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The innovation in ultrasound has greatly promoted the prenatal diagnosis of
ventricular septal defect. As a minor lesion of congenital heart disease, the
prenatal genetic counseling of isolated ventricular septal defect faces some
challenges, including the true genetic correlationship, selection of
appropriated testing methods to identify deleterious mutations, and avoidance
of overdiagnosis and overintervention. Researchers have explored the prenatal
diagnosis efficiency of commonly used cytogenetic and molecular genetic
technologies. Small insertions/deletions and monogenic variants with
phenotypic heterogeneity play important role and contribute to the
comprehend of pathogenesis. Isolated ventricular septal defect fetuses
without genetic finding and extracardiac structural abnormality generally have
good pregnancy outcome. Long-term follow-up data is needed to describe the
comprehensive map, such as the potential missed diagnosis especially late-onset
syndromes, the impact on the quality of life and life expectancy. When
conducting prenatal genetic counseling, strict adherence to ethical principles
is needed to ensure that the rights of all parties involved are fully protected.
Clinicians should carefully evaluate the risks and benefits and provide parents with
sufficient information and advice to enable them to make informed decisions.
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1 Introduction

Congenital heart disease (CHD) is the most common birth defect and leading cause of
global burden of disease (Authoranonmys, 2020; Roth et al., 2020). As the most frequent
type of CHD, ventricular septal defect (VSD) has intricate etiology and Pathogenesis (Nora,
1968; Goor et al., 1970; Pierpont et al., 2007). Sonography is the primary imaging modality
for diagnosing and monitoring VSDs. Over the past 30 years, the development and growth
of fetal echocardiography has been driven by technical innovation (Rajiah et al., 2011;
Maulik et al., 2017). The resolution improvement and operation standardization have
pushed the boundaries of what can be seen and measured, and helped the advance period of
diagnosis for small VSDs to fetal stage, resulted in the intense demand for prenatal
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counseling (van der Linde et al., 2011; Yagel et al., 2011; Boehme
et al., 2022; Dawood et al., 2022). Genetics plays an important role in
the pathogenesis of VSD, and this discovery benefits from the great
technological progress in human genome research. The aim of this
review is to explain the genetic association and clinical outcomes for
fetuses with isolated VSD, so as to provide comprehensive basis for
prenatal genetic counseling.

2 Search strategy and selection criteria

Articles referenced in this manuscript were identified by
MEDLINE and EMBASE. The last electronic search was
performed on 13 September 2024 utilizing combinations of the

relevant medical subject heading (MeSH) terms, word variants, and
keywords for “fetus, prenatal, isolated and ventricular septal defect”.
The bibliography of high-impact articles were reviewed to identify
additional relevant studies and was included in our references when
appropriate.

Additional articles were included to evaluate the risk of genetic
abnormalities and clinical outcomes of fetuses with isolated VSD if
the following criteria were met (Figure 1): (1) fetuses were diagnosed
as isolated VSD by prenatal ultrasound, (2) the study was conducted
solely on human fetuses, and (3) the study contained information
about genetic testing results or prognosis information. Cohort,
retrospective, prospective, and longitudinal articles were included.
Case reports, conference abstracts, comments and editorials were
excluded. Pediatric, postnatal, adult and autopsybased studies were

FIGURE 1
Flow chart of included articles to evaluate the risk of genetic abnormalities and clinical outcomes of fetuses with isolated VSD.
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TABLE 1 General characteristics of the studies in fetuses with isolated VSD.

References Country Study
design

Study
obsject

Study
period
(years)

Related risk criteriaa Fetuses
diagnosed as
isolated VSD

GA at
diagnosis
(weeks)

Svirsky et al. (2019) Israel Retrospective Isolated
muscular VSD

2013–2017 √ Low risk for trisomy 21 on
their first trimester screen
× Other abnormal finding during
the anomaly scan

40 After 15

Vedel et al. (2021) Denmark Prospective Isolated VSD 2014–2018 √ cFTS risk for trisomy 21 was
lower than 1:300 and lower than
1:150 for trisomy 18 and trisomy
13 calculated using the FMF
algorithm
√ Singleton pregnancy
× Other prenatally detected
malformations recorded
× Second-trimester soft markers
recorded: echogenic bowel, short
femur, echogenic intracardiac
focus, choroid plexus cyst

153 18–21

Lee et al. (2016) USA Retrospective Isolated VSD 2006–2012 × Major intracardiac or
extracardiac anomalies
× Soft marker for aneuploidy:
thickened nuchal skin fold,
hypoplastic or absent nasal bone,
echogenic bowel,
ventriculomegaly, echongenic
cardiac focus, renal pyelectasis,
choroid plexus cyst, tricuspid
regurgitation, short humerus or
short femur, and 2 vessel cord
× Abnormal serum screening
× Multiple gestations

112 20.9 ± 1.6

Cai et al. (2018) China Retrospective VSD 2017–2018 × Other cardiac anomalies
× Extracardiac structural
anomalies
× Sonographic soft markers

79 18–33

Fu et al. (2017) China Retrospective VSD 2010–2015 √ VSD as the only cardiac defect
√ Normal karyotypes
× Other cardiac anomalies
× Extracardiac structural
anomalies
× Sonographic soft markers:
echogenic foci in the heart or
bowel, thickened nuchal fold,
absent nasal bone, single
umbilical artery, and persistent
right umbilical vein, choroid
plexus cysts

73 17–35

Du et al. (2016) China Retrospective VSD 2013–2014 √ Normal karyotypes
× Other cardiac anomalies
× Extracardiac structural
anomalies
× Sonographic soft markers

22 18–34

Maya et al. (2020) Israel Retrospective VSD 2013-2017 × Soft markers
× Major anomalies
× Growth/AFI anomalies

568 NS

Bahtiyar et al.
(2008)

USA Prospective Isolated
muscular VSD

2005–2006 × Any other sonographic
abnormality in the fetus during a
second-trimester anatomic
survey
× VSD as part of complex CHDs
(e.g., atrioventricular septal
defect, tetralogy of Fallot, and
tricuspid atresia)

16 20–34

(Continued on following page)
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TABLE 1 (Continued) General characteristics of the studies in fetuses with isolated VSD.

