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Background: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive
interstitial lung disease characterized by unexplained irreversible pulmonary
fibrosis. Although the etiology of IPF is unclear, studies have shown that it is
related to telomere length shortening. However, the prognostic value of
telomere-related genes in IPF has not been investigated.

Methods: We utilized the GSE10667 and GSE110147 datasets as the training set,
employing differential expression analysis and weighted gene co-expression
network analysis (WGCNA) to screen for disease candidate genes. Then, we
used consensus clustering analysis to identify different telomere patterns. Next,
we used summary data-based mendelian randomization (SMR) analysis to screen
core genes.We further evaluated the relationship between core genes and overall
survival and lung function in IPF patients. Finally, we performed immune
infiltration analysis to reveal the changes in the immunemicroenvironment of IPF.

Results: Through differential expression analysis and WGCNA, we identified
35 significant telomere regulatory factors. Consensus clustering analysis
revealed two distinct telomere patterns, consisting of cluster A (n = 26) and
cluster B (n = 19). Immune infiltration analysis revealed that cluster B had a more
active immune microenvironment, suggesting its potential association with IPF.
Using GTEx eQTL data, our SMR analysis identified two genes with potential
causal associations with IPF, includingGPA33 (PSMR = 0.0013; PHEIDI = 0.0741) and
MICA (PSMR = 0.0112; PHEIDI = 0.9712). We further revealed that the expression of
core genes is associated with survival time and lung function in IPF patients.
Finally, immune infiltration analysis revealed that NK cells were downregulated
and plasma cells and memory B cells were upregulated in IPF. Further correlation
analysis showed that GPA33 expression was positively correlated with NK cells
and negatively correlated with plasma cells and memory B cells.
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Conclusion: Our study provides a new perspective for the role of telomere
dysfunction and immune infiltration in IPF and identifies potential therapeutic
targets. Further research may reveal how core genes affect cell function and
disease progression, providing new insights into the complex mechanisms of IPF.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive
interstitial lung disease characterized by unexplained irreversible
pulmonary fibrosis. Its pathological feature is abnormal deposition
of extracellular matrix, leading to the destruction of normal lung
structure and progressive decline of lung function (Glass et al.,
2020). Currently, alveolar epithelial damage and aberrant wound
repair are increasingly recognized as important contributors to its
pathogenesis (Moss et al., 2022). Studies have shown that persistent
microdamage of senescent alveolar epithelial cells leads to abnormal
signals between epithelial cells and fibroblasts, which eventually
leads to fibroblast activation and myofibroblast differentiation to
create extracellular matrix rich in collagen (Mei et al., 2021; Yao
et al., 2021; Heukels et al., 2019). The clinical manifestations of IPF
are progressive dyspnea and significantly reduced lung compliance
(Schäfer et al., 2020). The diagnosis of IPF is mainly based on the
clinical characteristics, imaging features and lung biopsy (Lynch
et al., 2018). However, early diagnosis of IPF is difficult because the
initial symptoms are atypical and overlap with many other common
symptoms. Due to the lack of early accurate diagnostic markers and
effective treatment measures, most IPF patients have a progressive
deterioration and poor prognosis. The average life expectancy of
untreated patients after diagnosis is 2–3 years (Barratt et al., 2018).
At present, there is no cure for IPF, and the treatment is still mainly
to slow down the progression of fibrosis. Two anti-fibrotic drugs
(including nintedanib and pirfenidone) have been used in the
treatment of IPF patients, but these two drugs have limited
efficacy in preventing disease progression and improving quality
of life, and there are tolerance-related problems (Fournier et al.,
2022; Spagnolo et al., 2021). So far, lung transplantation is still the
only effective treatment for IPF patients, but due to various factors, it
is only a feasible choice for a few of them (Glass et al., 2022; George
et al., 2019). IPF patients eventually die of respiratory failure, usually
during acute episodes or due to other complications, such as lung
cancer or thromboembolism (Caminati et al., 2019; King and
Nathan, 2017). Therefore, exploring new biomarkers for early
diagnosis of IPF patients is crucial for improving the survival
time of IPF patients.

Although the etiology of the disease is not clear, it has been
found to be closely related to shorter telomere length (Duckworth
et al., 2021). It is estimated that about 8%–15% of familial IPF
patients have mutations in telomerase or telomere protection
proteins (Petrovski et al., 2017). Telomeres are protective
structures consisting of DNA repeats (TTAGGG) at the end of
chromosomes in eukaryotes, which are crucial for preserving the
integrity and stability of chromosome structure and function (Smith
et al., 2020). When telomere shortening is below the critical

threshold, chromosomal instability and DNA damage response
(DDR) pathways are activated, leading to cell senescence and
apoptosis (d’Adda di Fagagna, 2008). The protective structure of
telomeres (Shelterin and telomerase) protects telomeres by
inhibiting telomere DDR and entering senescence (Xie et al.,
2015; Rivera et al., 2017). Shelterin is a multiprotein complex
composed of six telomere proteins (TRF1, TRF2, RAP1, TIN2,
TPP1 and POT1) that bind to telomere DNA sequences and are
essential for maintaining telomere length and integrity (de Lange,
2018). In animal models, the loss of TRF1 in alveolar monolayer
squamous epithelium type 2 (AEC2) cells leads to AEC2 senescence
and increased TGF-β1 levels in the lungs (Naikawadi et al., 2016).
Similarly, degradation of TPP1 can aggravate stress-induced cell
senescence and pulmonary fibrosis by promoting AEC2 telomere
uncapping (Wang et al., 2020). A study on IPF with or without
TERT mutation shows that AEC2 has significantly shorter
telomeres, while other cells around it do not (Snetselaar et al.,
2017). These studies suggest that telomere dysfunction may
accelerate the occurrence of pulmonary fibrosis by affecting
AEC2. Interestingly, Le Saux et al. proved that activation of
telomerase with small molecules telomerase activator
GRN510 can reduce bleomycin-induced pulmonary fibrosis in
mice (Le Saux et al., 2013). Overall, these studies have
determined that telomere dysfunction is the main driver of IPF.

