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Advances in genome sequencing have greatly accelerated the identification of
sex chromosomes in a variety of species. Many of these species have experienced
structural rearrangements that reduce recombination between the sex
chromosomes, allowing the accumulation of sequence differences over many
megabases. Identification of the genes that are responsible for sex determination
within these sometimes large regions has proved difficult. Here, we identify an XY
sex chromosome system on LG19 in theWest African cichlid fishChromidotilapia
guntheri in which the region of differentiation extends over less than 400 kb. We
develop high-quality male and female genome assemblies for this species, which
confirm the absence of structural variants, and which facilitate the annotation of
genes in the region. The peak of differentiation lies within rin3, which has
experienced several debilitating mutations on the Y chromosome. We suggest
two hypotheses about how thesemutationsmight disrupt endocytosis, leading to
Mendelian effects on sexual development.
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1 Introduction

Three classes of genes are frequently identified in studies of sex-determination in
teleosts (Kitano et al., 2024). The first class of genes are elements of the TGFß pathway,
which transduces extracellular signals to the nucleus. A duplication of the ligand amh is a
sex determiner in Nile tilapia (Oreochromis niloticus) (Li et al., 2015) and Northern pike
(Esox lucius) (Pan et al., 2019). Variations of the amh receptor are implicated in sex
determination in several orders, including Cichliformes, Siluriformes, and
Tetraodontiformes (Kamiya et al., 2012; Nacif et al., 2023; Wen et al., 2023).
Polymorphisms of the ligand gsdf are associated with sex determination in the
Philippine medaka (Oryzias luzonensis) (Myosho et al., 2012) and in cichlids from the
Malawi basin (Munby et al., 2021). A recent study associated polymorphisms in bone
morphogenetic protein receptor type 1b (bmprt1) with sex determination in Atlantic
herring (Clupea harengus) (Rafati et al., 2020). The second class of genes are involved in
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steroid metabolism. Variation in steroid modification enzymes
contribute to sex determination, including hsd17b1 in amberjacks
(Seriola spp.) (Koyama et al., 2019) and sult1st6y in bluefin tunas
(Thunnus maccoyii and T. orientalis) (Nakamura et al., 2021). The
third class of genes include transcription factors such as dmrt and
sox. Dmrt has taken on a role in sex determination in the Japanese
ricefish (Oryzia curvinotus and O. latipes) (Matsuda et al., 2003) and
a flatfish (Cynoglossus semilaevis) (Chen et al., 2014). Sox2 is
implicated in sex determination in another flatfish (Scophthalmus
maximus) (Martínez et al., 2021) and sox3 is associated with sex in
the Indian ricefish (Oryzias dancena) (Takehana et al., 2014).

While most Mendelian factors associated with sex
determination are part of these well-studied pathways, there are
exceptions. A surprising role for an immune gene (irf9/sdY) was
identified in salmonids (Yano et al., 2012; Yano et al., 2013). In Solea
senegalensis, a species of flatfish, an allele of the receptor of the
follicle stimulating hormone (fshr) inhibits the action of the follicle
stimulating hormone tipping the gonad into testis (de la Herrán
et al., 2023). Finally, in the Atlantic cod (Gadus morhua), a copy of
the zinc knuckle gene (zkY) on the Y chromosomes leads to male
development (Kirubakaran et al., 2019). So, while some genes have
been evolved to become Mendelian factors in sex determination
convergently in multiple lineages, this does not preclude the
evolution of sex-determiners from other types of genes. Sex-
determiners have been mapped in many other species, but the
sex-linked regions do not appear to contain candidate genes in
any of the three gene classes already identified. The true number of
genes capable of becoming sex determiners is still unknown, and it
seems likely that more genes will be implicated as we investigate sex
determination in more species (Tao et al., 2021b; Behrens
et al., 2024a).

There are multiple methodologies for identifying sex
chromosomes, the effectiveness of which are dependent on
properties of the sex chromosomes themselves (Palmer et al.,
2019). Highly divergent sex chromosomes such as those of
mammals (Hughes and Page, 2015) or birds (Zhou et al., 2014)
are often visibly different when karyotyped and can be detected by
looking for differences in DNA sequence coverage between the sexes
(Vicoso et al., 2013; Darolti et al., 2019). Detection of homomorphic
sex chromosomes, which are not detectable by karyotyping, is much
more challenging. Many fish, including cichlids, have homomorphic
sex chromosomes (Kitano and Peichel, 2012), which can be
identified by examining the distribution of sex-specific SNPs
along the chromosomes (Gammerdinger et al., 2018; Behrens
et al., 2024a).