References Country Study
design

Study
obsject

Study
period
(years)

Related risk criteriaa Fetuses
diagnosed as
isolated VSD

GA at
diagnosis
(weeks)

Shen et al. (2014) Israel Retrospective Isolated VSD 1995–2007 × Maternal diabetes
× Teratogenic exposure
× Previous children with CHD
× Prenatal diagnosis of a major
malformation
× Positive screen for trisomy 21
(on nuchal translucency testing
with or without first trimester
biochemical screening or second
trimester triple testing with a
calculated risk for DS greater
than 1:380)
× Soft signs for aneuploidy

92 19–24

Wang et al. (2023c) China Retrospective VSD 2012–2022 × Sonographic soft markers
× Extracardiac structural
anomalies
× Other cardiac anomalies
× Known infected fetuses
× Twin or multiple pregnancies
× Exposure to known teratogenic
drugs

133 12–38

Raucher Sternfeld
et al. (2022)

Israel Retrospective Isolated VSD 2012–2015 × Other additional findings
during anomaly scan

86 22–28

Cheng et al. (2022) China Retrospective Isolated VSD 2016–2020 × Other ultrasound structural
malformation at the time of
antenatal and postnatal

185 23–27

Gordin Kopylov
et al. (2022)

Israel Retrospective isolated
perimembranous

VSD

2015–2021 √ Perimembranous VSD was the
only abnormal fetal finding
× Additional cardiac or
extracardiac malformations

56 22–29

Erol et al. (2014) Turkey Retrospective Isolated
muscular VSD

2007–2012 √ A defect in the interventricular
septum without other
sonographic abnormalities
× Complex CHDs
× Non-cardiac malformation
× Known chromosomal
abnormalities

76 19–37

Qiao et al. (2021) China Retrospective CHD 2018–2019 × Additional extracardiac
structural lesion

102 NS

Gómez et al. (2014) Spain NS Isolated VSD 2005–2011 × Other structural anomalies at
the time of diagnosis, i.e., other
CHD, vascular anomalies and/or
non-cardiac malformations

270 17–41

Mosimann et al.
(2014)

UK Retrospective VSD 2002–2011 × Increased nuchal translucency
× Extracardiac anormalies
× Additional cardiac
abnormalities

34 NS

Gedikbaşı et al.
(2010)

Turkey Retrospective VSD 2002–2007 × Extracardiac findings
× Co-existing cardiac findings

18 NS

Li et al. (2016) China Longitudinal Isolated VSD 2011–2013 × Other cardiac structural
abnormalities

335 19–30

Cho et al. (2017) South Korea Retrospective Isolated VSD 2010–2014 × VSD as a part of another
congenital heart defect
(atrioventricular septal defect,
tetralogy of Fallot, tricuspid
atresia, etc.)

228 mid-trimester

Chau et al. (2018) USA Retrospective VSD 2012–2015 × Other cardiac anomalies 129 NS

(Continued on following page)
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excluded. Articles in which isolated VSD category were included but
could not be separated from others were excluded. To avoid
duplication, the article with the longest study period or largest
sample size was selected for final analysis in articles with
overlapping locations and periods.

3 Prevalence

A meta-analysis of 260 studies that incorporated global data
concluded that the reported birth prevalence of CHD globally
continues to increase. Among the total CHD, the three mild
lesions including VSD (occurred in 3.1 per 1,000 birth), atrial
septal defect (ASD) and patent ductus arteriosus (PDA) together
explained 93.4% of the increase prevalence (Liu et al., 2019).
Although there are significant regional discrepancies in the
incidence of VSD, this trend were also observed in the studies
of Sweden and China, with a VSD birth prevalence of 7 per
1,000 and 1.4 per 1,000 respectively (Zhao et al., 2020a; Giang
et al., 2023). Considering impact of the detection rate,
intervention and spontaneous closure of the defect, prenatal
statistics may vary from postnatal data. In a recent large-scale
screening project of Chinese population, the incidence of
isolated single VSD was 1.7 per 1,000 among pregnancies
between 18 and 22 weeks’ gestational age nationwide,
significantly higher than 0.1 per 1,000 of non-isolated VSD
(Chen et al., 2023). Another register-based study from

Denmark retreved nationwide data from routine ultrasound
screening over a five-year period and found an incidence rate
of isolated VSD of 0.5 per 1,000 low-risk pregnancies (Vedel
et al., 2021).

4 Genetic association

The causes and pathological mechanisms of VSD serve as core
information for assessing fetal prognosis, managing pregnancy,
and parental decision-making. Clinicians should assess risk factors
and discuss testing options in prenatal genetic counseling.
Karyotype analysis is the gold standard for chromosomal
abnormalities and the first-line method for prenatal diagnosis.
However, it is controversial at present about the association
between isolated VSD and the risk of chromosomal
abnormality, thus puzzles the pre-test clinical counseling
(Gómez et al., 2014; Shen et al., 2014; Lee et al., 2016; Svirsky
et al., 2019; Vedel et al., 2021). The existence of additional risk
indicators beyond isolated VSD may be the primary reason for the
inconsistent genetic detection rates, as is shown in Tables 1, 2. In
addition, geographical and socio-economic factors also lead to the
deviation of the incidence. On the basis of conventional karyotype
analysis, chromosomal microarray analysis (CMA) and exome
sequencing (ES) have become more common in the prenatal
setting in recent years. It also brings challenges for clinicians to
choose approproate prenatal testing methods.

