanisms between autoimmunity and certain types of cancers.
For example, chronic inflammation, persistent cytokine and
chemokine presence, and the activation of key transcription
factors (e.g., NF-κB) can contribute to DNA instability and
mutations (Hussain and Harris, 2007; Moore et al., 2010).
Additionally, both autoimmunity and lymphoproliferative cancers
manifest shared characteristics (e.g., heightened lymphocyte
proliferation) (Dameshek and Schwartz, 1959; Edward, 2018).
Our analysis identified several types of carcinomas and
lymphoproliferative cancers as associated with JIA (in level 0).
Notably, in addition to HLA class II genes (which might
contribute to chronic inflammation), we found a distinct
association between JIA and Hodgkin lymphoma through a set of
genes in 6p21.3 (FKBPL, PBX2, AGER); and chronic lymphocytic
leukaemia through the BAK1 gene. BAK1 is known for its role in
regulating apoptosis, and PBX2 encodes a transcription factor that
influences cell proliferation and differentiation (Kamps et al., 1991;
Phelan et al., 1995; Qiu et al., 2009). Consequently, abnormal
expression of BAK1 and PBX2 may contribute to uncontrolled
lymphocyte proliferation. This hypothesis aligns with
observations in mice, where dysfunctional apoptosis regulation
(via FAS mutation) resulted in both autoimmune disease and
lymphoma (Rieux-Laucat et al., 1995; Straus et al., 2001). We
also noted an association between JIA and the platelet-to-
lymphocyte ratio mediated through the BAK1 gene. Interestingly,
mice lacking BAK1 have previously been shown to exhibit increased
circulating platelet lifespan (Mason et al., 2007; Josefsson
et al., 2011).

Although population studies indicate that up to 7% of JIA
patients fall into the “juvenile psoriatic arthritis” (JPsA) category,
the gene-regulatory mechanisms underlying this condition remain
unclear (Consolaro et al., 2019). Our analysis, however, uncovered
that proteins encoded by ten genes (MAPT, HLA-B, HLA-C, HLA-F,
HLA-DQA2, HLA-DOB, TAP2, PSMB9, TYK2, MICB) regulated by
spatial eQTLs associated with psoriatic arthritis, directly interact
with proteins encoded by nine JIA causal genes. These psoriatic
arthritis-associated genes are involved in various cellular pathways,
ranging from antigen processing and presentation to immune cell
activation, and cytokine signaling (Figure 6B). Interestingly, some of
these genes (e.g., HLA-C, HLA-B, TAP2, MAPT, and TYK2) have
been previously implicated in the pathogenesis of psoriasis (Carlén
et al., 2007; Prinz, 2018; Cai et al., 2020; Baran et al., 2022; Shang
et al., 2022). We propose that the protein-protein interactions we
identified contribute to a common pathway disruption, potentially
leading to psoriatic symptoms in a subset of JIA patients.

Overall, our findings have provided insights into the biological
mechanisms underpinning JIA pathogenesis and its connections
with other traits. We have discussed some of the biological rationale
underlying JIA causal genes and their potential links to other traits.
However, not all discovered genes and connections have
experimentally-known functions, leaving their roles in the JIA
disease process open to further investigation. Our results suggest
that the burden of associated traits may differ among JIA patients,
influenced by their combined genetic risk across different clusters of
traits. We argue that future experimental validation of these
connections could pave the way for refined patient stratification,
the discovery of new biomarkers, and the discovery of shared
therapeutic targets.
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