Characterization of the sex-determining genes on these sex
chromosomes is critical to understanding the developmental
mechanisms of sex determination. However, identification of a
causative gene or variant within the sex-determining region has
been challenging, especially when they are contained within
structural variants that sequester differentiation across large
genomic regions encompassing dozens to hundreds of genes. An
example of this is the discovery of the Y-linked figla-like gene,
proposed to have a role in sex determination in Nile tilapia, that is
not present in the current assembly of an XX O. niloticus genome,
but which was identified in an assembly of the Oreochromis aureus
genome (Curzon et al., 2022). Another challenge in identifying
candidate genes is the distance of the closest quality reference

genome from the organism of interest (Darolti et al., 2022).
Distantly related species may have accumulated structural
differences, such as inversions, gene insertions, or gene
duplications that can obscure the gene content of the sex-
determining region.

Sex chromosomes often feature highly repetitive or degenerated
regions that are difficult to assemble. To avoid this complication,
assemblies were often generated only for the homogametic sex (Rhie
et al., 2021; Carey et al., 2022). The advancement and reduction in
cost of long read sequencing technologies such as PacBio HiFi and
Oxford Nanopore now allow us to assemble sex chromosomes from
long reads that can span these repetitive regions. An additional
challenge with sex chromosomes is that while assemblers like
hifiasm (Cheng et al., 2021) are able to phase autosomes, they
may struggle to determine haplotypes in sex chromosomes due
to potential changes in structure, gene content, and repeat content
(Carey et al., 2022). Despite this, assembly of sex chromosomes is
becoming increasingly successful. There were several early attempts
to assemble the human Y chromosome from telomere to telomere
(Skaletsky et al., 2003; Jain et al., 2018), but a complete assembly was
only accomplished recently (Rhie et al., 2023). Relatively complete
assemblies of the sex chromosomes have been completed for several
fish, including the stickleback (Peichel et al., 2020), the zig-zag eel
(Xue et al., 2021), and the spotted knifejaw (Li et al., 2021).

Cichlid fishes (Cichlidae) are a large and incredibly diverse
group, featuring upwards of 1,500 species in Africa alone, which
makes them an ideal group for studying the mechanisms of
speciation, morphological divergence, and other evolutionary
processes (Burress, 2015; Santos et al., 2023). They have proven
to be a good system in which to study the evolution of sex
chromosomes (El Taher et al., 2021). The development of long
read sequencing technologies has allowed for several high quality
cichlid assemblies, including O. niloticus and Metriaclima
(Maylandia) zebra (Conte and Kocher, 2015; Conte et al., 2019),
and O. aureus and O. mossambicus (Tao et al., 2021c).

A great diversity of sex determination systems have been
characterized in East African cichlids (Gammerdinger and
Kocher, 2018; Behrens et al., 2024b). Chromidotilapia guntheri is
a paternally mouthbrooding West African cichlid. It is a member of
the tribe Chromidotilapiini, a species-rich early-branching lineage
within the African cichlid tree (Greenwood, 1987; Schwarzer et al.,
2015; Astudillo-Clavijo et al., 2023). This places it as an outgroup to
all African cichlid species that have previously been investigated for
sex chromosomes. The closest relatives of C. guntheri that have been
studied for sex chromosomes are members of the tribe
Oreochromini. Oreochromis niloticus has an XY-LG23 system in
some strains (Conte et al., 2017), and an XY-LG1 system in a
Japanese strain (Tao et al., 2021c). O. aureus has a ZW-LG3 system
(Tao et al., 2021c), and O. mossambicus segregates both XY-LG14
and a ZW-LG3 systems (Tao et al., 2021a). The enormity of the
cichlid radiation means genome assemblies for many individual
clades may be needed to understand the evolution of sex
chromosomes.