TABLE 1 (Continued) General characteristics of the studies in fetuses with isolated VSD.

References Country Study
design

Study
obsject

Study
period
(years)

Related risk criteriaa Fetuses
diagnosed as
isolated VSD

GA at
diagnosis
(weeks)

Paladini et al.
(2000)

Italy Observation Isolated VSD 1994–1998 × VSD as a component of other
CHD (tetralogy of Fallot,
tricuspid atresia, etc.) or
associated with other CHD (VSD
+ coarctation)

68 17–39

Axt-Fliedner et al.
(2006)

Germany Retrospective Isolated VSD 1996–2004 × VSD as a part of other CHD
(atrioventricular septal defect,
tetralogy of Fallot, tricuspid
atresia, etc.)

146 13–39

Selhorst et al. (2024) USA Retrospective Isolated VSD 2018–2023 √ VSD with or without major
structural abnormalities
× Multiple heart abnormalities
× Multiple gestation pregnancy

125 27 ± 5

Lu et al. (2024) China NS CHD 2017–2022 × Extracardiac ultrasound
anomalies
× Additional structural
anomalies
× Soft markers
× Amniotic fluid volume
abnormality

219 24.3 ± 2.9

Zhao et al. (2024) China Retrospective VSD 2017–2022 √ Low risk of NIPT
× No test of NIPT
× High risk of NIPT
× Presence of other cardiac and
extracardiac abnormalities

45 NS

√ included criteria,× excluded critieria, AFI, amniotic fluid index; cFTS, combined first-trimester screening; CHD, congenital heart disease; CMA, chromosomalmicroarray analysis; CNV, copy

number variation; DS, down syndrome; ES, exome sequencing, GA gestational age; NIPT, non-invasive prenatal testing; NS, not stated; QF-PCR, quantitative fluorescence PCR.
aNine studies proposed definitions for the term “isolated” or “isolated VSD”, 11 studies established inclusion or exclusion criteria, and risk indicators related were extracted from full text of the

remaining 6 articles.
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4.1 Chromosomal abnormality in
isolated VSD

In early years, prenatal sonographic diagnosis of VSD was
difficult. Large VSD was usually detected by prenatal ultrasound
with cardiac and extracardiac abnormalities, and karyotype analysis
was the most effective available detection method at that time. In the
year of 2000 and 2006, Paladini et al. and Axt-fliedner et al. recruited
fetal VSDs without associated cardiac defect and obtained high
detection yields 26.67% and 32.89% of chromosomal abberation by

karyotype analysis (Paladini et al., 2000; Axt-Fliedner et al., 2006).
Trisomy 18 was the most common chromosomal aberration in fetal
VSD without associated cardiac defect, followed by trisomy 21 and
trisomy 13. Paladini et al. also reported a strong correlation between
trisomy 21 and inlet VSD, as well as trisomy 18 and malalignment
VSD (Paladini et al., 2000). Till the era of first-trimester screening,
aneuploid was less prevalent in the cohort of isolated VSD without
associated cardiac abnormalities. Li et al. from China performed
karyotyping in 80 cases and identified 9 chromosomal anomalies,
including 8 aneuploids and 1 balanced translocation (Li et al., 2016).

TABLE 2 Detection rate of chromosomal aberration, CNV and SV in fetuses with isolated VSD.

References Genetic
testing

Total number
of testing

Positive genetic
diagnosis n(%)

Chromosomal
aberrations n(%)

CNV
n(%)

SV n(%)

Lee et al. (2016) Karyotype 112 2 (1.79) 2 (1.79)

Fu et al. (2017) CMA 73 4 (5.48) 4 (5.48)

Du et al. (2016) CMA 22 1 (4.55) 1 (4.55)

Maya et al. (2020) CMA 568 8 (1.41) 1 (0.18) 7 (1.23)

Cai et al. (2018) Karyotype, CMA 79 2 (2.53) 1 (1.27) 1 (1.27)

Svirsky et al. (2019) Karyotype, CMA 30 2 (6.67) 1 (3.33) 1 (3.33)

Vedel et al. (2021) Karyotype, CMA 76 1 (1.32) 0 (0.00) 1 (1.32)

Bahtiyar et al. (2008) Karyotype 16 1 (6.25) 1 (6.25)

Shen et al. (2014) Karyotype 92 1 (1.09) 1 (1.09)

Wang et al. (2023c) QF-PCR, CMA, ES 133 7 (5.26) 2 (1.50) 4 (3.01) 1 (8.33, in
12 cases)

Erol et al. (2014) Karyotype 18 0 (0.00) 0 (0.00)

Gordin Kopylov et al.
(2022)

CMA 30 0 (0.00) 0 (0.00)

Raucher Sternfeld et al.
(2022)

Karyotype, CMA 23 0 (0.00) 0 (0.00) 0 (0.00)

Cheng et al. (2022) QF-PCR,
karyotype, CMA

170 9 (5.29) 2 (1.18) 7 (4.12)

Qiao et al. (2021) CMA, ES 102 23 (22.55) 10 (9.80) 7 (6.86) 6 (5.88)

Gómez et al. (2014) Karyotype, FISH 248 3 (1.21) 3 (1.21)