Previous investigations have mainly concentrated on the length of
telomere in IPF and its role in the prognosis of IPF. At present, there is
no research to explore the role of telomere-related genes in IPF. This
study comprehensively evaluated the role of telomere-related genes in
the subtype classification and prognosis of IPF based on the GEO
database. The abnormal regulation of telomere-related genes may
become a potential therapeutic target for IPF. Our study provides a
theoretical basis for the development of new therapeutic strategies and
interventions. The work flow chart is shown in Figure 1.

2 Article types

Original Research Article.

3 Materials and methods

3.1 Data download and preprocessing

We retrieved eight IPF sample datasets from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), including GSE10667 (Konishi
et al., 2009), GSE110147 (Cecchini et al., 2018), GSE47460 (Tan
et al., 2016), GSE32537 (Yang et al., 2013), GSE38958 (Huang et al.,
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2014), GSE28042 (Herazo-Maya et al., 2013), GSE93606 (Molyneaux
et al., 2017), and GSE70866 (Prasse et al., 2019) (Table 1). We used the
GSE10667 and GSE110147 datasets as the training set to screen
for core genes. For survival analysis, we utilized the GSE28042,
GSE93606, and GSE70866 datasets, which contain survival data

of IPF patients. The GSE47460 dataset, which includes age and
lung function data, was employed for clinical correlation analysis.
After transforming the dataset’s ID, the batch effect between the
two merged datasets was eliminated using the “sva” package.
Finally, a total of 2093 telomere genes were retrieved from the

FIGURE 1
The work flow chart of our research.
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TelNet database (http://www.cancertelsys.org/telnet/)
(Supplementary Table S1).

3.2 Differential expression and
enrichment analysis

Using the “limma” package of R software, differentially
expressed genes (DEGs) were screened with |log2FC| > 0.5 and
adjusted p-value <0.05 as filtering conditions. The R software’s
“pheatmap” and “ggplot2” packages were used to create the
heatmap and volcanic map. The telomere-related DEGs were
obtained by intersecting the DEGs with the telomere genes, and
enrichment analysis was performed using the “clusterProfiler”
package of R software.

3.3 Weighted gene co-expression network
analysis (WGCNA)

To ensure the accuracy of the results, we utilized the “WGCNA”
package of R software to filter out the co-expression modules and
chose the top 25% of the genes with the highest variance for further
study. After clustering the samples, the sample clustering tree
diagram was obtained, and the soft threshold correlation scatter
plot of the scale independence and mean connectivity was drawn.
The soft threshold was then used to construct the weighted
adjacency matrix, and it was subsequently transformed into a
topological overlap matrix (TOM). When the minimal number of
genes was 100, we utilized the TOM dissimilarity degree (1-TOM) of
the hierarchical clustering tree approach to get the module. Then we
obtained a heatmap of the module genes, with each module
randomly assigned a color. Lastly, we determined the values for
module membership and gene significance, and we created a scatter
plot for each module using these data.

3.4 Consensus clustering analysis

Based on the selected 35 disease candidate genes, 45 IPF samples
were divided into different clusters by consensus clustering analysis using

the “k-means” algorithm in the “ConsensusClusterPlus” package of R
software. In order to thoroughly assess the ideal number of clusters, we
created the consensus matrix, cumulative distribution function(CDF)
graph and delta area plot with themaximum number of clusters k = 9 as
the limit. The “pheatmap” and “ggplot2” packages were used to generate
heatmap and PCA maps to describe the expression of different clusters
and determine the fitness of the clusters.

3.5 Immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) is a variant
of the GSEA method, which is used to determine the enrichment
fraction of each sample and gene set pair. We used the “gsva”
function in the “GSVA” package for ssGSEA, and set the parameters
method = “ssgsea” and kcdf = “Gaussian”. Then we compared the
immune cell abundance between different clusters in the IPF group,
and the results were displayed using heatmaps and boxplots. We
further used the CIBERSORT algorithm to estimate the relative
abundance of immune cell types in the sample. The “CIBERSORT”
function was used for analysis, with 1,000 permutations and quantile
normalization enabled. Then we screened the results and only those
with P values less than 0.05 were included. The box plot was drawn
using the “ggpubr” package to show the immune infiltration of
different samples. In order to further evaluate the relationship
between core genes and immune cells, we used the “cor.test”
function for spearman correlation analysis.

3.6 Summary data-based Mendelian
randomization analysis

To explore the causal relationship between telomere candidate
genes and IPF, we conducted a summary data-based Mendelian
randomization (SMR) analysis. This method integrates summary
data from genome-wide association studies (GWAS) and expression
quantitative trait loci (eQTL) studies to determine the pleiotropic effects
of genetic variants on the expression of telomere candidate genes and
IPF. We obtained GWAS summary statistics for IPF from the GWAS
Catalog database (https://www.ebi.ac.uk/gwas/home). Additionally, we
used eQTL summary statistics from GTEx_V8 (https://yanglab.

TABLE 1 | Details of the data set used in this study.

