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Background: Renal cell carcinoma (RCC) is the most prevalent type of malignant
kidney tumor in adults, with clear cell renal cell carcinoma (ccRCC) comprising
about 75% of all cases. The SETD2 gene, which is involved in the modification of
histone proteins, is often found to have alterations in ccRCC. Yet, our
understanding of how these SETD2 mutations affect ccRCC characteristics
and behavior within the tumor microenvironment is still not fully understood.

Methods: We conducted a detailed analysis of single-cell RNA sequencing
(scRNA-seq) data from ccRCC. First, the data was preprocessed using the
Python package, “scanpy.” High variability genes were pinpointed through
Pearson’s correlation coefficient. Dimensionality reduction and clustering
identification were performed using Principal Component Analysis (PCA) and
the Leiden algorithm. Malignant cell identification was conducted with the
“InferCNV” R package, while cell trajectories and intercellular communication
were depicted using the Python packages “VIA” and “cellphoneDB.” We then
employed the R package “Deseq2” to determine differentially expressed genes
(DEGs) between groups. Using high-dimensional weighted gene correlation
network analysis (hdWGCNA), co-expression modules were identified. We
intersected these modules with DEGs to establish prognostic models through
univariate Cox and the least absolute shrinkage and selection operator
(LASSO) method.

Results:We identified 69 and 53 distinctive cell clusters, respectively. These were
classified further into 12 unique cell types. This analysis highlighted the presence
of an abnormal tumor sub-cluster (MT+ group), identified by highmitochondrial-
encoded protein gene expression and an indication of unfavorable prognosis.
Investigation of cellular interactions spotlighted significant interactions between
the MT + group and endothelial cells, macrophaes. In addition, we developed a
prognostic model based on six characteristic genes. Notably, risk scores derived
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from these genes correlated significantly with various clinical features. Finally, a
nomogrammodel was established to facilitate more accurate outcome prediction,
incorporating four independent risk factors.

Conclusion:Our findings provide insight into the crucial transcriptomic characteristics
of ccRCC associated with SETD2 mutation. We discovered that this mutation-induced
subcluster could stimulate M2 polarization in macrophages, suggesting a heightened
propensity formetastasis. Moreover, our prognostic model demonstrated effectiveness
in forecasting overall survival for ccRCCpatients, thus presenting a valuable clinical tool.
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1 Introduction

Renal cell carcinoma (RCC), which primarily originates from
renal tubule epithelial cells, is the most common form of malignant
kidney tumor among adults (Hsieh et al., 2017). Specifically, clear
cell renal cell carcinoma (ccRCC), represents about 75% of all RCC
cases (Siegel et al., 2020). While surgical interventions offer limited
improvement to overall patient survival, the prognosis remains dire
due to the disease’s few early symptoms, the varied efficacy of
targeted treatment options, and the current lack of relevant
biomarkers (van der Mijn et al., 2014; Sánchez-Gastaldo et al.,
2017; Siegel et al., 2020). Considering these factors, it is crucial to
investigate the key factors and possible mechanisms leading to
metastasis in ccRCC progression.

The defining molecular characteristic of ccRCC involves the
dysfunction of the von Hippel-Lindau (VHL) tumor suppressor via
several processes (Barata and Rini, 2017). Essentially, VHL acts as a
regulator of the cell’s response to oxygen availability by interacting
with hypoxia-inducible factor-1 (HIF-1) (Wiesener et al., 2001).
However, VHL’s dysfunction in ccRCC results in an excess of HIF-1,
which in turn activates genes connected to tumor metabolism and
angiogenesis (Barata and Rini, 2017). Yet, experiments have shown
that VHL deficiencies alone do not cause tumors in mice, suggesting
that other factors play a role in ccRCC’s initiation and progression
(Haase et al., 2001).

We note frequent mutations in several other genes in close
genomic proximity to VHL, including PBRM1, SETD2, BAP1, and
KDM5C (Cotta et al., 2023). The SETD2 gene, inactivated in 8%–30%
of ccRCC cases, alters the transcription, DNA damage repair, and
selective splicing through its regulation of H3K36 trimethylation
(H3K36me3) (Mano et al., 2021; Walton et al., 2023). Its mutation
in ccRCC results in increased genome chromatin accessibility and the
potential for cancerous transcription (Ho et al., 2016; Xie et al., 2022).
However, despite this understanding, SETD2-mutated ccRCC’s
behavior in the actual tumor environment remains unclear.

Our study will employ single-cell RNA sequencing (scRNA-seq)
data to examine primary ccRCC samples retrieved from clinical
contexts. Our objective is to identify a particular subtype of ccRCC
found to highly express mitochondrial-encoded protein genes.
Subsequently, we aim to verify their origin from SETD2-mutated
ccRCC. In addition, we will delve into their transcriptomic
expression patterns and understand their biological characteristics
within the tumor microenvironment. The ultimate goal of our
research is to develop a prognostic model based on the identified
subtype, which can then be used in clinical prognoses.

2 Materials and methods

2.1 Pre-treatment of samples

scRNA-seq data labeled GSE178481 was gathered from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). This includes primary ccRCC and corresponding
peritumoral tissue data from nine patients. The TCGA-KIRC
cohort was sourced from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). After removal of
samples with incomplete datasets, 532 KIRC patients remained in
our study scope. The E-MTAB-1980 cohort gene expression profiles
and clinical information were collected from ArrayExpress (https://
www.ebi.ac.uk/biostudies/arrayexpress). The same was fetched for
the RECA-EU cohort from the ICGC website (https://dcc.icgc.org/).
The E-MTAB-1980 and the RECA-EU cohorts were used to validate
the prognostic model’s feasibility.

GSE178481 samples were processed using the Python package
“Scanpy” (Wolf et al., 2018). All samples were compartmentalized
into “Tumor” and “Adjacent Tissue” groups, with filters applied to
exclude cells exceeding 10% mitochondrial gene ratio, under
500 Unique Molecular Identifiers (UMIs), and with less than
250 detected gene types. The “Scrublet” Python package was used
for double-cell recognition (Wolock et al., 2019). After
normalization and filtering for highly variable genes, Principal
Component Analysis (PCA) was undertaken using the top
50 PCs for the proceeding analysis, also addressing batch effect
correction using Harmony (Korsunsky et al., 2019). The KNN
neighborhood graph was constructed, followed by application of
the Leiden algorithm for cluster computation, set at a resolution =
0.5. Marker genes for different clusters were identified from prior
studies (Alchahin et al., 2022) with the assistance of the automatic
annotation tool “MetaTiME” (Zhang et al., 2023).