Mosimann et al. (2014) Karyotype 33 0 (0.00) 0 (0.00)

Gedikbaşı et al. (2010) Karyotype 18 1 (5.56) 1 (5.56)

Cho et al. (2017) Karyotype 37 4 (10.81) 4 (10.81)

Chau et al. (2018) Karyotype 129 9 (6.98) 9 (6.98)

Li et al. (2016) Karyotype 80 9 (11.25) 9 (11.25)

Paladini et al. (2000) Karyotype 45 12 (26.67) 12 (26.67)

Axt-Fliedner et al.
(2006)

Karyotype 76 25 (32.89) 25 (32.89)

Selhorst et al. (2024) Karyotype, CMA 43 14 (32.56) 9 (20.93) 3 (6.98)

Lu et al. (2024) Karyotype, CMA 219 14 (6.39) 5 (2.28) 9 (4.11)

Zhao et al. (2024) Karyotype,
CNV-seq

45 0 (0.00) 0 (0.00) 0 (0.00)

CMA, chromosomal microarray analysis; CNV, copy number variant; ES, exome sequencing; FISH, fluorescence in situ hybridization; QF-PCR, quantitative fluorescence polymerase chain

reaction; SV, sequence variant.
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Another study in East Asian population reported deleterious
derivative chromosomes but no aneuploid in 4 fetuses (Cho
et al., 2017). However, in these studies, the presence of
extracardiac abnormalities has raised doubts about the
association between chromosomal aberration and isolated VSD.

Some researchers concerned about the risk of fetal genetic
abnormalities increased by isolated VSD itself and excluded VSD
with extracardiac abnormalities from the prenatal cohort. During
this period, sequential prenatal diagnostic method of cytogenetics
and molecular genetics was widely adopted. Some authors believe
that ultrasound soft markers woud not influence the postnatal
cardiac management of VSD. Cheng et al. analyzed 170 invasive
samples combining quantitative fluorescent polymerase chain
reaction (QF-PCR), karyotyping analysis and CMA. Two
aneuploids and seven copy number variations (CNVs) were
identified, with detection rate of 1.18% for chromosomal
aberration and 4.12% for CNV(Cheng et al., 2022). Interestingly,
all of the positive variants were found in perimembranous VSD
(Supplementary Table S1) (Cheng et al., 2022). Another large-scale
study by Gómez et al. perfomed karyotyping and fluorescence in situ
hybridization (FISH) in 119 amniotic fluid samples and clinically
assessed karyotype postnatally in 129 cases, and obtained a total
diagnostic yield of 3.13% in perimembranous VSD and 0.93% in
muscular VSD. Gómez et al. concluded that perimembranous VSD
was associated with a higher risk of chromosomal anomalies than
muscular VSD and muscular VSD had a similar risk to those of
normal pregnancies (Gómez et al., 2014). Qiao et al. also reported a
total 16.66% detection rate of 17 aneuploides and CNVs in
102 isolated VSDs by CMA (Qiao et al., 2021).

Other researchers set rigorous inclusion criteria. In the cohort
studies of isolated VSD without cardiac, extracardiac abnormalities
or ultrasound soft markers, Fu et al. and Du et al. reported CMA
diagnostic rates of 5.48% and 4.55% on the basis of normal
karyotype, respectively (Du et al., 2016; Fu et al., 2017). These
results also demonstrated the value of CMA in the prenatal diagnosis
of isolated VSD (Du et al., 2016; Fu et al., 2017). However, such
conclusion was questioned by Maya et al. (2020). In Israel, routinely
reported CMA analysis supported by the Ministry of Health is
performed for sonographic defect, allowing for a comparison among
additional risk factors. In a cohort of 691 cases, 8 abnormal CMA
results were found in 568 isolated VSD (1.4%), compared with 1 in
20 (5%) VSD with soft markers, 15 in 82 (18.3%) VSD with
additional major anomalies and 2 in 21 (9.5%) VSD with growth
or amniotic fluid index anomalies. Maya et al. suggested that the rate
of abnormal CMA findings in isolated VSD was not different from
pregnancies with normal ultrasound (Maya et al., 2020).

4.2 Sequence variant in isolated VSD

Chinese researchers have also made some attempts on the prenatal
application of ES in isolated VSD.Qiao et al. conducted ES over CMA for
fetuses with isolated VSD, resulted in an additional 5.6% diagnostic yield
of sequence variant (SV). Among the 6 cases with SVs, 3 fetuses without
additional abnormalities were detected to have genetic syndromes (Qiao
et al., 2021). Wang et al. reported a likely pathogenic variation from
12 isolated VSD samples detected by ES (Wang et al., 2023c).

5 Prenatal genetic testing

5.1 Karyotyping analysis

In the overall prenatal diagnostic environment, karyotype
analysis with high cost-effective ratio is often the first-line and
irreplaceable choice for detection. For fetuses with VSD
accompanied by other structural abnormalities, karyotype
analysis is an appropriate option. For other clinical situations,
it seems that additional indicators should be more considered in
the risk assessment of chromosome abnormality, since isolated
VSD itself does not increase or only slightly increases the risk of
aneuploid. As a minor form of CHD, isolated VSD appears to be
more associated with small genomic deletion and insertion, and
monogenic disorders that have a insidious onset and non-fatal
phenotype. However, A phenotypic shift has been reported in
infants birth with Down syndrome from complex CHD to
isolated VSD or ASD in recent years (Bergström et al., 2016).
Chau et al. reported a trisomy 18 in isolated VSD fetus without
any extracardiac defect or complications, diagnosed in the
gestational age of 17+5 weeks (Chau et al., 2018). With the
development of maternal-fetal medicine and improvement of
prenatal care, it is possible that fetal phenotypes in the future may
tend to be milder, and in this case, the proportion of
chromosomal abnormalities may increase accordingly.