Dataset Plateform Control Case Source Publication years Used for

GSE10667 GPL4133 15 23 lung tissue 2009 Training set

GSE110147 GPL6244 11 22 lung tissue 2018 Training set

GSE47460 GPL6480 17 38 lung tissue 2013 Validation set

GSE47460 GPL14550 91 122 lung tissue 2013 Validation set

GSE32537 GPL6244 50 119 lung tissue 2013 Validation set

GSE38958 GPL5175 45 70 PBMC 2014 Validation set

GSE28042 GPL6480 19 75 PBMC 2013 Survival analysis

GSE93606 GPL11532 20 154 PBMC 2017 Survival analysis

GSE70866 GPL14550 20 112 BALF 2018 Survival analysis
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westlake.edu.cn/software/smr/#eQTLsummarydata), which provides
information on the association between genetic variants and gene
expression levels. SNPs significantly associated with gene expression
at a genome-wide significance level (p < 5 × 10̂-8) were selected as
instrumental variables. These SNPs serve as proxies to test for the causal
effect of gene expression on the trait. The SMR analysis was performed
using the SMR software tool (https://yanglab.westlake.edu.cn/software/
smr/#Download), and the HEIDI test was conducted to distinguish
between pleiotropy and linkage. Genes with significant SMR p-values
(p < 0.05) and non-significant HEIDI p-values (p > 0.05) were
prioritized for further analysis. These findings contribute to
understanding the genetic architecture of IPF and identifying
potential therapeutic targets.

3.7 Clinical correlation analysis

To explore the expression of core genes, we created violin plots
using the “ggviolin” function in the “ggpubr” package to display the
differences in expression between groups. To evaluate the predictive
ability of the core genes for IPF, we used the “roc” function from the
“pROC” package to calculate the AUC values and plot ROC curves.
To investigate whether the expression of core genes was linked with
the survival time and survival status of IPF patients, we carried out
cox proportional hazards regression analysis and survival analysis
using the R software’s “survival” and “survminer” packages. We
further investigated the relationships between the core genes and
age, predicted FVC%, predicted FEV1%, and predicted DLco% using
correlation analysis.

3.8 Statistical analysis

All statistical analyses were performed using R (version 4.3.1).
Wilcoxon test was utilized to compare group differences. Spearman
or Pearson correlation analysis was used to explore the relationships
between genes, immune cells, and lung function. Cox proportional
hazards regression analysis was used to explore the relationship
between gene expression and patient survival. Significant is defined
to be P < 0.05 (“***”, “**”, “*”, “ns” are “P < 0.001”“P < 0.01”“P <
0.05”“no significance”).

4 Results

4.1 Data processing and telomere-related
DEGs screening

We combined the GSE10667 and GSE110147 datasets and
corrected the batch effect between the datasets for subsequent
analysis (Supplementary Figure S1A, B). The volcano plot
showed 3,844 DEGs identified through differential analysis, of
which 2,097 genes were overexpressed and 1,747 genes were
underexpressed (Figure 2A). The heatmap showed the top
50 significantly up and downregulated genes (Figure 2B). After
the intersection of DEGs and telomere-related genes, 471 telomere-
related DEGs were obtained, of which 308 genes were overexpressed
and 163 genes were underexpressed (Supplementary Table S2).

4.2 Functional enrichment analysis

To explore the functional roles of telomere-related DEGs, we
conducted GO, KEGG, and DO enrichment analyses. GO
enrichment analysis revealed several biological processes
significantly associated with telomere related DEGs, such as
positive regulation of DNA metabolic processes, positive
regulation of chromosome organization and positive
regulation of telomere maintenance via telomere lengthening
(Figure 2C). Cellular component analysis revealed significant
enrichment of chromosomal region, nuclear chromosome,
nuclear periphery, nuclear matrix, site of DNA damage and
site of double − strand break, emphasizing the role of DEGs
in DNA repair and nuclear structure. Molecular functional
analysis revealed significant enrichment of ATP hydrolysis
activity, helicase activity, RNA helicase activity, DNA helicase
activity and telomeric DNA binding, indicating that they play a
crucial role in DNA and RNA processing. KEGG enrichment
analysis further revealed significant enrichment of telomere
related DEGs in Cell cycle, Cellular senescence, HIF-1
signaling pathway, Mismatch repair and Non−homologous
end−joining (Figure 2D). Other significant enrichment
pathways include involvement in various cancers (glioma,
renal cell carcinoma, prostate cancer) and infection-related
pathways (Kaposi sarcoma−associated herpesvirus infection,
Epstein−Barr virus infection, viral carcinogenesis). These
indicate that these telomere-related DEGs have a wide range
of effects on cell function and disease processes. The DO
enrichment analysis revealed significant enrichment of
telomere-related DEGs in Fanconi anemia and various
malignancies (Figure 2E). This highlights the critical role of
telomere-related DEGs in cancer and genetic disorders,
emphasizing their potential importance in understanding and
targeting these diseases.

4.3 Gene module identification and
establishment of co-expression network

In order to screen out the hub gene modules related to IPF, we
performed a cluster analysis using the WGCNA algorithm on
26 control samples and 45 IPF samples. The clustering tree
shows that the samples are well clustered and no obvious outlier
samples are detected (Supplementary Figure S2). We selected β =
5 as the most suitable soft threshold parameter for constructing
scale-free networks, when R2 is set to 0.85 and the average
connectivity is high (Figure 3A). Four co-expression modules in
diverse colors were created by the dynamic cutting method
(Figure 3B), and a TOM heatmap of all the modules’ associated
genes was also supplied (Figure 3C). Subsequently, we plotted the
heatmap between these module eigengenes (MEs) and clinical traits
(Figure 3D). Turquoise (r = 0.53) and brown (r = 0.47) MEs were
significantly positively correlated with IPF, while blue (r = −0.84)
MEs was significantly negatively correlated with IPF. The
correlation analysis showed that the blue module was highly
correlated with IPF (Figure 3E). Finally, we obtained 35 disease
candidate genes by taking the intersection of blue module genes and
telomere-related DEGs (Table 2).
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4.4 Identification of telomere clusters in IPF