Karyotype work shows C. guntheri has a diploid chromosomal
number of 48 (Ozouf-Costaz et al., 2017). The only other known
karyotype for the Chromidotilapiini is Pelvicachromis pulcher, a
species of cichlid with environmental sex determination driven by
temperature and water pH (Reddon and Hurd, 2013; Renn and
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Hurd, 2021), which also has a diploid chromosomal number of 48
(Post, 1965). This diploid number is greater than the modal number
for cichlids, which is 2n = 44 (Feldberg et al., 2003; Poletto et al.,
2010), but is close to the ancestral number for teleost fish (2n = 50)
(Nakatani et al., 2007). The reduction from 50 to 48 is proposed to
result from a fusion of two acrocentric chromosomes, likely forming
LG7 (Liu et al., 2013; Ozouf-Costaz et al., 2017; Conte et al., 2019)
and creating what was likely the ancestral karyotype for most
cichlids (2n = 48) (Poletto et al., 2010). LG23 was also formed by
a fusion (Conte et al., 2017; Conte et al., 2019) however this occurred
only in the African cichlid lineage.

The goals of this study were to 1) look for evidence of genetic sex
determination inC. guntheri, 2) map the sex determining loci, and 3)
characterize the genes within these regions that might affect sexual
development.

2 Materials and methods

2.1 Pooled-sequencing

The Chromidotilapia guntheri used were full siblings reared at
the University of Graz from aquarium stock. We sampled tissue
from 23 males and 26 females, and individuals were dissected to
verify sex by visual inspection of gonad morphology. Animal care
and use were approved under animal care protocols BMWFW-
66.007/004-WF/V/3b/2016 (University of Graz) and R-OCT-22-46
(University of Maryland) and this study was carried out with the
approval of the ethics committee of the University of Graz (permit
number GZ. 39/115/63 ex 2022/23). DNAwas purified separately for
each individual using phenol:chloroform extraction in phase-lock
silica gel tubes (Quantabio, Beverly MA, United States). The DNA
from each individual was quantified by Picogreen fluorescent assay
(ThermoFisher Scientific, Waltham, Massachusetts, United States)
and then equimolar pools were constructed for males and for
females. Sequencing libraries were constructed for 150bp paired-
end DNA sequencing on a NovaSeq6000 S4 (Illumina, San Diego
CA, United States) by Maryland Genomics (Institute for Genome
Sciences, Baltimore MD, United States).

2.2 Sex-specific SNP analysis

The main basis of our analyses is the identification and analysis
of sex-specific SNPs. These SNPs were identified following our
methods described previously (Behrens et al., 2022) using the
sex-SNP-finder pipeline (Gammerdinger et al., 2018). Previously
reported code from that study is available (https://github.com/
Gammerdinger/sex-SNP-finder). Briefly, the sequence reads were
aligned with BWA version 0.7.12 using the default parameters along
with read group labels. We initially aligned all samples to the closest
high-quality reference assembly, O. niloticus UMD_NMBU (RefSeq
GCF_001858045.2), which was the best assembly available at the
time of our initial analysis. At each variable nucleotide site, we
calculated the FST statistic between the populations of male and
female sequence reads. The resulting FST plots provide a first
indication of the differentiation between male and female
genomes. We further identified XY- and ZW- patterned SNPs as

SNPs that were fixed (frequency less than 0.1) in one sex and
polymorphic (frequency between 0.3 and 0.7) in the other sex.
Separate plots of the allele frequency of XY- and ZW- patterned
SNPs suggested the type of heterogametic system segregating (XY or
ZW). This process was repeated against the new C. guntheri
assembly (this study, JBDKXC000000000).

We used Bedtools make windows and coverage to calculate the
density of sex-patterned SNPs in 100kbp windows across the
genome. We identified the top 1% of windows (~78 of
7,800 anchored windows) with the highest number of sex-
patterned SNPs using the methodology described in Kocher et al.
(2022). The log2(XY:ZW) ratio of SNP density was then calculated
for each window. A Kruskal–Wallis (KW) test on the ranked data
was conducted in R (v.2023.03.0+386) using kruskal.test from the
stats package to determine if the log ratio differed among
chromosomes. If the differences were statistically significant, the
Dunn’s test from the rstatix R package was conducted post-hoc to
determine which chromosomes differed significantly from one
another with Benjamini–Hochberg correction for multiple tests.
Regions of elevated sex-specific SNP density were visualized in
IGV to identify candidate sex determining genes.