5.2 Chromosomal microarray analysis

CMA has been already confirmed as valuable tool and
recommended to be used as the first-line genetic diagnostic
testing for investigating the causes of fetal CHD (Thienpont
et al., 2007; Southard et al., 2012; Mastromoro et al., 2022).
Although authors disputed about the application of CMA in
isolated VSD, CMA seems to be more efficient than karyotyping.
Compared with karyotype analysis, CMA has high resolution and
short turnaround, and was capable of identifying both chromosomal
aneuploids and CNVs prenatally (Sukenik-Halevy et al., 2016; Zhu
et al., 2016).

The deletion of 22q11.2 was the most common CNV
identified in isolated VSD, while other CNVs occur in a
sporadic form, such as 1q21.1 duplication and
16p11.2 duplication (Supplementary Table S2). With the
features of reduced penetrance and pleiotropic effects, these
CNVs in the genomic hotspots were reported to be enriched
in CHD cohorts and affect dosage-sensitive genes that were
required for cardiac development (Ehrlich and Prakash, 2022).
Cheng et al. recommended CMA for fetal isolated VSD especially
perimembranous subtype (Cheng et al., 2022). Besides, CMA also
have clinical efficacy in exploring the etiology and pathogenesis
of isolated VSD. Fu et al. identified potential candidate genes of
VSD including FAT1 and ULK1 through prenatal testing by CMA
(Fu et al., 2017). In some centers, array analysis has become a
standard procedure for prenatal genetic analysis, and it is
commonly preceded by rapid aneuploidy detection to exclude
common aneuploidies, which can be an effective alternative to
cytogenetics.
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TABLE 3 Summary of genes involved in fetal isolated VSD.

Gene MIM
number

Location Phenotype Inheritance Protain Function

GATA4 600,576 8p23.1 - Ventricular septal defect 1 AD Gata-binding protein 4 One of the earliest transcription
factors expressed in cardiac precursor
cells; initiated ectopic cardiac gene
expression(Välimäki et al., 2017)

- Atrial septal defect 2 AD

- Atrioventricular septal defect 4 AD

- Tetralogy of Fallot AD

- ?Testicular anomalies with or
without congenital heart disease

AD

CITED2 602,937 6q24.1 - Ventricular septal defect 2 AD Cbp/P300 interacting
transactivator with Glu/Asp

rich carboxy-terminal
domain 2

A cAMP-responsive element-binding
protein (CBP)/p300-transactivator,
function as an important
transcriptional modulator(Su et al.,
2016)

- Atrial septal defect 8 AD

NKX2.5 600,584 5q35.1 - Ventricular septal defect 3 AD NK2 homebox 5 The earliest transcription factor
expressed in all vertebrate
cardiogenesis; involved in the whole
process of heart development
including cardiac precursor cell
differentiation, cardiac cyclization,
atrial compartmentalization,
atrioventricular outflow tract and
conduction system formation(Wang
et al., 2020a)

- Atrial septal defect 7, with or
without AV conduction defects

AD

- Conotruncal heart
malformations, variable

- Hypoplastic left heart
syndrome 2

AD

- Hypothyroidism, congenital
nongoitrous, 5

AD

- Tetralogy of Fallot AD

TBX20 606,061 7p14.2 - Atrial septal defect 4 T-box transcription factor 20 A transcriptional activator and
repressor required for cardiac
development(Perrot and
Rickert-Sperling, 2024)

TBX5 601,620 12q24.21 - Holt-Oram syndrome AD T-box transcription factor 5 Participate in the differentiation of
myocardial cells and atrioventricular
cavities in the early stage of cardiac
development; participate in the
development of conduction system;
maintain the function of mature
myocardial cells in the later
stage(Smemo et al., 2012)

CHD7 608,892 8q12.2 - CHARGE syndrome AD Chromodomain helicase
DNA-binding protein 7

An ATP-dependent chromatin
modifier; expression in the
pharyngeal surface ectoderm and
participate in formation of the great
vessels; required for atrioventricular
cushion development and septation
of the outflow tract in the cardiogenic
mesoderm; may act in concert with
transcription factors such as
TBX1 and SMADs to regulate genes
such as p53 and the cardiac
transcription factor NKX2.5(Meisner
and Martin, 2020)

- Hypogonadotropic
hypogonadism 5 with or
without anosmia

AD

PTPN11 176,876 12q24.13 - Noonan syndrome 1 AD Tyrosine-protein phosphatase
non-receptor type 11

Acts downstream of various receptor
and cytoplasmic protein tyrosine
kinases to participate in the signal
transduction from the cell surface to
the nucleus(Pannone et al., 2017)

- LEOPARD syndrome 1 AD

- Leukemia, juvenile
myelomonocytic, somatic

- Metachondromatosis AD

(Continued on following page)
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5.3 Exome sequencing

In recent years, ES has becoming a robust tool for prenatal
diagnositic applications of CHD (Jin et al., 2017; Lord et al., 2019;
Petrovski et al., 2019). Monogenic defects are known causitive
factors for isolated VSD in the young (Pierpont et al., 2007).
Pedigree studies have identified critical genes encoding important
constituents of signaling pathways involved in controlling heart
development. For these reasons, ES was also utilized in isolated VSD
prenatally. In the two existing studies, desirable diagnostic
increments were obtained by the application of ES (Qiao et al.,
2021; Wang et al., 2023c). In addition, deleterious SVs in isolated

VSD fetuses have been described in several CHD cohort studies (Fu
et al., 2018; Li et al., 2020; Yi et al., 2023).