2.2 Identification of malignant cells

We utilized large-scale chromosomal copy number variations
(CNVs) to further pinpoint malignant cells. This was implemented
using the R package, “inferCNV” (Puram et al., 2017), which offers
a comparison between the expression spectrum across
chromosomal intervals and a healthy reference. For this study,
cells from normal kidney peritumoral tissues served as the normal”
cell reference in deducing CNVs in suspected tumor cells. To
minimize bias from specific samples, cells from the normal renal
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portions of multiple patients were included in the reference control
group. The results from observing the CNV spectrums of tumor
cells facilitated the determination of malignant cells based on their
CNV scores.

2.3 Cell trajectory analysis

The Python package “VIA” helped us capture the evolving state
and hierarchical differentiation structure of tumor cells (Stassen
et al., 2021). We also explored relationships between various
subclusters. This exploration was achieved by building clustering
graphs, calculating likely progression paths (pseudo-time
probabilities), predicting terminal states automatically, and
reconstructing the lineage-based trajectory.

2.4 Cell communication analysis

By using the Python package “cellphoneDB” (Vento-Tormo
et al., 2018), we investigated the interaction between different cell
types and tumor subclusters. This process began by filtering out
ligands and receptors based on their expression in each cell type,
requiring that the gene be found in more than 10% of cells. We
then computed the averaged expression of ligand-receptor pairs
across various cell type pairs within the normalized ScRNA-seq
data. The average distribution of ligand-receptor pairs was
determined by randomly reshuffling cell identities in the
combined data and recalculating average pair expression within
1,000 random permutations of cell identity. The significance of our
observations was recorded in the numerical p-value, which equals
the number of random pairs exceeding the observed data. We
adjusted the p-value using the Benjamini-Hochberg method and
considered a value less than 0.05 as significant. To prioritize
functional ligand-receptor pairs, we assigned interaction scores.
This required that both ligands and receptors show high
expression in respective cell types. For comparison, we used
other cell types as references.

2.5 Identification of DEGs

We identified differentially expressed genes (DEGs) by utilizing
the R package “DESeq2”. This allowed us to discriminate between
the disease-infected and normal control sets within the TCGA-KIRC
cohort, as well as groups according to median risk scores. A |
Log2 Fold Change (Log2FC) |> 1 and p-value <0.05 indicated
TCGA-DEGs and RISK-DEGs. Also, using the Wilcox test, we
examined variations between cancer cells and correlated
peritumoral tissues from the GSE178481 database, identifying
significant differences as SC-DEGs.

2.6 Identification of Co-expression modules

We implemented high-dimensional weighted gene co-
expression network analysis (hdWGCNA) on scRNA-seq data
and used SC-DEGs genes to create a hdWGNCA object

(Morabito et al., 2023). This object was then transformed into a
metacells object for further study. Using a soft-thresholding power
of 5, we developed a co-expression network and identified crucial
module eigengenes (MEs) for further analysis.

2.7 Protein-protein interaction analysis

The PGC1α co-expression gene module was investigated for
potential protein-protein interactions using the STRING database.

2.8 Enrichment analysis

We utilized the R package “ClusterProfiler” for conducting Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses on RISK-DEGs and MEs (Yu et al., 2012). This
helped to identify the highest impact enrichment pathways and
biological processes linked to the DEGs. Finally, we employed the
“gsva” R package to score malignant cells concerning these identified
enrichment pathways and biological processes (Hänzelmann et al., 2013).

2.9 The construction and validation of the
prognostic model

We initially identified the overlap between module eigengenes
(MEs) and TCGA-DEGs, referring to these as candidate genes. In
the training set, these candidate genes underwent univariate Cox
proportional hazards regression analysis. This allowed us to isolate
genes demonstrating prognostically significant traits. From these, we
selected variables with a p-value less than 0.05 for inclusion into a
LASSO regression analysis, executed via the “glmnet” R package
(Friedman et al., 2010). The purpose of the LASSO analysis was to
significantly reduce the number of genes for ease of calculation.
Subsequently, we designed a prognostic model with the reduced
gene numbers using the formula: Risk Score = Gene one
expression × coef1 + Gene two expression × coef2 + . . . + Gene
n expression × coefn (In this formula, “expression” represents gene
expression level, and “coef” denotes coefficient of the corresponding
LASSO regression). This prognostic model was then evaluated for its
predictive accuracy using Receiver Operating Characteristic (ROC)
curves in predicting 1-year, 3-year, and 5-year overall survival rates
in KIRC patients (Hebert et al., 2003). For this, we used the
“survROC” package. The validity of the prognostic model was
then further tested using external validation sets from the
E-MTAB-1980 cohort and RECA-EU cohort.

2.10 Subclinical feature analysis

We categorized samples with various clinical pathologic
features into subtypes, including age (either >65 years
or ≤65 years), gender, pathologic M, pathologic T, pathologic
stage, and OS status. Each subtype was further divided into two
groups based on the median risk score: high-risk and low-risk. We
assessed the variance in clinical pathologic features between these
subgroups using the pairwise-Wilcoxon test or Wilcoxon rank-
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sum test. In order to gain a deeper understanding of the correlation
between clinical pathological features and survival rate, survival
analysis based on the same subclinical group was conducted for the
two risk groups.

2.11 Independent prognosis analysis

We employed the Univariate Cox regression model to assess the
accuracy of risk score evaluations and establish the influence of

FIGURE 1
scRNA-seq data processing and annotation. (A) Cluster plot of tumor tissues. (B) Cluster plot of matched peritumoral tissues. (C): Cell annotation of
tumor tissues. (D) Cell annotation of matched peritumoral tissues. (E, F) Bubble chart of marker genes in tumor tissues and matched peritumoral tissues.
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FIGURE 2
Excavation of malignant tumor cells. (A) Subcluster map of tumor epithelial cells. (B) cnv scores histogram of the subclusters of tumor epithelial cells
with matched peritumoral tissues. (C) Marker genes of tumor epithelial cell subclusters. (D) On the left is the combined cnv scores distribution map of
tumor tissue andmatched peritumoral tissue, and on the right is the combined annotationmap. (E)On the left is the cnv scores distributionmap of tumor
epithelial cell subclusters merged with matched peritumoral tissue, and on the right is the combined annotation map.
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various clinical characteristics on patients’ prognosis. The
Multivariate Cox regression model was used identifying
independent prognostic factors for ccRCC patients with
STED2 mutation. Utilizing these factors, we developed a
nomogram model using the “cph” operation in R software. This
model visually predicts the possible survival rates for patients at 1-
year, 3-year, and 5-year. To confirm the model’s effectiveness, we
relied on calibration curves and ROC curves to validate its precision
and reliability.