2.3 Genome sequencing

Additional C. guntheri were obtained from the aquarium trade
and maintained in the Tropical Aquaculture Facility at the
University of Maryland. Animal use was approved under the
animal care protocol R-OCT-22-46 (U. Maryland) and all
experiments were conducted in accordance with the Guide for
Care and Use of Laboratory Animals. High-molecular weight
DNA was prepared from a single male and a single female
individual, which were sexed by visual inspection of gonad
morphology. DNA was extracted from heart tissue using the
Circulomics/PacBio Nanobind Tissue RT kit and the short-read
elimination >25 kb enrichment kit was used to remove shorter reads
from the sample. DNA concentrations were quantified by
fluorescence spectroscopy using a Quant-iT PicoGreen assay
(ThermoFisher, Waltham MA, United States). At the Maryland
Genomics center samples were size selected on a BluePippin pulse-
field gel system (Sage Science, Beverly MA, United States),
sequencing libraries were constructed and extra-long PacBio HiFi
sequencing was conducted on the PacBio Revio machine (Pacific
Bioscience, Menlo Park CA, United States).

2.4 Genome assembly

Genome assemblies were constructed using hifiasm (Cheng
et al., 2021; Wang, 2022) with the default purge_dups setting on.
Bandage (Wick et al., 2015) was then used to make supported
merges based on contiguity of contigs. Contigs for each sex were
then aligned against the O. aureus (ZZ) assembly (GCF_
013358895.1) (Tao et al., 2021c), which was the most complete
reference available at the time of this analysis, using D-Genies
(Cabanettes and Klopp, 2018) to determine placement of contigs
(Supplementary Figure S1). This initial alignment was used to
inform preliminary manual merges between contigs, where a
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string of 50 N were used between two contigs to indicate a
gap. When necessary, contigs were reverse complemented with
seqtk (https://github.com/lh3/seqtk). After this initial assignment
of contigs, the male and female assembly were aligned against each
other and visualized in D-Genies to further guide joins and identify
false joins. The Telomere Identification Toolkit (Tidk, v0.2.31)
(https://github.com/tolkit/telomeric-identifier) was used to detect
repeats with a pattern consistent with a telomeric identity. Once the
repeat was detected (AACCCT and its reverse complement), this
was used to guide correct orientation of contigs when scaffolding.
Potential false joins were visually inspected in IGV (Thorvaldsdóttir
et al., 2013) to determine if the contig produced by hifiasm was
supported by the reads.

To identify the Y chromosome, the male haplotigs, the female
contig for LG19, and the male and female PacBio HiFi reads were
aligned. These alignments were used to identify regions of elevated
heterozygosity in the male that were not present in the female. The
haplotig with greatest number of male-specific SNPs in this region
was inferred to be the Y chromosome. The X and Y were then
compared using ModDotPlot (Sweeten et al., 2024).

2.5 Quality assessment

Genome assembly quality was assessed using the Genome
Evaluation Pipeline (GEP) (https://git.imp.fu-berlin.de/cmazzoni/
GEP), which contains the following programs: GenomeScope2
(https://github.com/tbenavi1/genomescope2.0), meryl (Miller
et al., 2008; Koren et al., 2017), merqury (Rhie et al., 2020),
BUSCOv5 (Manni et al., 2021), and a modified version of
assembly_stats (v0.1.4) (http://doi.org/10.5281/zenodo.3968775).
The O. aureus assembly (Tao et al., 2021c) was used as a guide
for expected chromosome size. Coverage was calculated using
samtools depth (Danecek et al., 2021).

2.6 Annotation of the sex-
determining region

The sex-determining region on the new C. guntheri male
assembly was annotated by aligning genes from the O. niloticus
and O. aureus assemblies in that region against the new assembly
using minimap2 (Li, 2018). Once oriented, we aligned the PacBio
reads as well as the pooled sequencing reads for both sexes against
the haplotigs identified as the Y. The genes of interest were extracted
from the assembly fasta using samtools faidx and the region
coordinates. This subset fasta was then aligned and annotated
using the O. aureus annotation of rin3 in the EMSEMBL tool
genewise (Madeira et al., 2022). The protein sequence called by
genewise was then used in a multisequence alignment using
ClustalOmega (Sievers et al., 2011; Madeira et al., 2022) with
rin3 from both sexes of C. guntheri, and the annotations of rin3
on NCBI of for the outgroup species O. aureus, Haplochromis
(Astatotilapia) burtoni, Simochromis diagramma, and
Neolamprologus brichardi. This analysis was also conducted for
the other genes in the region: adi1, tedc1, pth2, and dnal1. If the
protein had multiple isoforms for a species, all potential isoforms
were included in the multisequence alignment.