The interactions of multiple cardiac genes and their activation
by up stream inductive signals maintain the cardiac phenotype
(Chaithra et al., 2022). To date, researchers have mapped three
gene loci (GATA4, OMIM#600576; CITED2, OMIM#602937;
NKX2.5, OMIM#600584) related to the phenotype of VSD using
sequencing technology (Table 3) (Sperling et al., 2005; Zhang et al.,
2008; Peng et al., 2010). These gene variants lead to varying degrees
of familial VSD with or without other cardiac abnormalities, such as
ASD and pulmonary hypertension (Sperling et al., 2005; Chen et al.,
2010; Wang et al., 2011a; Wang et al., 2011b; Yang et al., 2012). In

TABLE 3 (Continued) Summary of genes involved in fetal isolated VSD.

Gene MIM
number

Location Phenotype Inheritance Protain Function

ANKRD11 611,192 16q24.3 - KBG syndrom AD Ankyrin repeat domain-
containing protein 11

A crucial chromatin co-regulator;
control histone acetylation and gene
expression by recruiting chromatin
remodelers upon interaction with
specific transcriptional repressors or
activators(Gallagher et al., 2015)

SON 182,465 21q22.11 - ZTTK syndrome AD SON DNA-binding protein RNA-binding protein; act as a mRNA
splicing cofactor by promoting
efficient splicing of transcripts that
possess weak splice sites(Kim et al.,
2016)

SOS1 182,530 2p22.1 - Noonan syndrome 4 AD Son of sevenless homolog 1 A RAS-specific guanine nucleotide
exchange factor; catalyzes the
activation of the RAS-MAPK
pathway(Baban et al., 2019)

- ?Fibromatosis, gingival, 1 AD

KMT2D 602,113 12q13.12 - Kabuki syndrome 1 AD Histone-lysine
N-methyltransferase 2D

H3K4me1 methyltransferase; critical
for enhancer activation, cell
differentiation and development(Xie
et al., 2023)

- Branchial arch abnormalities,
choanal atresia, athelia, hearing
loss, and hypothyroidism
syndrome

AD

KRAS 190,070 12p12.1 - Noonan syndrome 3 AD KRAS Protooncogene GTPase Ras proteins bind GDP/GTP and
possess intrinsic GTPase
activity(Gremer et al., 2011); Play an
important role in the regulation of
cell proliferation(Zimmermann et al.,
2013)

- Cardiofaciocutaneous
syndrome 2

AD

- RAS-associated autoimmune
leukoproliferative disorder

AD

- Arteriovenous malformation
of the brain, somatic

- Bladder cancer, somatic

- Breast cancer, somatic

- Gastric cancer, somatic

- Leukemia, acute myeloid,
somatic

- Lung cancer, somatic

- Oculoectodermal syndrome,
somatic

- Pancreatic carcinoma, somatic

- Schimmelpenning-Feuerstein-
Mims syndrome, somatic
mosaic
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addition, several genetic syndromes with varying severity and
phenotypic heterogeneity, including Noonan syndrome, Kabuki
syndrome, CHARGE syndrome and Holt-Oram syndrome, have
been reported in fetal isolated VSD (Fu et al., 2018; Li et al., 2020;
Qiao et al., 2021; Wang et al., 2023c; Yi et al., 2023). Due to the
unintuitive physical characteristics of prenatal ultrasound and late
onset phenotype of some syndromes, especially those with
neurodevelpmental and psychiatric characteristics, isolated
symptoms may be the only indication for those fetuses (Kabra
and Gulati, 2003; Wang et al., 2020b).

As concluded by Wang et al., ES can be reccommended for
fetuses with VSD without chromosome abnormalities and
pathogenic CNV (Wang et al., 2023c). Objectively, ES may have
the potential to replace CMA and as a first-line diagnostic tool.
Methods for calling CNV from ES data have been widely developed
and in the process of clinical optimization, which expand the clinical
practice by ES (D’Aurizio et al., 2016; Zhao et al., 2020b; Testard
et al., 2022; Babadi et al., 2023). As the decline in costs and
accumulation of data, it was undisputed that ES would be
applied extensively in fetal isolated VSD in the following years.

5.4 Prenatal genetic screening

Lee et al. have attempted to investigate the impact of abnormal
maternal serum screening on the detection rate of chromosomal
abnormalities in isolated VSD (Lee et al., 2016). Among the two

isolated VSD with trisomy 21, one has a high risk of serum screening
and the other has not reveived the test (Lee et al., 2016). A few
studies have also involved the contribution of non-invasive prenatal
testing (NIPT) in prenatal finding of isolated VSD. In a single-center
cohort study, 9 cases with high risk of chromosomal abnormalities
were identified byNIPT from a total of 125 fetuses with isolated VSD
(Selhorst et al., 2024). Despite the lack of detailed corresponding
genetic results, their results indicated the NIPT has promoted the
early prevention of chromosome-related VSD (Selhorst et al., 2024).
Zhao et al. discussed that fetuses with isolated VSD and low-risk of
NIPT might not need invasive prenatal diagnosis because no genetic
variant was found in 45 NIPT low-risk isolated VSD fetuses by
karyotype and CNV-seq in their study (Zhao et al., 2024). However,
a case of neonatal death due to metabolic disease has not been
reasonably explained which might mean the potential missed
diagnosis of monogenic disease. The exploration of NIPT for
monogenic diseases is under way. Due to the variable severity
and phenotypic heterogeneity, it is possible to discuss in the
future whether VSD-related genes can be included in the NIPT
for monogenic diseases.