3 Result

3.1 Identification of single-cell data

Initially, as detailed in the methods, we obtained clinical data of
nine patients (Supplementary Table S1). A total of 114,053 and
32,016 cells were collected from tumor and peritumoral tissue
groupsrespectively underwent a quality check. Logarithmic
normalization was conducted, and the top 3,000 highly variable
genes were used for PCA dimension reduction (Supplementary
Figure S1A, B). Harmony was performed on the samples
(Supplementary Figures S1C, D), and visualization was done
using Uniform Manifold Approximation and Projection
(UMAP) (Supplementary Figures S1E, F). Following a
resolution of 0.5, they were divided into 69 and 53 cell clusters
respectively (Figures 1A, B). Reference literature was used to find
marker genes to manually annotate different cell clusters, with the
assistance of the Python package MetaTime (Supplementary
Figures S1G, H; Supplementary Table S2). Consequently, 12 cell
clusters were identified including endothelial cells, mast cells,
fibroblasts, pericytes, T cells, Natural Killer cells (NK), Natural
Killer T cells (NKT), B cells, monocytes, Dendritic cells (DCs),
macrophages, and epithelial cells (Figures 1C, D). Bubble charts
were utilized to illustrate the expression of crucial marker genes
across assorted cell types. (Figures 1E, F).

3.2 Identifying malignant cell clusters

In further identify the tumor, our initial step involved sub-
clustering the epithelial cell clusters of the tumor group into six
distinct clusters (Figure 2A). Notably, one subcluster (C3)
expressed NKT immune cell gene markers (Figure 2C) to a
high degree, leading us to exclude C3 from subsequent steps.
We then utilized infercnv to infer and score the chromosomal
copy number variation in the tumor group cells and tumor cell
subclusters, with peritumoral tissue serving as a reference
(Figures 2D, F). A key finding was that mutations in ccRCC
were primarily focused on the loss of chr3p and chr6, along with a
gain of 5q (Supplementary Figure S2), which is in alignment with
previous findings (Bi et al., 2021). We also observed the highest
CNV scores in epithelial cells, further affirming the identification
of the tumor tissues. Moreover, the CNV scores of the 5th
subclusters (C5) were significantly increased, indicating a
notable difference compared to the other subclusters and
reference cells (Figure 2B).

FIGURE 3
Exploring the features of the MT + group. (A, B) Distribution map
and pseudotime trajectory of tumor cell subclusters. (C) Expression of
mitochondrial-encoded protein genes in tumor cell subclusters
(D–K): Survival curves for high and low expression groups of
mitochondrial-encoded genes in the TCGA-KIRC cohort (532 cases).
(L–S): Differences in various biological processes between MT +
group, MT-group, and matched peritumoral tissue. (L): Oxidative
phosphorylation, (M): Glycolytic process, (N): Biosynthetic process of
fatty acids, (O): Beta oxidation of fatty acids, (P): Metabolic process of
fatty acids, (Q): Remodeling of blood vessels, (R): morphogenesis of
blood vessels, (S): blood vessels endothelial cell proliferation involved
in sprouting angiogenesis (BVECPISA). (T): Expression of
mitochondrial encoded protein genes and metastasis-associated
genes in MT + group and MT-group. (U): PGC1α gene co-expression
module, PRARGC1A is the PGC1α gene. (V): Expression of PGC1α gene
co-expression module in MT + group and MT-group.
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FIGURE 4
Intercellular communication. (A)Overall level of interaction among various types of cells in tumor tissue. (B) Interactions between MT + group, MT-
group, and macrophages. (C) Interactions between MT + group, MT-group, and endothelial cells.
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3.3 Tumor subcluster development
trajectory analysis and biological function
differences

To further characterize the cellular differentiation developmental
trajectory withintumor cell subclusters, the cell trajectory was inferred
by VIA. The results indicated two developmental directions within
tumour subclusters, initiating from C1 and progressing towards
C5 and C0 respectively (Figures 3A, B). Additionally, we observed
that the C5 subcluster exhibited higher expression of genes encoding
mitochondrial proteins compared to other subclusters (Figure 3C).
Owing to the unique biological characteristics of C5, we termed it as the
MT + group, while the other groups (C0, C1, C2, C4) were classified as
the MT-group. Of note, higher expression of MT genes in the TCGA-
KIRC cohort was significantly correlated with poor prognosis (Figures
3D–K). In terms of energy metabolism, we were astonished to discover
that the MT + group exhibited efficient oxidative phosphorylation,
higher when compared to theMT-group, whereas bothMT+ andMT-
groups had higher levels of glycolysis compared to the peritumoral
tissues (Figures 3L, D–K). Furthermore, theMT + group also exhibited
enhanced biological synthesis and β oxidation degradation processes of
fatty acids (Figures 3N–P). The MT + group exhibited a significant
improvement in angiogenesis (Figures 3Q–S). Importantly, the gene
set (SAA1, SAA2, APOL1, and MET) that characterizes metastatic
ccRCC from previous studies exhibited significant expression in the
MT + group (Alchahin et al., 2022) (Figure 3T). Past research has
illustrated that SETD2-mutated ccRCC demonstrates noticeably
heightened oxidative phosphorylation and glycolysis capabilities.
These characteristics align with the MT + group, and also the
features found within the PGC1α gene co-expression module
accord with the MT + group (Liu et al., 2019) (Figures 3U, V).
Therefore, it is plausible to infer that the MT + group may have its
origins in SETD2-mutated ccRCC. Collectively, we identified a
subcluster of cells with high expression of mitochondrial-encoded
protein genes that originate from SETD2-mutated ccRCC. The
subcluster exhibits unique energy metabolism attributes, as well as
high metastatic potential and poor survival prognosis.

3.4 Cell interaction analysis

Our analysis with cellphoneBD revealed noteworthy interactions
between the MT + group and other cells, including fibroblasts,
endothelial cells, macrophages, and DCs (Figure 4A). A closer look
at the interactions between the MT groups and macrophages showed
distinct patterns. The MT-group displayed interactions involving
crucial pairs such as CLU-TREM2, LGALS3-MERTK, PGF-NRP2,
and VEGFA-NRP2. However, the MT + group demonstrated
emergent interactions like TGFB1-TGFBR1, SLITRK4-OLR1,
SEMA3C-NRP2, and CD47-SIRPA, going beyond those observed
in the MT-group (Figure 4B). Investigating communication patterns
between the MT groups and endothelial cells revealed that the MT-
group primarily utilized VEGFA to interact with receptors like FLT1
(VEGFR-1), KDR (VEGFR-2), NRP1, andNRP2. However, the MT +
group not only used VEGFA but also secreted VEGFB to establish
contact with FLT1 and NRP1. Notably, a separate interaction
involving NTN4-UNC5B was identified in the MT + group
(Figure 4C). To conclude, the MT + group demonstrated a

dynamic plasticity of cellular communication. They retained and
expanded upon the existing modes of interaction seen in the MT-
group, thereby crafting unique interaction pathways.