3 Results

3.1 Sex chromosome discovery

The analysis of sex-specific SNPs using the O. niloticus genome
as a reference identified signal on LG19 in C. guntheri (Figure 1A).
When the statistical methods were conducted based on this
alignment, LG3 showed significant signal in the Dunn’s test. In
the top 1% analysis, LG19 had 7 XY windows and 2 ZW windows
and the top 100 kb window (124 XY SNPs) was on LG19
(Supplementary Table S1). The highest non-LG19 window was
on LG1 with 59 XY SNPs. LG3 had 6 XY windows and 7 ZW
windows, and the highest window contained 35 XY SNPs. The
narrow signal on LG19, which against O. niloticus spans
approximately 400 kb, was small enough that identifying a
candidate sex-determining gene appeared feasible. Thus, we
proceeded with genome assemblies of each sex.

3.2 Genome assemblies

We generated high quality genomes for each sex of C. guntheri.
Summarized in Table 1, these genomes are on par with or better in
quality than other recent cichlid genomes (Tao et al., 2021c). The
contig N50 is high, indicating that hifiasm assembled chromosome
length contigs for most of the chromosomes (Table 1). The metric
for log-scaled probability of error for the consensus base calls,
consensus quality (QV), was 65.86 in the male and 65.36 in the
female, indicating a very accurate consensus. Additionally, k-mer
completeness was 94.35% in the male, and 91.45% in the female. As
the region sex-determining region on LG19 is small, and has not
accumulated a large number of repeats, it assembled as a single
contig in the female. A single join was made of two large contigs in
the male LG19, but this breakpoint does not appear to be in the sex-
determining region.

C. guntheri has 2n = 48 chromosomes (Ozouf-Costaz et al.,
2017), and these additional two chromosomes assembled cleanly
with clear telomeric regions (Supplementary Figure S2;
Supplementary Tables S3–S5). Their homology to other cichlid
genomes was confirmed via sequence alignments. LG24 aligned
against parts ofO. aureus LG23, and LG25 against parts ofO. aureus
LG3. LG3 is itself a result of a fusion of two chromosomes, which is
thought to have occurred at the base of the African cichlid lineage
(Poletto et al., 2010; Conte et al., 2017; Ozouf-Costaz et al., 2017).
The LG3 fusion and further fusion with a B chromosome in the
Oreochrominii has been previously characterized in cichlids (Conte
et al., 2021), so we investigated which chromosome corresponded to
each region of the fused LG3. The genes sarcs2 and adamsts1 of O.
niloticus aligned to LG3 from the C. guntheri male assembly. The
genes poln, nhs12, tec, and ccdc171 aligned exclusively to LG25. This
suggests that the chromosome called LG25 in this assembly
corresponds with the LG3a from the Conte et al., 2017 study,
and LG3 in our assembly corresponds to O. niloticus LG3a’.

Two incorrect joins were made by hifiasm in the female
assembly. The first was an incorrect assembly that was broken
into LG16 and LG20, respectively using alignments comparing
female contigs to the male assembly, and female reads to the
female assembly. These were visually inspected in IGV
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(Thorvaldsdóttir et al., 2013) to determine that the contig produced
by hifiasm was not supported by the reads. The same process was
repeated for the second contig that broke into parts of LG11 and
LG15 that required further manual joining to other contigs to form a
more complete scaffold.

Once the assemblies were complete, we mapped the pool-seq
reads to the new C. guntheri male assembly. The same signal was
present on LG19, though it was stronger against the C. guntheri
reference than against the O. niloticus reference (Figure 1B). In the
top 1% analysis, LG19 had 9 XY windows and 1 ZWwindow and the

FIGURE 1
(A) Alignment of pooled-seq reads against O. niloticus (B) alignment of pooled-seq reads against C. guntheri.
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top 100 kb window (340 XY SNPs) was on LG19. The highest non-
LG19 window was on LG7 with 86 XY SNPs. LG14 showed
significant signal in the Dunn’s test but did not appear in the top
1% windows. The signal on LG3 was weak and diffuse compared to
LG19 and had both XY and ZW signal in equal strength. The highest
window on LG3 contained 35 XY SNPs. Thus, we conclude that the
sex chromosome in C. guntheri is LG19.

3.3 Structure of the sex determining region

To understand the structure of the sex-determining region, we
aligned both the HiFi sequencing reads and the pool-seq reads
against the new male genome. Additionally, we aligned the X and Y

assemblies to each other. There is no evidence for a structural
rearrangement in the sex determining region of LG19 (Figure 2).
The percent identity between the X and the Y is high, with the
exception of the region at the end of the chromosome. This sub-
telomeric region has likely accumulated a large quantity of repetitive
DNAs due to the low recombination rate at the ends of cichlid
chromosomes (Conte et al., 2021).