Through consensus clustering analysis, we identified two
different telomere patterns based on the expression profiles of
35 disease candidate genes, including cluster A (n = 26) and
cluster B (n = 19) (Figure 4A). When k = 2–9, the area under
the CDF curve shows the difference between the two CDF curves (k
and k-1) (Figures 4B, C). The PCA diagram showed significant
differences between clusters, and these disease candidate genes can
distinguish these two telomere patterns (Figure 4D). The heatmap
displayed the differential expression levels of 35 disease candidate
genes between clusters A and B (Figure 4E). The results showed that

ALPL, CAMK2A, CDKL2, CLIC3, ETV1, FGFR4, GATA2, GPA33,
IDO1, KCTD16, MICA, PCSK9, PDLIM2, PRX, SH3GL2,
TNNC1 and WFS1 were overexpressed in cluster B, while
ABCC5, GREM1, HMGB3 and HSPA4L were opposite. Further
immune infiltration analysis revealed that cluster B had a more
active immune microenvironment, such as Activated dendritic cell,
Gamma delta T cell, MDSC, Macrophage, Mast cell, Monocyte,
Natural killer T cell, Natural killer cell, T follicular helper cell, Type
1T helper cell and Type 17T helper cell were significantly
upregulated in cluster B (Figure 4F). Finally, we revealed that
ALPL, ETV1, GATA2, GPA33, IDO1 and UCHL1 were
positively correlated with most immune cells, while ABCC5,

FIGURE 2
Differential expression analysis and functional enrichment analysis. (A)Volcano plot displays 3,844 genes that are differentially expressed. (B) The top
50 significantly up- and downregulated genes were displayed on the heatmap. The bubble diagram shows the results of GO (C), KEGG (D) and DO (E)
enrichment analysis.
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HMGB3, HSPA4L, LRRN1 and ZSCAN4 were negatively correlated
with most immune cells (Figure 4G).

4.5 SMR analysis reveals causal genes of IPF

In participants of European ancestry, we identified several genes
with pleiotropic associations with IPF (Table 3). Specifically, using
GTEx eQTL data, our SMR analysis determined two genes with
potential causal associations with IPF, including GPA33 (PSMR =
0.0013; PHEIDI = 0.0741) and MICA (PSMR = 0.0112; PHEIDI =
0.9712). Overall, our study revealed that a decrease in
GPA33 expression (Figures 5A, B) and an increase in MICA
expression (Figures 5C, D) may play a causal role in the
pathogenesis of IPF.

4.6 Core genes expression and its
association with IPF

To assess the predictive ability of core genes for IPF, we plotted
ROC curves for the core genes predicting the occurrence of IPF. In

the training set, GPA33 (AUC = 0.730) and MICA (AUC = 0.889)
showed good predictive ability for IPF (Supplementary Figure S3A).
To evaluate the stability of core gene expression in IPF, we verified it
on multiple external datasets. In the training set, GPA33 and MICA
were significantly downregulated in IPF (Figure 6A; Supplementary
Figure S3B). In the GPL6480 platform and GPL14500 platform of
the GSE47460 dataset, we observed that GPA33 was significantly
downregulated in IPF (Figures 6B, C). In the GSE32537 dataset, we
found that GPA33 and MICA were lowly expressed in IPF, but
GPA33 expression was not significant (Supplementary Figure S3B).
We further verified the expression of core genes in peripheral blood
tissues. In the GSE38958 dataset, we found that GPA33 was
significantly downregulated in IPF (Figure 6D). In the
GSE93606 dataset, we found that GPA33 and MICA were
upregulated in IPF, but MICA expression was not significant
(Supplementary Figure S3D).

We further revealed the relationship between GPA33 expression
and lung function. In the GPL6480 platform, we found that
GPA33 expression was positively correlated with predictive DLco
% (R = 0.35, p = 0.036) (Figures 6E–H). In the GPL14500 platform,
we found that GPA33 expression was positively correlated with
predicted DLco% (R = 0.44, p = 1.2e − 06), predicted FEV1% (R =

FIGURE 3
Weighted gene co-expression network analysis (WGCNA). (A) Mean connectivity and scale independence of various soft threshold powers. (B)
Cluster tree dendrogram of co-expressionmodules. (C) Topological overlap matrix (TOM) heatmap among all themodules. (D)Heatmap ofmodule-trait
correlation. (E) MM and GS scatter plot of IPF in blue module.
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0.31, p = 0.00062), and predicted FVC% (R = 0.35, p = 7.9e − 05)
(Figures 6I–L).

Moreover, survival analysis revealed that the expression of core
genes was related to the survival time of IPF patients (Table 4). In the
GSE28042 dataset, we found that GPA33 is a protective gene for IPF,

and its high expression is associated with longer survival of patients
(Figure 6M; Supplementary Figure S3E). In the FREIBURG cohort
of the GSE70866 dataset, we found that GPA33 and MICA are
protective genes for IPF, and their high expression is associated with
longer survival of patients (Figure 6N; Supplementary Figure S3F).