3.5 Identification of MT + related co-
expression network

Epithelial cells from tumor samples and matched peritumoral
samples of GSE178481 identified 5,782 significant DEGs, referred to
as SC-DEGs (Figure 5A). Using hdWGCNA method, we identified
co-expression relationships among the distinct genes in SC-DEGs.
We ensured the scale-free topology characteristics of this co-
expression network to maintain network authenticity. Striving for
maximum interconnectivity among the genes in the network, we
opted for a soft power of 5. This approach established a model fitting
degree for our scale-free topology model over 0.8 (Figure 5B). Our
methodology led to the successful identification of eight unique gene
co-expression clusters (Figure 5C). The ten genes with the highest
correlation within each of these modules are listed (Figure 5D). One
pivotal observation to highlight is that the third gene cluster, known
as EP3, primarily displays enrichment in several biological
processes. These processes encompass the regulation of the
extracellular matrix and vascular formation, both intimately
linked to MT + characteristics (Figures 5E–H). For this reason,
we included the EP3 module in our further analysis.

3.6 Risk scores construction

Our analysis of differential gene expression used TCGA-KIRC
data to identify 5,810 significantly DEGs, which we have termed
TCGA-DEGs (Figure 6A). We then refined this list of TCGA-DEGs
by selecting those with |logFC2|≥1, and intersecting with
EP3 module genes, resulting in 190 candidate genes (Figure 6B).
Utilizing the TCGA-KIRC data as a training set, we applied
univariate Cox regression analysis to pinpoint 494 genes
significantly correlated with OS (Figure 6C). Upon further
examination in the univariate regression analysis, we selected
genes with a p-value less than 0.05 and subjected them to Lasso
regression. This resulted in six primary genes: FKBP10, LGALS1,
BID, FBXO21, TEK, ACHE. Their corresponding risk scores are:
0.0001016149* FKBP10 + 0.0000405782* LGALS1+ 0.0051667850*
BID -0.0012015705* FBXO21 -0.0044925698* TEK+ 0.0014603659*
ACHE (Figures 6D, E).We then charted the survival curve and time-
dependent ROC curve, demonstrating the appropriateness and
efficiency of these risk scores with notable predictive value within
the TCGA-KIRC cohort (Figures 6F, G). Additionally, our model’s
time-dependent ROC curve was applied to the E-MTAB-1980 and
RECA-EU cohorts, suggesting that these risk scores may be
generalized to other ccRCC populations (Figures 6H, I).

3.7 Analysis of prognostic model and
different clinical features

We analyzed the correlation between established risk scores and
various clinical features. To do this, we compared risk score

Frontiers in Genetics frontiersin.org08

Peng et al. 10.3389/fgene.2024.1447139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1447139


differences in patient groups differentiated by specific clinical
characteristics. Our data indicated that patients falling under the
M1, stages III-IV, and T3-T4 typically demonstrated higher risk

scores. However, the relationship between risk score alterations and
age or gender was less pronounced (Figures 7A–F). To build upon
this, we conducted stratified analysis using these clinical traits. The

FIGURE 5
Identifying the co-expression modules. (A) Volcano plot of differentially expressed genes in epithelial cells of tumor samples and matched
peritumoral samples. (B) Soft-power screening of hdWGCNA. (C) Hierarchical clustering tree of hdWGCNA. (D) eight modules from hdWGCNA
clustering, each displaying the top 10 genes. (E–H): GO and KEGG enrichment of the EP3 module.
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FIGURE 6
Risk scores construction. (A) Volcano plot of differentially expressed genes (TCGA-DEGs) between tumor samples and normal samples in TCGA-
KIRC cohort. (B) The intersection of TCGA-DEGs and the EP3 module yields 190 candidate genes. (C) Univariate Cox regression analysis of the
190 candidate genes with the first five genes displayed with the biggest and smallest HR. (D) Lasso regression variable trajectory. (E) Lasso regression
coefficient screening. (F) Survival analysis of high-risk and low-risk groups based on the median risk score. (G–I): ROC curves, (G) TCGA-KIRC
cohort, (H) E-MTAB-1980 cohort, (I) RECA-EU cohort.
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survival analysis, conducted among patients of the same age, gender,
pathologic M, pathologic stage, and pathologic T, but with different
risk score levels, revealed substantial statistical significance (Figures

7A–F). Given these findings, we conclude that risk scores based on
the six feature genes correlate closely with clinical features and hold
applicability across various clinical conditions.

FIGURE 7
Prognostic value of risk scores in ccRCC. (A–F): The left graph shows the distribution of risk scores in different clinical traits, themiddle graph shows
the distribution of different clinical traits in the high-risk and low-risk groups, and the right graph shows the survival curves of the high-risk and low-risk
groups in the same clinical trait. (A) OS status. (B) Pathologic Stage. (C) Pathologic T. (D) Pathologic M. (E) Gender. (F) Age.

Frontiers in Genetics frontiersin.org11

Peng et al. 10.3389/fgene.2024.1447139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1447139


FIGURE 8
The Nomogram construction. (A) Univariate Cox regression of risk scores and clinical features. (B) Multivariate Cox regression of risk scores and
clinical features. (C)Nomogram constructed based on the four independent prognostic factors: risk scores, pathologic Stage, pathologic M, and age. (D)
Prognostic calibration curve of the nomogram. (E) Time-dependent ROC curve of the nomogram.
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3.8 Construction of a nomogram

To sieve out independent prognostic factors, univariate and
multivariate Cox analyses were conducted for clinical features and

risk scores. We discovered that the risk scores, pathologic Stage,
pathologic M, and age serve as independent prognostic factors for
the patients (Figures 8A, B). We then constructed a nomogram
model using the four independent prognostic factors (Figure 8C).

FIGURE 9
Enrichment analysis between high and low-risk groups. (A) Volcano plot based on the differential analysis between high-risk and low-risk groups.
(B–D): GO enrichment analysis. (E) KEGG enrichment analysis.
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Moreover, calibration curves and time-dependency ROC curves
showcased that this nomogram model holds substantial
predictive value (Figures 8D, E). So overall, it suggests that this
specific prognostic model can be an effective tool for predicting
patient outcomes based on the four independent prognostic factors.