In the narrow region of sex differentiation we found the
following genes, listed in order from left to right: acireductone
dioxygenase 1 (adi1), dynein axonemal light chain 1 (dnal1),
tubulin epsilon and delta complex 1 (tedc1), parathyroid
hormone 2 (pth2), ras and rab interactor 3 (rin3), and
LOC120434950 which is uncharacterized and had no informative
hits when BLASTed against the GenBank database. Perk2 was

TABLE 1 Genome assembly statistics.

C. guntheri (XY male) C. guntheri (XX female)

Sequencing type PacBio HiFi PacBio HiFi

Genome size 866,651,555 834,188,889

Genome coverage 101.71X 113.189X

Number of chromosomes 24 24

GC% 41.6% 41.7%

Scaffold N50 34,972,419 33,683,495

Contig N50 33,939,210 31,114,759

Complete BUSCOs 98.7% 96.4%

Complete and single-copy BUSCOs 97.5% 95.0%

Complete and duplicated BUSCOs 1.2% 1.4%

Fragmented BUSCOs 0.2% 0.3%

Missing BUSCOs 1.1% 3.3%

FIGURE 2
Dotplot comparing X and Y, (A) full chromosome and (B) the zoom on the region where rin3 is at 27.6 Mb.
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initially considered as a candidate gene based on the O. niloticus
genome, however it became apparent that this gene is misannotated
in theO. niloticus genome, likely because of the proline-rich domain.
Alignments of the sex-determining region against the O. niloticus
perk2 on LG19 were poor (<50% alignment), and the annotation is
7,143 bp with only two exons. When we searched the NCBI genome
data viewer, the full copy of perk2 appears on LG3 and is 13,618 bp
long with seven exons. Moving forward, we utilized the O. aureus
annotation for this region.

While there is a high concentration of male-specific SNPs in this
region, it is likely that many of these occur in introns or other non-

coding regions. Identifying changes to enhancers and other
regulatory regions is challenging without extensive functional
annotation, so we chose to focus on SNPs that caused changes in
the encoded proteins. Thus, we evaluated SNPs that resulted in a
non-conserved amino acid change and were likely to impact the
structure or function of the resultant protein. Only two genes from
the list, adi1 and rin3, had a non-conserved amino acid change in C.
guntheri that also differed from the reference cichlid species
(Table 2). Any other amino acid changes to genes were
conserved or shared with an outgroup species. Adi1 had a change
at G185R, however this change was present in the female sequence

TABLE 2 Non-conserved amino acid changes in candidate sex-determining genes found in the region with the highest number of male sex-specific SNPs.

Gene Different from outgroups but same in C. guntheri X
and Y

X different from
outgroups

Y Different from
outgroups

adi1 M68T, R128S G185R —

tedc1 T10M, P13L — —

pth2 T10M, G116R — —

rin3 S79F,
P126V, R192C,
A200V,
L300P, S334Del,
P407S, V428A, R430S, G538Del, G540K, E544G, E546G, P582S, S587C
V644G, L657P,
S732P, Q766L,
S847A, S881C,
A1033S, P1096L, A1120V

N297K

E535Del, K536Del, E537Del

P76S, P87S

N297E
P384S

Danl1 was not included in this analysis as it was either not well-conserved between the reference species, or the reference proteins were incomplete.

FIGURE 3
Sex-specific SNP density on LG19, rin3 is at 27.6 Mb. (A) Full chromosomewith both XY and ZW SNPs plotted in 100 kb windows, (B) zoomed in plot
on the sex-determining region in 100 kb windows, (C) zoomed in plot on sex-determining region in 10 kb windows.
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(X) but not the male sequence which could result in a functional Y
and a non-functional X.

3.4 Candidate sex determining gene

We focused our analysis on rin3, as it features the highest density of
heterozygous SNPs in themale (Figure 3, 27, 607, 824–27,629,697), which
included several non-conserved amino acid changes. The multi-sequence
alignment showed that the rin3 sequence on the Y is different from both

the reference cichlid species and the X at three amino acid positions
(Figure 4). All three of these are non-conserved. Two of these changes,
P76S andP87S, occur just before the Src homology 2 (SH2) domain of the
protein. The third, P384S, occurs in one of the three proline-rich domains
(PRDs). Other changes include position 297, where the X sequence is
N297K, and the Y is N297E. This is a conservative substitution, however
both E to K are different from the outgroups. A four base pair deletion
occurred after position 535 in the X. However, this is part of a repetitive
string, and the Y also has a 1 base pair deletion in this region, suggesting
that changes to this region have less impact on protein function.