TABLE 2 Detailed information of 35 disease candidate genes.

id logFC AveExpr t P.Value adj.P.Val B

ABCC5 0.9411 9.2126 8.1973 0.0000 0.0000 16.9517

ALPL −0.6580 8.8712 −3.5933 0.0006 0.0017 −0.9145

BDKRB2 0.6948 9.2600 3.7674 0.0003 0.0011 −0.3731

CAMK2A −0.7960 5.0719 −5.7440 0.0000 0.0000 6.7613

CCDC155 −0.7611 5.5875 −3.5647 0.0006 0.0018 −1.0020

CCNB1 1.1287 7.2485 11.0169 0.0000 0.0000 28.7959

CDKL2 −0.6226 7.7487 −3.6111 0.0006 0.0016 −0.8599

CLIC3 −1.3823 9.0822 −7.0590 0.0000 0.0000 12.1380

DLG2 0.8595 6.4377 6.8358 0.0000 0.0000 11.2061

ESR2 0.9913 5.7408 6.1519 0.0000 0.0000 8.3950

ETV1 −0.5956 8.5515 −3.3730 0.0012 0.0031 −1.5739

FGFR4 −1.0772 8.0638 −6.4080 0.0000 0.0000 9.4384

FOXR1 −0.6655 4.2482 −4.2590 0.0001 0.0003 1.2454

GAP43 0.9091 4.8057 5.5264 0.0000 0.0000 5.9067

GATA2 −1.2108 8.0871 −7.5189 0.0000 0.0000 14.0740

GLI1 0.6158 7.2788 3.4884 0.0008 0.0023 −1.2322

GPA33 −1.1053 7.1861 −3.6418 0.0005 0.0015 −0.7656

GREM1 2.1971 6.4502 7.0538 0.0000 0.0000 12.1162

HMGB3 1.2436 8.9833 7.4759 0.0000 0.0000 13.8922

HSPA4L 1.8994 6.0461 9.1296 0.0000 0.0000 20.9136

IDO1 −1.1730 8.8754 −3.9202 0.0002 0.0007 0.1162

KCTD16 −1.4901 5.6111 −7.0984 0.0000 0.0000 12.3032

LRRN1 1.4650 6.4372 9.1977 0.0000 0.0000 21.2021

MICA −1.0703 8.2739 −7.6759 0.0000 0.0000 14.7383

PCP4 1.3468 6.3487 5.7901 0.0000 0.0000 6.9439

PCSK9 −0.8712 7.9531 −3.9670 0.0002 0.0006 0.2686

PDLIM2 −0.8822 9.3993 −7.0138 0.0000 0.0000 11.9489

PNMT −0.6975 7.7186 −3.2953 0.0015 0.0038 −1.7990

PRX −1.4277 9.4779 −7.5547 0.0000 0.0000 14.2250

PSAT1 1.9541 7.3432 13.1509 0.0000 0.0000 37.2685

SH3GL2 −1.3732 5.7549 −9.3327 0.0000 0.0000 21.7737

TNNC1 −1.9119 8.9295 −8.5358 0.0000 0.0000 18.3917

UCHL1 0.8241 8.9454 6.1640 0.0000 0.0000 8.4439

WFS1 −1.1707 9.8150 −9.6279 0.0000 0.0000 23.0198

ZSCAN4 1.0096 4.0610 5.5427 0.0000 0.0000 5.9702
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In the SIENA cohort of the GSE70866 dataset, we found that
GPA33 is a protective gene for IPF, and its high expression is
associated with longer survival of patients (Figure 6N;
Supplementary Figure S3F). However, in the GSE93606 dataset,
we found that GPA33 is a risk gene for IPF, and its high expression is
associated with shorter survival of patients (Figure 6O;
Supplementary Figure S3G).

4.7 Changes of IPF immune
microenvironment

Immune infiltration analysis revealed the changes in the
proportion of immune cells among samples (Figure 7A). We
further revealed that Plasma cells, T cells CD4 memory activated,

Macrophages M0, and Dendritic cells resting were significantly
upregulated in IPF, while T cells CD8, NK cells resting,
Monocytes, and Macrophages M1 were significantly
downregulated in IPF (Figure 7B). Finally, we revealed the
relationship between GPA33 expression and immune cells. We
found that GPA33 expression was positively correlated with Mast
cells resting, NK cells activated, B cells naive and Monocytes, but
negatively correlated with Plasma cells and B cells
memory (Figure 7C).

5 Discussion

In this study, 471 telomere-related DEGs were screened from the
combined dataset, including 308 upregulated genes and

FIGURE 4
Identification of telomere subtypes in IPF. (A) Consensus matrix heatmap when k = 2. (B) Consensus cumulative distribution function when k = 2–9.
(C) Change in the relative area under the CDF curve. (D) Significant distinctions across clusters can be seen in the PCA diagram. (E) Heatmap shows the
expression of 35 disease candidate genes in different clusters. (G) The box plot shows the immune infiltration in different clusters. (H)Correlation between
35 disease candidate genes and infiltrating immune cells.
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163 downregulated genes. Through functional enrichment analysis,
it was found that these telomere-related DEGs were involved in
DNA metabolic processes, chromosome organization, telomere
maintenance, RNA helicase activity, DNA helicase activity,
telomeric DNA binding, Cell cycle, Cellular senescence, HIF-1
signaling pathway, Mismatch repair and other biological
processes. WGCNA was used to screen co-expressed gene
modules and obtain disease candidate genes. Then, we used
consensus clustering analysis to identify two different telomere
patterns, including cluster A (n = 26) and cluster B (n = 19).
Immune infiltration analysis showed that cluster B had a more
active immune microenvironment, indicating its potential
association with IPF. Through SMR analysis, we screened two
genes (GPA33 and MICA) that are causally related to IPF.
Further analysis showed that GPA33 had a stable expression
pattern in IPF, and high expression of GPA33 was associated
with longer overall survival, higher predicted FVC %, higher
predicted FEV1% and higher predicted Dlco % in IPF patients.