3.9 Enrichment analysis between high and
low-risk groups

Based on the median risk scores, we stratified our sample into
high-risk and low-risk cohorts, to elucidate the impact of varied risk
levels on the progression of cancer. Consequently, RISK-DEGs were
identified for further investigation (Figure 9A). An enrichment
analysis was subsequently conducted to identify the most pivotal
enriched pathways differentiating the two groups. The results
displayed that GO was mainly enriched in lipid metabolic
processes such as plasma lipoprotein, cholesterol, triglycerides,
phospholipids, etc (Figures 9B–D). KEGG was mainly enriched
in neuroactive ligand-receptor interaction, complement and
coagulation cascades, cytokine-cytokine receptor interaction, IL-
17 signaling pathway, etc. (Figure 9E).

4 Discussion

ccRCC, a widely prevalent malignant tumor, continues to show a
high mortality rate despite the improved overall survival in recent
decades (Siegel et al., 2020). This suggests the urgent need for in-
depth analysis of ccRCC heterogeneity to better understand its
pathophysiology. In earlier studies on SETD2-mutated ccRCC,
the primary focus has been on epigenetic elements and cell line
expriments. However, there remains a significant gap in our
knowledge concerning the real-world biological manifestation of
this mutation and how it interacts within the tumor
microenvironment in actual patients. This study utilizes scRNA-
seq to conduct an extensive investigation into ccRCC’s cellular
heterogeneity, identifying twelve fundamental cell types,
including B cells, endothelial cells, T cells, Natural Killer cells,
Natural Killer T cells, monocytes, mast cells, DCs, fibroblasts,
pericytes, macrophages, and epithelial cells. Through gene CNV
and cell development trajectory analysis, ccRCC was classified into
6 subclusters. However, the subcluster C3 was excluded due to the
overexpression of TNK-related marker genes. The subcluster C5,
known as MT + here, exhibited unusually high expression of
mitochondrial genes, separating it from the other clusters that
were labeled as MT-. This high expression of mitochondrial
genes in the TCGA-KIRC cohort was indicative of a shorter
survival time, suggesting patients from the MT + group may face
a challenging prognosis. Additionally, MT + showed distinctive
energy metabolism characteristics, specifically elevated levels of
oxidative phosphorylation and glycolysis─ a sharp contrast to the
well-knownWarburg effect (Zhu et al., 2023). Intriguingly, previous
studies have found similar metabolic patterns, of increased oxidative
phosphorylation and glycolysis, in SETD2-mutated ccRCC─ an
unusual feature for ccRCC (Liu et al., 2019; Xie et al., 2022). This
finding is substantiated by the presence of the PGC1α gene module
in the MT + group, an occurrence also observed in SETD2-mutated

ccRCC (Liu et al., 2019; Xie et al., 2022). This correlation suggests
that the MT + group may originate from SETD2-mutated ccRCC. In
addition, our findings show that MT + substantially increased both
the biosynthesis and β-oxidation in lipid metabolism, which resulted
in an overall upsurge in lipid metabolism. This observation departs
from the prevailing understanding of ccRCC, which proposes that
lipid synthesis and storage are increased, while lipid usage and
oxidation are decreased (Shi et al., 2023; Zhu et al., 2023). This
imbalance is believed to result in a build-up of cholesterol, fatty
acids, and triglycerides. This discrepancy could be explained by the
overactive expression of β-oxidation-related genes triggered by
SETD2 mutation. The MT + group furthermore portrayed the
expression of metastasis-related gene clusters (SAA1, SAA2,
APOL1, and MET) (Alchahin et al., 2022). The expression of
these metastasis-related gene clusters within the MT + group
might be associated with its unique energy metabolism. Higher
levels of oxidative phosphorylation and glycolysis could permit its
survival and proliferation within the malignant tumor environment.
This significant difference in energy metabolism could potentially
enhance the invasiveness and metastatic capacity of the tumor.
Aside from exhibiting enhanced survivability, the MT + group
evidenced a significant capacity to induce angiogenesis, which is
strongly linked to the group’s interactions with endothelial cells.
This particular aspect will be discussed in further detail in the
subsequent section.

In the tumor microenvironment, we observed significant
interaction between MT + group and other cell types, most
notably with Fibroblasts, Endothelial cells, Macrophages, and
DCs. Compared to the MT-group, the MT + group possessed a
stronger, wider range of cellular interactions, with many unique
interaction patterns emerging. For instance, in the interaction
between MT+ and Macrophages, the crosstalk between CLU-
TREM2 and LGALS3-MERTK significantly increased. Prior
studies indicated that TREM2 could regulate the polarization of
macrophages fromM1 toM2 through the NF-κB/CXCL3 axis (Fang
et al., 2024; Shang et al., 2024), andMerTKmediated phagocytosis to
enhance M2 polarization of macrophages (Lin et al., 2022). In
addition, interactions like SLITRK4-OLR1 and TGFB1-TGFBR1
only existed in the MT + group. Previous research suggested a
significant correlation between OLR1 expression and M2 cell
infiltration (Sun et al., 2021), and TGFB1 could promote
M2 polarization of macrophages via the MAPK signaling
pathway (Liu et al., 2022; Maldonado et al., 2022). Moreover, our
research found that activation of NRP2 could stimulate phagocytosis
in macrophages and orchestrate immunosuppression to facilitate
tumor growth (Roy et al., 2018; Yang et al., 2022). We also
discovered that the CD47-SIRPA mediated tumor cell evasion
from macrophage phagocytosis (Zhang and Fu, 2018; Li et al.,
2022). When interacting with Endothelial cells, MT-secretion of
VEGFA could bind to FLT1(VEGFR-1) and KDR (VEGFR-2),
inducing angiogenesis, as well as vascular remodeling and
enlargement (Pérez-Gutiérrez and Ferrara, 2023; Shaw et al.,
2024). However, MT + not only secreted VEGFA but also
VEGFB. In cancers, VEGFB is reported to be capable of
promoting cancer metastasis via non-VEGF-A-dependent
mechanisms (Yang et al., 2015; Shaw et al., 2024). Additionally,
NRP1 and NRP2 functioned as auxiliary receptors of VEGF to
amplify signal transduction (Pérez-Gutiérrez and Ferrara, 2023;
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Shaw et al., 2024). Particularly, the interaction between NTN4-
UNC5B in the MT + group could attract endothelial progenitor cells
(EPC) to migrate to the site of vascular injury to facilitate
angiogenesis and tissue repair (Lee et al., 2020). These findings
suggested that MT + possesses a stronger angiogenesis-inducing
ability and metastatic potential. Collectively, MT + possesses
stronger and more versatile cellular interactions, which is
especially pronounced in its crosstalk with Macrophages and
Endothelial Cells. MT + presents the capability of inducing
M2 cells, inhibiting macrophage immunity, promoting tumor
angiogenesis, and increasing its metastatic potential.