FIGURE 4
Variation in the candidate gene rin3. (A) domains of rin3with positions of non-conserved amino acid changes (Kajiho et al., 2003), (B) alignment ofC.
guntheri and reference cichlid species corresponding to the first two amino acid changes which are indicated with an arrow, (C) alignment of C. guntheri
and reference cichlid species corresponding to the amino acid change in the PR domain, (D) gene tree of rin3 in of C. guntheri and reference
cichlid species.
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4 Discussion

In this study, we used pooled-sequencing of males and females
to identify an XY sex-determining locus on linkage group 19 in C.
guntheri. We developed high-quality genome assemblies for a male
and female of this species and used these assemblies to characterize a
novel candidate gene for sex determination.

4.1 High quality genomes for studying sex
chromosomes

Our assemblies of C. guntheri represent the first chromosome-level
assemblies of a Chromidotilapiine cichlid. As C. guntheri is an outgroup
to the hyper-diverse haplotilapiine cichlids, this is an important
resource for understanding African cichlid genome evolution. These
genomes assembled with a high N50 and minimal need for scaffolding,
resulting in two highly contiguous reference assemblies that allow us to
characterize any structural differences between the male and the female
genomes. Hi-C might be the gold standard for scaffolding sex
chromosomes (Carey et al., 2022), but for the purposes of
generating the many reference genomes required for understanding
cichlid evolution, our methodology assembling long high-coverage
PacBio HiFi reads works well and is more affordable. As shown in
Figure 1, the evolutionary distance to the reference sequence has a clear
impact on sex chromosome detection. The signal identified on the C.
guntheri reference is cleaner and stronger than in comparisons using the
O. niloticus reference. The small sex-determining regionmeans that our
analyses were not affected by the usual challenges in phasing
polymorphisms across the sex-determining region.

4.2 Lack of structural rearrangements

Many sex chromosomes are differentiated by one or more
structural rearrangements that reduce recombination between the
sex determiner and nearby genes (Jay et al., 2022; Charlesworth,
2023; Olito and Abbott, 2023). However, there is no evidence for an
inversion or other structural rearrangement between the X and the Y
in C. guntheri, and gene order in this region appears to be conserved
in cichlids. The region of differentiation between the sex
chromosomes is very narrow. This might suggest that the
LG19 system is very young, however we do not have information
on the sex chromosomes of any closely related species which would
help date the origin of this sex chromosome system. It is likely that
differentiation is maintained across this small region because of its
position in near the end of the chromosome, which in cichlids
usually has a low rate of recombination (Conte et al., 2021). The
asymmetry of the peak on LG19 is consistent with the proximity of
rin3 to the proximity of rin3 the region of low recombination near
the telomere.

4.3 Rin3 as the candidate sex
determining gene

Of the possible candidate genes in the narrow region on LG19,
Ras and Rab Interactor 3 (rin3) stands out because it has the highest

density of sex-specific substitutions of any genes in the region. The
function of rin3 has been studied with respect to Alzheimer’s disease
in humans, however the protein structure is not fully defined (Shen
et al., 2022). The known domains include the Src homology 2 (SH2),
proline rich regions (PR), RIN homology (RH), vacuolar protein
sorting 9 (VPS9/GEF), and the Ub-like Ras association (RA) domain
(Kajiho et al., 2003). Rin3 is distinguished from the rin1 and rin2
genes by featuring 3 PR domains (Kajiho et al., 2003). It is involved
in the early stages of endocytosis via activation of Rab5 and Rab31,
which bind to the VPS9 domain of the protein (Kajiho et al., 2003;
Kajiho et al., 2011; Shen et al., 2022). Rin3 also activates Ras, which is
involved in signaling pathways that regulate cellular function (Shen
et al., 2022). The SH2 domain is involved in organizing cellular
signaling network via protein tyrosine kinases (PTKs) (Pawson et al.,
2001; Schlessinger and Lemmon, 2003). The PR domain of rin3 has
been found to bind bridging integrator 1 (bin1) (Kajiho et al., 2003),
bridging integrator 2 (bin2) (Janson et al., 2012), and CD2-
associated protein (cd2ap) in humans (Rouka et al., 2015; Shen
et al., 2020).