Telomere genes were found to be important in the regulation of
DNA metabolism, cell cycle, cellular senescence, chromosome
tissue, and other biological activities, according to enrichment
analysis. Premature lung failure and fibrosis in IPF are caused by
DNA damage in telomerase-deficient lungs. Existing data show that
telomere dysfunction leads to pulmonary fibrosis by changing the
lung microenvironment and cell conduction to cause alveolar stem
cell senescence (Zhang et al., 2021; Alder and Armanios, 2022).
Studies have found that pulmonary fibrosis is closely related to
telomere shortening and increased DNA damage (van Batenburg
et al., 2021; McDonough et al., 2018). In the process of pulmonary
fibrosis, AEC2 stem cells are vulnerable to pressure attacks,
triggering telomere DDR and senescence-related directional
differentiation disorders (Hong et al., 2022). Senescent cells are
metabolically active, producing various cytokines, chemokines,
growth factors and matrix metalloproteinases, forming an
senescence-associated secretory phenotypes (SASP) (Pawlikowski
et al., 2013; Freund et al., 2010). Studies have found that adjacent
cells are also affected by TGF-β secreted by senescent cells and enter

the aging state (Acosta et al., 2013). In particular, telomere
shortening combined with environment-induced lung injury
accelerates the progression of pulmonary fibrosis by stimulating
the TGF-β/Smads signaling pathway (Liu et al., 2018). It is believed
that once AEC2 stem cells enter replicative senescence, they will be
entangled in the environment of SALI, and carry out two-way signal
transduction with senescent cells through various inflammatory
factors, thus promoting the development of fibrosis (Chen et al.,
2015; Kadota et al., 2020; Misawa et al., 2020). In addition, mouse
models showed that conditional knockout of Cdc42 in AEC2s could
lead to progressive pulmonary fibrosis. This suggests that
Cdc42 deficiency impairs the ability of AEC2s to differentiate
into AEC1s, thereby inhibiting the formation of new alveoli and
leading to increased pulmonary mechanical tension (Wu et al.,
2020). Other studies have shown that radiation exposure,
oxidative stress, or bleomycin can trigger the degradation of
TPP1 in AEC2s, triggering telomere unblocking, stem cell failure,
DDR, fiber gene expression and pulmonary fibrosis (Wang et al.,
2020). Interestingly, TELODIN prevents pulmonary fibrosis by
competitively inhibiting pressure-induced TPP1 to accelerate
turnover and telomere shortening (Wang et al., 2020; Wang
et al., 2021). Therefore, the development of some new treatment
strategies for telomere dysfunction is expected to become a new way
to intervene in pulmonary fibrosis. It is worth mentioning that
studies have shown that senescent fibroblasts in IPF patients are
abnormally activated, accompanied by SASP, anti-apoptosis,
telomere shortening, etc. These senescent fibroblasts’ traits in IPF
patients mostly contribute to the onset and progression of the
disease (Lin and Xu, 2020). In general, on the one hand, the
senescence of AEC2s and fibroblasts accelerates the progression
of pulmonary fibrosis by promoting the production of SASP. On the
other hand, during epithelial injury repair, AEC2 stem cells cannot
differentiate into AEC1 cells, resulting in increased lung mechanical
tension and activation of TGF-β signaling pathway in AEC2 to
promote pulmonary fibrosis.

At present, more and more evidence shows that immune
dysfunction may be an important part of the pathogenesis of

TABLE 3 Summary data-based Mendelian randomization analysis results.

Gene topSNP A1 A2 Freq b_SMR se_SMR p_SMR p_HEIDI

PCSK9 rs34232196 T C 0.2336 0.0000 0.0004 0.9578 0.1671

GPA33 rs2281963 C G 0.5348 −0.0008 0.0003 0.0013 0.0741

LRRN1 rs6442843 C G 0.8678 0.0000 0.0004 0.9988 0.7178

ABCC5 rs9861983 T C 0.1869 0.0000 0.0010 0.9687 NA

UCHL1 rs11556271 G A 0.1163 −0.0005 0.0006 0.3546 0.3964

CAMK2A rs11744389 C T 0.3897 0.0007 0.0005 0.1138 0.3581

MICA rs1051798 T C 0.3141 0.0006 0.0002 0.0112 0.9712

SH3GL2 rs2754334 T G 0.9632 −0.0002 0.0006 0.7136 0.8674

ESR2 rs1255986 T C 0.5408 0.0003 0.0005 0.4523 0.9346

BDKRB2 rs1889373 A G 0.5258 0.0001 0.0004 0.8540 0.8807

PNMT rs876493 A G 0.5805 0.0009 0.0008 0.2592 NA

CCDC155 rs7248502 A G 0.5239 0.0001 0.0001 0.6800 0.0454
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IPF. In innate immunity, transgenic mice with telomere dysfunction
showed infiltration of monocytes, macrophages, neutrophils,
lymphocytes and natural killer cells in the lungs (Naikawadi
et al., 2016; Liu et al., 2018; Chen et al., 2015). It has been
reported that elevated levels of IL-8 and granulocyte colony-
stimulating factor in bronchoalveolar lavage fluid from IPF
patients are linked to an increase in activated neutrophils, a risk
of acute exacerbations, and a decline in lung function (Papiris et al.,
2018). M2 macrophages play a crucial part in the pathogenesis of
pulmonary fibrosis by secreting a number of growth factors to
promote the deterioration of pulmonary fibrosis (Heukels et al.,
2019; Wynn et al., 2013). Increased expression of prefibrotic genes
(arginase1 and MMP13) was observed in monocytes-derived
macrophages from IPF patients and experimental pulmonary
fibrosis (Misharin et al., 2017). However, how telomere
dysfunction causes the infiltration of innate immune cells in the