In renal cancer, there are two other common subtypes,
characterized by PBRM1 and BAP1 mutations. Previous studies
report a sequential relationship between PBRM1 and
SETD2 mutations and reveals an exclusionary relationship with
BAP1 mutations (Peña-Llopis et al., 2013). The PBRM1 mutation
largely promotes the development and progression of ccRCC by
down-regulating HIF-1α signal transduction (de Cubas and Kimryn
Rathmell, 2018). On the other hand, the BAP1 mutation leads to an
increase in glycolysis and a reduction in mitochondrial respiration
(Dai et al., 2017). In contrast, this study reveals that MT + cells with
SETD2 mutations demonstrate high levels of mitochondrial
respiration. This finding is consistent with the mutually exclusive
relationship between SETD2 and BAP1 mutations.

To characterize the impact of MT + on patient prognosis, we
used SC-DEGs to identify an MT + gene co-expression module
EP3 related to angiogenesis in hdWGCNA. We then overlapped
these results with TCGA-DEGs to shortlist 190 potential genes.
Univariate Cox regression analysis and LASSO algorithm were used
to develop a risk factor scoring model based on six prognostic genes
(FKBP10, LGALS1, BID, FBXO21, TEK, ACHE). This model
showed good performance in predicting the OS of KIRC patients
and exhibited high predictive power in the TCGA cohort according
to the ROC. In addition, we verified the predictive power of this
model using two cohorts (E-MTAB-1980 and RECA-EU) with zero
overlap with the TCGA cohort. The relationship between the model
prediction and clinical manifestations was also investigated. Due to
incomplete N staging information, it was not included as a clinical
feature. Patients at stage M1, stage II to IV, and stage T3 to
T4 demonstrated higher risk scores. However, the risk score had
a poor correlation with patients’ age and gender. Besides, survival
analysis showed significant statistical differences in patients with the
same clinical features grouped by risk score. The finding indicates
that the predictive value of the model not only extends to OS, but
also possesses powerful prediction for clinical features. It also carries
high predictability for patients with different clinical features. To
enhance the predictive power of the model, we considered the
impact of clinical features on the model. We carried out
univariate and multivariate regression cox analysis with the risk
scores and clinical features. The results suggested that risk scores,
pathologic Stage, pathologic M, and age are independent prognostic
factors in KIRC patients. Further, we developed a nomogram model
and verified its robust prediction ability by using calibration curves
and ROC curves.

Lastly, risk stratification using the model’s group median score
distinguished all samples into a low-risk group and a high-risk
group. We observed a high-risk group is mainly enriched in
metabolic processes related to plasma lipoproteins, cholesterol,

triglycerides, phospholipids, etc. KEGG was mainly enriched in
neuroactive ligand-receptor interactions, the complement and
coagulation cascades, cytokine-cytokine receptor interaction, and
the IL-17 signaling pathway. Our study emphasized the close
association between blood vessel formation and lipid metabolism
in ccRCC.

Despite these discoveries have shed some new light on the key
features and biological behaviors of SETD2-mutated ccRCC, these
features and interactions require further experimental validation.
Furthermore, establishing whether this prognostic model can be
generalized to other types of RCC requires further investigation.
Future work will involve studying key cell-cell interaction
functionalities through coculture and improving and promoting
the use of this prognostic model.

5 Conclusion

Our study uncovered crucial transcriptomic characteristics
of SETD2-mutated ccRCC within an actual tumor environment.
These include heightened mitochondrial gene expression and
increased oxidative phosphorylation, glycolysis, lipid
metabolism, and angiogenesis abilities. Comparison of gene
expression and biological behavior between the MT+ and
MT-groups exposed a potential for M2 cell formation in the
MT + group. This is mediated by a combination of four
receptors: TREM2, MERTK, OLR1, and TGFBR1.
Additionally, our prognostic model can efficiently foresee the
survival timeline of ccRCC patients. These discoveries reinforce
and broaden prior research, which could potentially enrich our
comprehension of ccRCC, foster the development of new
treatment methods, and enhance prognosis assessment of
ccRCC patients.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

SP: Conceptualization, Data curation, Formal Analysis,
Software, Visualization, Writing–original draft, Writing–review
and editing. ZX: Conceptualization, Methodology,
Writing–original draft, Writing–review and editing. HJ:

Frontiers in Genetics frontiersin.org15

Peng et al. 10.3389/fgene.2024.1447139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1447139


Writing–original draft, Writing–review and editing. GZ:
Writing–original draft, Writing–review and editing. NC:
Conceptualization, Funding acquisition, Supervision,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by Natural Science Foundation of Guangdong
Province - General Project (No. 2020A151501015), GuangDong
Basic and Applied Basic Research Foundation (No.
2023A1515220113), Social Development Technology Plan Project
of Meizhou City (No. 2023B02), and Cultivation Program of
Meizhou People’s Hospital (No. PY-C 2023041).

Acknowledgments

We are thankful to The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) for the data used in our study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1447139/
full#supplementary-material

References

Alchahin, A. M., Mei, S., Tsea, I., Hirz, T., Kfoury, Y., Dahl, D., et al. (2022). A
transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma.
Nat. Commun. 13, 5747. doi:10.1038/s41467-022-33375-w

Barata, P. C., and Rini, B. I. (2017). Treatment of renal cell carcinoma: current status
and future directions. CA Cancer J. Clin. 67, 507–524. doi:10.3322/caac.21411

Bi, K., He, M. X., Bakouny, Z., Kanodia, A., Napolitano, S., Wu, J., et al. (2021). Tumor
and immune reprogramming during immunotherapy in advanced renal cell carcinoma.
Cancer Cell 39, 649–661.e5. doi:10.1016/j.ccell.2021.02.015

Cotta, B. H., Choueiri, T. K., Cieslik, M., Ghatalia, P., Mehra, R., Morgan, T. M., et al.
(2023). Current landscape of genomic biomarkers in clear cell renal cell carcinoma. Eur.
Urol. 84, 166–175. doi:10.1016/j.eururo.2023.04.003

Dai, F., Lee, H., Zhang, Y., Zhuang, L., Yao, H., Xi, Y., et al. (2017). BAP1 inhibits the
ER stress gene regulatory network and modulates metabolic stress response. Proc. Natl.
Acad. Sci. U. S. A. 114 (12), 3192–3197. doi:10.1073/pnas.1619588114

de Cubas, A. A., and Kimryn Rathmell, W. (2018). Epigenetic modifiers: activities in
renal cell carcinoma. Nat. Rev. Urol. 15 (10), 599–614. doi:10.1038/s41585-018-0052-7