Interactions between the domains of rin3 make it somewhat
difficult to discern how changes to a single domain might affect
function. Previous work has found that if the SH2 domain is
rendered inactive, rin3 had reduced colocalization with
Rab5 indicating that the SH2 domain may self-inhibit the
guanine-nucleotide exchange factor (GEF) activity of Rin proteins
that are required for interaction with Rab5 (Yoshikawa et al., 2008).
Other work has indicated that binding of the SH2 domain to the
phosphotyrosine residue from the Ras/MAP signaling pathway
inhibits Rab5 activity, while increased rin3 activity can result in
an increase of Rab5 activation and formation of a complex of rin3-
bin1-cd2ap in early endosomes that interrupts endocytic trafficking
(Meshref et al., 2023). While the two amino acid changes fall just
before the SH2 domain, cichlids seem to have a larger region before
the SH2 domain than humans, which might induce conformational
changes that impact binding.

Without functional data, we can only speculate on what effect
the changes to the expression or structure of rin3might have on the
protein and the sex-determination network in C. guntheri males.
Here, we present two possible mechanisms for how this might occur.
The first hypothesis focuses on the role Rab5 plays in endocytosis via
both the internalization of the clathrin-coated pits that lead to early
endosomes and via the caveolin-mediated pathway (Shikanai et al.,
2023). Both of these pathways are known to be involved in the
endocytosis of TGFß receptors (Le Roy and Wrana, 2005; Chen,
2009; Heldin andMoustakas, 2016). Changes to Rab5 binding might
impact the turnover and degradation of TGFß receptors, which has
been shown for Rin1 (Hu et al., 2008). Thus, reduced ability of
Rin3 to bind Rab5 may impact the TGFß pathway by reducing
endocytic activity of these receptors, leaving more TGFß receptors
available on the cell surface. An increased number of available
receptors might be sufficient to tip the developmental pathway
toward maleness. It is also important to note that bin2, which
binds to Rin3 and plays a role in endocytosis via promotion of
membrane bending (Janson et al., 2012), was found as a candidate
gene for sex determination in the cichlid tribe Tropheini from Lake
Tanganyika (Behrens et al., 2024a). A second hypothesis is less
specific to TGFß receptors, but still relates to the role of rin3 in
endocytosis. Endocytosis has been proposed to play a role in sex
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steroid regulation by enabling sex steroids to enter the cell, in
contrast with previous theories that suggested sex steroids freely
diffuse through the cell membrane (Hammes et al., 2005; Marko
et al., 2022). Thus, reducing the function of rin3 in the endocytic
pathway of males could affect female sex steroid uptake, also tipping
the balance toward maleness. Evaluation of these hypotheses will
require functional experiments, beginning with the development of
CRISPR knockouts of rin3.

4.4 What genes can become sex-
determining

Recent reviews have highlighted three major classes of genes that
have become sex determiners in various vertebrate lineages (Curzon
et al., 2023; Kitano et al., 2024). In fishes, genes in the TGFß pathway
are the most frequently recruited to control sex determination. In
the studies published to date, it is the genes for ligands (amh, gsdf,
gdf6) or cell membrane receptors (amhr2, bmpr1) that are most
often utilized (Pan et al., 2021; Yu et al., 2024). However, these
signaling pathways extend deep within the cell, and it is possible that
modification of other elements in the pathway might also become
Mendelian factors in sex determination. A recent report proposed
id2b as a candidate gene for sex determination in the arapaima
(Adolfi et al., 2021). Id2 genes are downstream effectors of TGFß
signaling, with effects primarily in the nucleus. Here we have
proposed rin3 as a candidate gene for sex determination in C.
guntheri. Rin3 may be a modifier of TGFß pathway function by
modulating receptor turnover. These results suggest we may have to
reconsider the hypothesis that sex determiners typically evolve at the
top of biochemical pathways or gene regulatory networks
(Wilkins, 1995).

5 Conclusion

This work furthers both our understanding of sex-
determination in fish, as well as our understanding of the
regulatory networks in which sex-determining genes function.
Often, the differentiated regions of sex chromosomes span several
megabases encompassing dozens of genes. Here we identified a
narrow sex-determining region on LG19 in C. guntheri, which
allowed us to identify rin3 as a strong candidate for the
Mendelian factor regulating sex determination in this species. We
also developed high quality male and female genome assemblies for
C. guntheri, an outgroup to the extraordinary radiation of cichlids in
East Africa, which will be an important resource for evolutionary
studies of this group.
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