lung and how it participates in the occurrence of pulmonary fibrosis
require further study. In adaptive immunity, the pathogenesis of
IPF, in which a Th1/Th2 imbalance response contributes to
pulmonary fibrosis, may involve dysfunction amongst Th subsets.
Previous studies have confirmed that Th2 cytokines play a leading
role in pulmonary fibrosis, and its pathogenesis is related to the
secretion of IL-4, IL-5 and IL-13 (Chung et al., 2016; Wynn, 2015;
Harari and Caminati, 2010). Th1 is mainly related to the production
of pro-inflammatory cytokine IFN-γ, and its secretion is reduced in
pulmonary interstitial fibrosis and rat pulmonary fibrosis models (Vu
et al., 2019; Maeyama et al., 2020). This suggests that impaired IFN-γ
releasemay contribute to the development of pulmonary fibrosis. Other
studies have demonstrated that the Th1/Th2 imbalance is only one
aspect of the pathogenesis of IPF and that its more intricate interactions
with other T cells (such as Tregs, Tfhs, NKTs, and T cells) may be more
significant in the pathogenesis of IPF (Spagnolo et al., 2022). By

FIGURE 5
Summary data-based Mendelian randomization (SMR) analysis. (A) Prioritizing gene around GPA33 in pleiotropic association with IPF in the
participants of European ancestry using GTEx eQTL data. (B) The scatter plot illustrates the relationship between the expression site of GPA33 gene and
IPF GWAS. (C) Prioritizing gene around MICA in pleiotropic association with IPF in the participants of European ancestry using GTEx eQTL data. (D) The
scatter plot illustrates the relationship between the expression site of MICA gene and IPF GWAS.
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promoting the production of TGF-β in the early stages of IPF, Tregs
play a pro-fibrotic role, whereas in the late stages, Tregs play a protective
role by stimulating the secretion of IL-10 (Boveda-Ruiz et al., 2013). In
our study, two telomere patterns (cluster A and cluster B) were
identified from 35 important telomere-related genes by consensus
clustering analysis. Cluster B has a more active immune
microenvironment, indicating that cluster B may be related to IPF.

Our results show that cluster B has higher levels of Th1 and Th2 cells,
indicating that more complex interactions between various T cells may
be crucial in the pathogenesis of IPF. Although the mechanism of
adaptive immunity in IPF remains unclear, the interaction between
various T cell populations and how telomere dysfunction causes
adaptive immune cells to infiltrate the lungs is a promising research
area that may help identify possible molecular therapeutic targets.

FIGURE 6
GPA33 expression and clinical correlation analysis. The violin plot shows the expression of GPA33 in the training set (A), GSE47460 dataset
GPL6480 platform (B), GSE47460 dataset GPL14500 platform (C) and GSE38958 dataset (D). The correlation scatter plot shows the correlation between
GPA33 and age (E), DLco % predicated (F), FEV1% predicated (G), FVC % predicated (H) in the GSE47460 dataset GPL6480 platform. The correlation
scatter plot shows the correlation between GPA33 and age (I), DLco % predicated (J), FEV1% predicated (K), FVC % predicated (L) in the
GSE47460 dataset GPL14500 platform. (M) The survival curve shows the relationship between the expression of GPA33 in GSE28042 dataset and the
overall survival of IPF patients. (N) The survival curve shows the relationship between the expression of GPA33 and the overall survival of IPF patients in the
FREIBURG and SIENA cohorts of the GSE70866 dataset. (O) The survival curve shows the relationship between the expression of GPA33 in
GSE93606 dataset and the overall survival of IPF patients.
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Our study first revealed the expression of GPA33 in IPF and its
potential protective effect. Our results showed that GPA33 was
significantly downregulated in IPF patients, and high expression of
GPA33 was associated with longer survival and higher lung function
indicators in IPF patients. The consistency of GPA33 expression was
verified in lung tissue and peripheral blood samples. However, in
another independent peripheral blood sample, we observed that
GPA33 was significantly highly expressed in IPF. In the
GSE93606 dataset, we observed that high GPA33 expression is
associated with shorter survival in IPF patients, which appears to
contradict the results from other datasets. First, gene expression in
peripheral blood samples may differ significantly from that in lung
tissue samples. Although peripheral blood samples are easier to
collect, their gene expression profiles may not fully reflect the

situation in lung tissue. Second, variations in the technical
platforms and data processing methods used across different
datasets could affect the gene expression results. Additionally,
biological heterogeneity between samples may also contribute to
the observed discrepancies. Our study aims to explore novel
therapeutic targets for IPF. Despite the current findings showing
differences in GPA33 expression across datasets, these results lay the
groundwork for further in-depth research. Future studies should
increase the sample size, conduct multi-center validation, and
explore the specific mechanisms of GPA33 in IPF to further
confirm its potential as a therapeutic target. Furthermore, we
found that MICA was a risk gene for IPF through SMR analysis,
but further analysis found that MICA was significantly
downregulated in IPF. Previous studies have found that MICA is

TABLE 4 Survival analysis results of core genes.