Fang, C., Zhong, R., Lu, S., Yu, G., Liu, Z., Yan, C., et al. (2024). TREM2 promotes
macrophage polarization fromM1 to M2 and suppresses osteoarthritis through the NF-
κB/CXCL3 axis. Int. J. Biol. Sci. 20, 1992–2007. doi:10.7150/ijbs.91519

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22. doi:10.
18637/jss.v033.i01

Haase, V. H., Glickman, J. N., Socolovsky, M., and Jaenisch, R. (2001). Vascular
tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor.
Proc. Natl. Acad. Sci. U. S. A. 98, 1583–1588. doi:10.1073/pnas.98.4.1583

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-Seq data. BMC Bioinforma. 14, 7. doi:10.1186/
1471-2105-14-7

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological
identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321. doi:10.1098/rspb.
2002.2218

Ho, T. H., Park, I. Y., Zhao, H., Tong, P., Champion, M. D., Yan, H., et al. (2016).
High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell
carcinoma. Oncogene 35, 1565–1574. doi:10.1038/onc.2015.221

Hsieh, J. J., Purdue, M. P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M., et al.
(2017). Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009. doi:10.1038/nrdp.2017.9

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., et al. (2019).
Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods
16, 1289–1296. doi:10.1038/s41592-019-0619-0

Lee, N. G., Jeung, I. C., Heo, S. C., Song, J., Kim,W., Hwang, B., et al. (2020). Ischemia-
induced Netrin-4 promotes neovascularization through endothelial progenitor cell

activation via Unc-5 Netrin receptor B. FASEB J. 34, 1231–1246. doi:10.1096/fj.
201900866RR

Li,W.,Wu, F., Zhao, S., Shi, P.,Wang, S., and Cui, D. (2022). Correlation betweenPD-1/PD-
L1 expression and polarization in tumor-associated macrophages: a key player in tumor
immunotherapy.Cytokine andGrowth Factor Rev. 67, 49–57. doi:10.1016/j.cytogfr.2022.07.004

Lin, J., Xu, A., Jin, J., Zhang, M., Lou, J., Qian, C., et al. (2022). MerTK-mediated
efferocytosis promotes immune tolerance and tumor progression in osteosarcoma
through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 11,
2024941. doi:10.1080/2162402X.2021.2024941

Liu, J., Hanavan, P. D., Kras, K., Ruiz, Y. W., Castle, E. P., Lake, D. F., et al. (2019). Loss of
SETD2 induces ametabolic switch in renal cell carcinoma cell lines toward enhanced oxidative
phosphorylation. J. Proteome Res. 18, 331–340. doi:10.1021/acs.jproteome.8b00628

Liu, L., Cheng, M., Zhang, T., Chen, Y., Wu, Y., and Wang, Q. (2022). Mesenchymal
stem cell-derived extracellular vesicles prevent glioma by blocking M2 polarization of
macrophages through a miR-744-5p/TGFB1-dependent mechanism. Cell Biol. Toxicol.
38, 649–665. doi:10.1007/s10565-021-09652-7

Maldonado, L. A. G., Nascimento, C. R., Rodrigues Fernandes, N. A., Silva, A. L. P.,
D’Silva, N. J., and Rossa, C. (2022). Influence of tumor cell-derived TGF-β on
macrophage phenotype and macrophage-mediated tumor cell invasion. Int.
J. Biochem. Cell Biol. 153, 106330. doi:10.1016/j.biocel.2022.106330

Mano, R., Duzgol, C., Ganat, M., Goldman, D. A., Blum, K. A., Silagy, A. W., et al.
(2021). Somatic mutations as preoperative predictors of metastases in patients with
localized clear cell renal cell carcinoma – an exploratory analysis. Urologic Oncol.
Seminars Orig. Investigations 39, 791.e17–791.e24. doi:10.1016/j.urolonc.2021.08.018

Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E., and Swarup, V. (2023).
hdWGCNA identifies co-expression networks in high-dimensional transcriptomics
data. Cell Rep. Methods 3 (6), 100498. doi:10.1016/j.crmeth.2023.100498

Peña-Llopis, S., Christie, A., Xie, X.-J., and Brugarolas, J. (2013). Cooperation and
antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 73 (14),
4173–4179. doi:10.1158/0008-5472.CAN-13-0360

Pérez-Gutiérrez, L., and Ferrara, N. (2023). Biology and therapeutic targeting of
vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 24, 816–834. doi:10.1038/
s41580-023-00631-w

Puram, S. V., Tirosh, I., Parikh, A. S., Patel, A. P., Yizhak, K., Gillespie, S., et al. (2017).
Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head
and neck cancer. Cell 171, 1611–1624. doi:10.1016/j.cell.2017.10.044

Roy, S., Bag, A. K., Dutta, S., Polavaram, N. S., Islam, R., Schellenburg, S., et al. (2018).
Macrophage-derived Neuropilin-2 exhibits novel tumor-promoting functions. Cancer
Res. 78, 5600–5617. doi:10.1158/0008-5472.CAN-18-0562

Sánchez-Gastaldo, A., Kempf, E., Alba, A. G., and Duran, I. (2017). Systemic
treatment of renal cell cancer: a comprehensive review. Cancer Treat. Rev. 60,
77–89. doi:10.1016/j.ctrv.2017.08.010

Frontiers in Genetics frontiersin.org16

Peng et al. 10.3389/fgene.2024.1447139

https://www.frontiersin.org/articles/10.3389/fgene.2024.1447139/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1447139/full#supplementary-material
https://doi.org/10.1038/s41467-022-33375-w
https://doi.org/10.3322/caac.21411
https://doi.org/10.1016/j.ccell.2021.02.015
https://doi.org/10.1016/j.eururo.2023.04.003
https://doi.org/10.1073/pnas.1619588114
https://doi.org/10.1038/s41585-018-0052-7
https://doi.org/10.7150/ijbs.91519
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1073/pnas.98.4.1583
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1038/onc.2015.221
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1096/fj.201900866RR
https://doi.org/10.1096/fj.201900866RR
https://doi.org/10.1016/j.cytogfr.2022.07.004
https://doi.org/10.1080/2162402X.2021.2024941
https://doi.org/10.1021/acs.jproteome.8b00628
https://doi.org/10.1007/s10565-021-09652-7
https://doi.org/10.1016/j.biocel.2022.106330
https://doi.org/10.1016/j.urolonc.2021.08.018
https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.1158/0008-5472.CAN-13-0360
https://doi.org/10.1038/s41580-023-00631-w
https://doi.org/10.1038/s41580-023-00631-w
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1158/0008-5472.CAN-18-0562
https://doi.org/10.1016/j.ctrv.2017.08.010
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1447139