6 Spontaneously closure, pregnancy
outcome and long-term follow-up

Most of the isolated VSDs detected by fetal ultrasound could
close spontaneously during pregnancy and infancy (Table 4). Size,

TABLE 4 Rate of spontaneous closure of the isolated VSD.

References Latest
follow-
up age

Number of
follow-up

Intrauterine
closure n(%)

Closure before age
of 12 months n(%)

Total
closure
n(%)

No closure,
surgery or
death n(%)

Vedel et al. (2021) Birth 153 71 (46.41) 71 (46.41) 82 (53.59)

Lee et al. (2016) Birth 112 73 (65.18) 73 (65.18) 39 (34.82)

Fu et al. (2017) 12 months 69 42 (60.87) 42 (60.87) 27 (39.13)

Svirsky et al. (2019) 3–48 months 26 13 (50.00) 21 (80.77) 5 (19.23)

Erol et al. (2014) 12 months 45 3 (6.67) 33 (73.33) 33 (73.33) 12 (26.67)

Gordin Kopylov et al.
(2022)

12 months 56 25 (44.64) 42 (75.00) 42 (75.00) 14 (25.00)

Gómez et al. (2014) 12 months 213 13 (6.10) 164 (77.00) 164 (77.00) 49 (23.00)

Raucher Sternfeld
et al. (2022)

24 months 75 34 (45.33) 58 (77.33) 64 (85.33) 11 (14.67)

Cheng et al. (2022) 24 months 168 48 (28.57) 79 (47.02) 101 (60.12) 67 (39.88)

Chau et al. (2018) Birth 129 120 (93.02) 120 (93.02) 9 (6.98)

Paladini et al. (2000) 12 months 68 13 (19.12) 19 (27.94) 19 (27.94) 49 (72.06)

Axt-Fliedner et al.
(2006)

12 months 139 37 (26.62) 87 (62.59) 87 (62.59) 52 (37.41)

Cho et al. (2017) 3 days to
60 months

149 64 (42.95) 99 (66.44) 50 (33.56)

Li et al. (2016) NS 257 49 (19.07) 110 (42.80) 147 (57.20)

Zhao et al. (2024) At least 6 months 37 7 (18.92) 7 (18.92) 30 (81.08)

NS, not stated.
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site and maternal age are prognostic factors for the natural closure of
the defect (Paladini et al., 2000; Cho et al., 2017; Cheng et al., 2022;
Gordin Kopylov et al., 2022). The spontaneous closure mechanisms
of muscular and perimembranous isolated VSD were different and
have been well elaborated, as reviewed by Miyake (Miyake, 2020).
For fetuses, authors regard muscular isolated VSD as benign finding,
while perimembranous VSD tends to have larger size, lower closure
rates, and more likely require treatment by medications, special care
or surgery to thrive (Gómez et al., 2014; Li et al., 2016; Cho et al.,
2017; Svirsky et al., 2019; Cheng et al., 2022; Raucher Sternfeld et al.,
2022; Zhao et al., 2024). Li et al. also found a higher spontaneous
closure rate in male than female (Li et al., 2016).

Remarkably, as evidenced by the findings of Selhorst et al.,
genetic variations manifested with a heightened prevalence in
infants whose VSD underwent spontaneous closure in utero,
compared to infants who exhibited persistent VSD (Selhorst
et al., 2024). Genetic abnormalities and extracardiac
abnormalities are the main reasons for termination of pregnancy
(TOP) and adverse pregnancy outcomes (Table 5). Most of the other
isolated VSD fetuses have a positive pregnancy outcome and no
need for surgery. A few referral to pediatric surgical department
usually have low operative mortality and good prognosis when
treated in a timely manner (Nurmi et al., 2022). However, it has
also been reported that unrepaired and surgically closed isolated
VSD affected the long-term survival of patients and was prone to late
complications (Eckerström et al., 2023). The recent advances in
minimally invasive treatment options including periventricular
approach and transcatheter techniques have improved patient
outcomes, yet at the expense of higher residual rates (Adan et al.,
2021). Right ventricular function and exercise capacity were found

impaired in VSD patients, and post-surgical outcome in these
patients may be less benign than presently assumed (Nederend
et al., 2018; Eckerström et al., 2020; Adan et al., 2021).

Several individuals with isolated VSD have developed extra
abnormalities during late pregnancy to infancy, such as
esophageal atresia, coarctation of the aorta and pulmonary
stenosis, which suggested that clinicians should monitor the
associated abnormalities in the subsequent period (Bensemlali
et al., 2017; Fu et al., 2017; Cheng et al., 2022; Raucher Sternfeld
et al., 2022). A specific link between VSD and central nervous system
anomalies has been described by Huang et al., but the detailed
mechanisms underlying the breadth of co-occurring anomalies have
yet to be delineated (Huang et al., 2023). Due to the limitation of
follow-up time and retrospective study exclusion criteria, the results
of this aspect have not been well-described in the prenatal cohort.
Noncardiac anomalies are crucial for perioperative management
and etiology study, and can also increase the risk of postoperative
complications, such as respiratory complications with heterotaxy
(Swisher et al., 2011; Harden et al., 2014). The complete record
including mild and late-onset phenotypes, especially
neuropsychiatric symptoms by long-term follow-up, was
important for the forward evaluation of prognosis.