Dataset Gene HR HR.95L HR.95H P-value km

GSE28042 GPA33 0.4550 0.2364 0.8755 0.0184 0.0074

MICA 0.8157 0.4157 1.6004 0.5535 0.0811

GSE70866(FREIBURG) GPA33 0.6032 0.4635 0.7848 0.0002 0.0000

MICA 0.5558 0.2044 1.5117 0.2500 0.0002

GSE70866(SIENA) GPA33 0.5998 0.4548 0.7911 0.0003 0.0002

MICA 0.7260 0.3633 1.4506 0.3645 0.1208

GSE93606 GPA33 2.8303 1.3216 6.0613 0.0074 0.0002

MICA 0.4539 0.0632 3.2619 0.4325 0.0595

FIGURE 7
Immune infiltration analysis. (A) The bar chart shows the relative proportions of 22 immune cells in the control group and IPF group. (B) The box plot
shows the expression of 22 immune cells in the control group and IPF group. (C) The correlation lollipop plot shows the relationship between GPA33 and
immune cells.
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expressed in alveolar epithelial cells and fibroblasts of IPF patients
(Aquino-Galvez et al., 2009). This indicates that the abnormal
expression of MICA in IPF patients may be closely related to the
pathological process of the disease. While MICA is considered a risk
gene for IPF, our study consistently found it to be downregulated in
IPF lung tissue across three independent datasets: GSE2052,
GSE24206, and GSE53845 (Supplementary Figure S4).
Specifically, MICA was downregulated in the GSE2052 and
GSE53845 datasets, although the downregulation in
GSE53845 was not statistically significant. In the
GSE24206 dataset, we found that MICA was downregulated in
both the early and advanced stages of IPF, with more
pronounced downregulation in the advanced stage. This
phenomenon may reflect the complex role of MICA in disease
progression, such as potentially promoting fibrosis by suppressing
immune cell activity. Although the downregulation was not
significant in some datasets, the overall trend clearly indicates
low MICA expression in IPF, suggesting a potential suppressive
regulatory role in the pathogenesis of IPF. We also attempted to
explore the causal relationship between MICA and IPF through
Mendelian randomization, but were unable to perform multiple
validations due to limited lung tissue-specific eQTL data.
Nevertheless, based on the consistent results across multiple
datasets, we believe that the low expression of MICA in IPF is
reliable, and future experimental studies will further investigate its
specific mechanisms. In summary, our research provides an
important foundation for understanding the potential function of
MICA in IPF and points to future directions for further
investigation.

In addition, immune infiltration analysis revealed a
downregulation of NK cells and an upregulation of plasma cells
and memory B cells in IPF. The decrease in NK cell numbers may
indicate an impaired ability of IPF patients to eliminate diseased
cells, contributing to disease progression and exacerbation.
Previous studies have reported reduced proportion and activity
of NK cells in the lungs of IPF patients (Cruz et al., 2021). Another
study indicated that the lung microenvironment in advanced IPF
impairs NK cell activity, thereby reducing the clearance of
senescent cells and hindering the reversal of lung fibrosis (Cruz
et al., 2023). Conversely, the upregulation of plasma cells and
memory B cells suggests a significant role for B cell-mediated
immune responses in IPF. Prior research found that bortezomib
treatment in mice depletes plasma cells, thereby reducing
bleomycin-induced lung fibrosis (Prêle et al., 2022). Further
correlation analysis revealed that GPA33 expression is positively
correlated with NK cells but negatively correlated with plasma cells
and memory B cells. These findings suggest that GPA33 may play a
crucial role in regulating the function and distribution of different
immune cell types. Although research on GPA33 and MICA in IPF
is limited, studies on these genes in other diseases provide valuable
insights. Given that GPA33 plays a crucial role in epithelial
adhesion and cell proliferation and differentiation in the
intestinal epithelium, and MICA is a ligand for the NKG2D
receptor, which is closely related to NK cell activation (Xing
and Ferrari de Andrade, 2020), we can infer their potential
roles in the context of telomere dysfunction. Specifically,
GPA33 may impact the renewal and repair processes of
epithelial cells under conditions of telomere dysfunction, while

MICA may influence immune surveillance mechanisms and play a
role in the progression of IPF. Therefore, we hypothesize that the
reduced expression of MICA in the context of telomere
dysfunction might weaken NK cell activity, leading to reduced
clearance of senescent cells and thereby promoting fibrosis
development.

Our results revealed a positive correlation between the
expression of GPA33 and lung function indicators. An
increasing number of studies have confirmed that decreased
lung function is a feature of disease progression and poor
prognosis in patients with IPF, and decreased FVC and Dlco
can predict the risk of death in patients with IPF (Brown et al.,
2020; Khan et al., 2022; Qiu et al., 2018; Ley et al., 2012). A
multicenter observational retrospective study showed that
individuals with maintenance of FVC but a moderate-to-severe
DLco reduction and a UIP radiological pattern at diagnosis are at
greater risk of progression, death, or requiring lung
transplantation (Bermudo et al., 2022). To delve deeper into
these findings, future research could further explore the exact
mechanistic of GPA33 gene in the development and progression of
IPF. In addition, considering the association between declining
lung function and adverse outcomes in IPF patients, our study
provides robust support for GPA33 gene as a potential diagnostic
and prognostic biomarker for IPF. Further clinical and molecular
investigations are needed to validate their effectiveness as
biological markers for IPF and explore new avenues for patient
management and therapeutic strategies.

However, our research also has some limitations. First, the
mechanism of GPA33 in IPF remains unclear. Secondly,
considering that our work is based on bioinformatics analysis, the
effectiveness needs to be confirmed in further animal and human
experimental studies. In addition, our study relies on publicly available
data sets, and differences in sample collection, processing, and
sequencing methods between different data sets may introduce
variation. In the future research, we will continue to focus on the
role of GPA33 in IPF, and through experimental verification to
enhance the reliability and applicability of the research results.

6 Conclusion

In summary, our study provides a new perspective on the role of
telomere dysfunction and immune infiltration in IPF. Our study
supports GPA33 as a potential therapeutic target for IPF, and further
research may reveal how GPA33 affects cell function and disease
progression.
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