Shang, X., Maimaiti, N., Fan, J., Wang, L., Wang, Y., Sun, H., et al. (2024). Triggering
receptor expressed on myeloid cells 2 mediates the involvement of M2-type
macrophages in pulmonary tuberculosis infection. J. Inflamm. Res. 17, 1919–1928.
doi:10.2147/JIR.S435216

Shaw, P., Dwivedi, S. K. D., Bhattacharya, R., Mukherjee, P., and Rao, G. (2024).
VEGF signaling: role in angiogenesis and beyond. Biochimica Biophysica Acta (BBA) -
Rev. Cancer 1879, 189079. doi:10.1016/j.bbcan.2024.189079

Shi, J., Miao, D., Lv, Q., Wang, K., Wang, Q., Liang, H., et al. (2023). The m6A
modification-mediated OGDHL exerts a tumor suppressor role in ccRCC by
downregulating FASN to inhibit lipid synthesis and ERK signaling. Cell Death Dis.
14 (8), 560. doi:10.1038/s41419-023-06090-7

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA A Cancer
J. Clin. 70, 7–30. doi:10.3322/caac.21590

Stassen, S. V., Yip, G. G. K., Wong, K. K. Y., Ho, J. W. K., and Tsia, K. K. (2021).
Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat.
Commun. 12, 5528. doi:10.1038/s41467-021-25773-3

Sun, X., Fu, X., Xu, S., Qiu, P., Lv, Z., Cui, M., et al. (2021). OLR1 is a prognostic factor
and correlated with immune infiltration in breast cancer. Int. Immunopharmacol. 101,
108275. doi:10.1016/j.intimp.2021.108275

van der Mijn, J. C., Mier, J. W., Broxterman, H. J., and Verheul, H. M. (2014).
Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug
Resist Updat 17, 77–88. doi:10.1016/j.drup.2014.10.003

Vento-Tormo, R., Efremova, M., Botting, R. A., Turco, M. Y., Vento-Tormo, M.,
Meyer, K. B., et al. (2018). Single-cell reconstruction of the early maternal–fetal interface
in humans. Nature 563, 347–353. doi:10.1038/s41586-018-0698-6

Walton, J., Lawson, K., Prinos, P., Finelli, A., Arrowsmith, C., and Ailles, L. (2023).
PBRM1, SETD2 and BAP1 — the trinity of 3p in clear cell renal cell carcinoma. Nat.
Rev. Urol. 20, 96–115. doi:10.1038/s41585-022-00659-1

Wiesener, M. S., Münchenhagen, P. M., Berger, I., Morgan, N. V., Roigas, J.,
Schwiertz, A., et al. (2001). Constitutive activation of hypoxia-inducible genes

related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal
carcinomas. Cancer Res. 61, 5215–5222.

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15. doi:10.1186/s13059-017-1382-0

Wolock, S. L., Lopez, R., and Klein, A. M. (2019). Scrublet: computational
identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8,
281–291. doi:10.1016/j.cels.2018.11.005

Xie, Y., Sahin, M., Sinha, S., Wang, Y., Nargund, A. M., Lyu, Y., et al. (2022).
SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and
engenders actionable dependencies on histone chaperone complexes. Nat. Cancer 3,
188–202. doi:10.1038/s43018-021-00316-3

Yang, X., Zhang, Y., Hosaka, K., Andersson, P., Wang, J., Tholander, F., et al. (2015).
VEGF-B promotes cancer metastasis through a VEGF-A–independent mechanism and
serves as a marker of poor prognosis for cancer patients. Proc. Natl. Acad. Sci. U. S. A.
112, E2900–E2909. doi:10.1073/pnas.1503500112

Yang, Y., Zhang, B., Yang, Y., Peng, B., and Ye, R. (2022). FOXM1 accelerates wound
healing in diabetic foot ulcer by inducing M2 macrophage polarization through a
mechanism involving SEMA3C/NRP2/Hedgehog signaling. Diabetes Res. Clin. Pract.
184, 109121. doi:10.1016/j.diabres.2021.109121

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package for
comparing biological themes among gene clusters. OMICS 16, 284–287. doi:10.1089/
omi.2011.0118

Zhang, C. C., and Fu, Y.-X. (2018). Another way to not get eaten. Nat. Immunol. 19,
6–7. doi:10.1038/s41590-017-0009-7

Zhang, Y., Xiang, G., Jiang, A. Y., Lynch, A., Zeng, Z.,Wang, C., et al. (2023). MetaTiME
integrates single-cell gene expression to characterize the meta-components of the tumor
immune microenvironment. Nat. Commun. 14, 2634. doi:10.1038/s41467-023-38333-8

Zhu, H., Wang, X., Lu, S., and Ou, K. (2023). Metabolic reprogramming of clear cell
renal cell carcinoma. Front. Endocrinol. (Lausanne) 14, 1195500. doi:10.3389/fendo.
2023.1195500

Frontiers in Genetics frontiersin.org17

Peng et al. 10.3389/fgene.2024.1447139

https://doi.org/10.2147/JIR.S435216
https://doi.org/10.1016/j.bbcan.2024.189079
https://doi.org/10.1038/s41419-023-06090-7
https://doi.org/10.3322/caac.21590
https://doi.org/10.1038/s41467-021-25773-3
https://doi.org/10.1016/j.intimp.2021.108275
https://doi.org/10.1016/j.drup.2014.10.003
https://doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.1038/s41585-022-00659-1
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1038/s43018-021-00316-3
https://doi.org/10.1073/pnas.1503500112
https://doi.org/10.1016/j.diabres.2021.109121
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41590-017-0009-7
https://doi.org/10.1038/s41467-023-38333-8
https://doi.org/10.3389/fendo.2023.1195500
https://doi.org/10.3389/fendo.2023.1195500
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1447139

	Revealing the characteristics of SETD2-mutated clear cell renal cell carcinoma through tumor heterogeneity analysis
	1 Introduction
	2 Materials and methods
	2.1 Pre-treatment of samples
	2.2 Identification of malignant cells
	2.3 Cell trajectory analysis
	2.4 Cell communication analysis
	2.5 Identification of DEGs
	2.6 Identification of Co-expression modules
	2.7 Protein-protein interaction analysis
	2.8 Enrichment analysis
	2.9 The construction and validation of the prognostic model
	2.10 Subclinical feature analysis
	2.11 Independent prognosis analysis

	3 Result
	3.1 Identification of single-cell data
	3.2 Identifying malignant cell clusters
	3.3 Tumor subcluster development trajectory analysis and biological function differences
	3.4 Cell interaction analysis
	3.5 Identification of MT + related co-expression network
	3.6 Risk scores construction
	3.7 Analysis of prognostic model and different clinical features
	3.8 Construction of a nomogram
	3.9 Enrichment analysis between high and low-risk groups

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