7 Prenatal counseling

The term “isolated VSD” was originally defined anatomically
limited to the heart, referring to VSD without other cardiac defect
(e.g. ASD) or as part of complex CHD (e.g. tetralogy of Fallot).
However, in the prenatal setting, clinicians need to comprehensively

TABLE 5 Outcome of fetuses with isolated VSD.

References Number of
follow-up

TOP n(%) IUD n(%) NND n(%) ID n(%) Survived n(%) Surgery n(%)

Svirsky et al. (2019) 26 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 26 (100.00) 0 (0.00)

Cai et al. (2018) 79 2 (2.53) NS NS NS NS NS

Fu et al. (2017) 69 4 (5.80) 0 (0.00) 0 (0.00) 0 (0.00) 65 (94.20) 11 (15.94)

Vedel et al. (2021) 153 4 (2.61) NS NS NS NS

Shen et al. (2014) 92 0 (0.00) 0 (0.00) 0 (0.00) NS 92 (100.00) NS

Gordin Kopylov et al. (2022) 56 0 (0.00) 0 (0.00) 1 (1.79) 0 (0.00) 55 (98.21) 3 (5.36)

Erol et al. (2014) 45 0 (0.00) 0 (0.00) 0 (0.00) 1 (2.22) 44 (97.78) NS

Raucher Sternfeld et al. (2022) 75 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 75 (100.00) 3 (4.00)

Cheng et al. (2022) 168 7 (4.17) 0 (0.00) 0 (0.00) 0 (0.00) 161 (95.83) 33 (19.64)

Gómez et al. (2014) 213 1 (0.47) 0 (0.00) 0 (0.00) 1 (0.47) 211 (99.06) 7 (3.29)

Gedikbaşı et al. (2010) 18 1 (5.56) 1 (5.56) 0 (0.00) 0 (0.00) 16 (88.89) NS

Cho et al. (2017) 149 1 (0.67) 2 (1.34) 0 (0.00) NS 146 (97.99) 4 (2.68)

Li et al. (2016) 257 44 (17.12) 0 (0.00) 8 (3.11) 205 (79.77) 19 (7.39)

Paladini et al. (2000) 68 28 (41.18) 2 (2.94) 12 (17.65) 0 (0.00) 26 (38.24) NS

Axt-Fliedner et al. (2006) 139 23 (16.55) 0 (0.00) 1 (0.72) 0 (0.00) 113 (81.29) NS

Zhao et al. (2024) 45 0 (0.00) 0 (0.00) 1 (2.22) 0 (0.00) 44 (97.78) 7 (15.56)

ID, infant death; IUD, intrauterine death; NND, neonatal death; NS, not stated; TOP, termination of pregnancy.
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evaluate the fetal prognosis based on the overall pregnancy to assess
the risk. The risk brought by each indicator and the combined risk of
multiple indicators should be deeply concerned.

The associated genetic abnormalities strongly influences the
parent’s decision to choose postnatal compassionate care or TOP.
CNV and SV with phenotypic heterogeneity and incomplete
penetrance were more likely to cause fetal isolated VSD than
chromosomal aberration. Clinicians should be aware of the benefits
and implications of the responsible use of genomics. At the same time,
issues raised by the prenatal detection of possible complex disorders
from mild phenotypes should be taken into account:

- Balance of information disclosure. Clinicians should provide
sufficient information to help parents understand the risk of
disease, while ensuring that they do not unduly worry them,
that is, balancing the completeness of the information with the
parents’ ability to cope.

- Variants of unknown significance (VOUS). Clinicians should
fully communicate with the parents to ensure that they
understand the significance and limitations of the test
results, while avoiding over-interpretation or misleading. It
is necessary to set appropriate informed consent before testing.
Researches are sometimes needed to verify the clinical
significance, and it must follow the principles of medical
ethics, ensuring it conforms to ethical standard and the
informed consent from parents is obtained.

- Parental decision-making pressure. Clinicians should ensure
that parents fully understand the genetic nature and associated
risks of isolated VSD, so that they can make informed
decisions. However, this may also place excessive decision-
making pressure on parents, making it difficult to make
a choice.

- Rights of the fetus. When considering the wishes and needs of
the parents, it is also necessary to fully protect the rights of the
fetuses, including their right to health and future autonomous
decision-making.

- Overdiagnosis and overintervention. In some cases, parents
may request excessive diagnosis or intervention, which may
pose unnecessary risks to the fetus. Clinicians should carefully
assess these risks and ensure that parents’ decisions are based
on sufficient medical evidence.

- Resource allocation. As genetic counseling and testing may
require significant medical resources and funding, clinicians
need to ensure that these resources are allocated fairly and
reasonably, so that all those need it can receive
necessary services.

- Legal and ethical framework. Clinicians should understand
and comply with relevant laws and ethical frameworks to
ensure that their actions meet legal requirements and
ethical standards. This includes respecting the rights of
parents, protecting the rights of the fetus, and ensuring the
confidentiality of information.

8 Future prospective

Advances in genomic technology reshape the practice of
prenatal counseling in isolated VSD. Precision genome-wide

detection will play a role in prenatal diagnosis, and further reveal
the genetic mechanism of isolated VSD in the future. Seeking
biomarkers for the prediction of fetal VSD is another research
orientation in the assessment of health and disease. VSD-ralated
specific IncRNAs and microRNAs have been authenticated in
maternal serum and expected to serve as prenatal VSD diagnostic
markers (Jin et al., 2021; Yang et al., 2022; Wang et al., 2023a; Wang
et al., 2023b). Another differentially expressed protein CFHR4 was
also identified as a promising biomarker (He et al., 2022). More
omics analysis are expected to accurately predict the risk of VSD in
fetuses, and thus providing basis for early intervention
and treatment.
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