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Introduction: Modern histocompatibility algorithms depend on the comparison
and analysis of high-resolution HLA protein sequences and structures, especially
when considering epitope-based algorithms, which aim to model the
interactions involved in antibody or T cell binding. HLA genotype imputation
can be performed in the cases where only low/intermediate-resolution HLA
genotype is available or if specific loci aremissing, and by providing an individuals’
race/ethnicity/ancestry information, imputation results can be more accurate.
This study assesses the effect of imputing high-resolution genotypes on
molecular mismatch scores under a variety of ancestry assumptions.

Methods: We compared molecular matching scores from “ground-truth” high-
resolution genotypes against scores from genotypes which are imputed from
low-resolution genotypes. Analysis was focused on a simulated patient-donor
dataset and confirmed using two real-world datasets, and deviations were
aggregated based on various ancestry assumptions.

Results: We observed that using multiple imputation generally results in lower
error inmolecularmatching scores compared to single imputation, and that using
the correct ancestry assumptions can reduce error introduced during imputation.

Discussion: We conclude that for epitope analysis, imputation is a valuable and
low-risk strategy, as long as care is taken regarding epitope analysis context,
ancestry assumptions, and (multiple) imputation strategy.
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Introduction

Many modern histocompatibility algorithms are dependent on
analysis of complete HLA protein structures (Senev et al., 2020).
This is especially true when considering epitope-based algorithms,
as they aim to understand the mechanics of specific physico-
chemical interactions involved in, e.g., antibody or T cell-receptor
binding (Nielsen et al., 2007; Kosmoliaptsis et al., 2011). An
incomplete or incorrect categorization of the HLA structure
could lead to inaccurate epitope predictions.

High-resolution HLA genotype imputation can be performed in
those cases where only low/intermediate-resolution HLA typing
methods were applied or data for specific loci are missing. One
can infer the likelihood of specific high-resolution genotypes, here
meaning an HLA genotype with two-field allele names based on
standard HLA nomenclature (Marsh, 2022), from incomplete or
low-resolution data by comparing known HLA sequences (Barker
et al., 2023) and by utilizing patterns in genotype and haplotype
frequencies (Maiers et al., 2007; Gragert et al., 2013). While each
HLA allele (e.g., DRB1*15:01) corresponds to multiple distinct
nucleotide sequences, for epitope analysis we focus on distinct
protein sequences and disregard synonymous nucleotide
sequences and variation within intronic and UTR sequences.
Following this definition, an HLA haplotype consists of a set of
select two-field HLA alleles on a single copy of chromosome 6 (e.g.,
A*11:01~C*12:03~B*27:12~DRB1*16:01~DQB1*05:02) (Mack
et al., 2023). By using population haplotype frequency tables, a
set of high-resolution genotypes is estimated from low-resolution
(e.g., DRB1*15) data. The available haplotype frequencies can vary
widely based on the individual’s self-reported race/ethnicity/
ancestry information. Consequently, providing this information
improves the accuracy of imputation (Dilthey et al., 2013;
Hollenbach et al., 2015; Israeli et al., 2023; Madbouly and
Bolon, 2024).

Imputation algorithms are probability-focused techniques. They
carry inherent risks, such as the possibility of incorrectly assigning a
genotype based on probability assumptions. These risks may be
greater if ancestry information is not available, cannot be practically
or ethically applied, or if a self-identified ancestry does not
completely reflect their genetic ancestry. These risks are
compounded in admixed populations, where an individual’s two
HLA haplotypes may not be derived from the same origin
population (Maiers et al., 2013). Moreover, in the context of
transplantation, it may be necessary to impute the recipient and
donor typing, or both, which multiplies the number of
combinations, and adds more uncertainty when comparing self
and non-self HLA.

Imputation can follow distinct strategies (Li et al., 2015), each
with corresponding advantages and disadvantages. Perhaps the
simplest of strategies in the HLA context is single imputation. In
this strategy, an HLA genotype prediction from a single run of
imputation is selected. Most strategies opt for selecting the most
likely HLA genotype based on the most likely combination of
haplotypes matching the observed low-resolution data. This
approach is commonly used in the context of HLA imputation
(Ferradji et al., 2017; D’Souza et al., 2018), although selecting the
most likely option may create a false precision, where a single
genotype is selected more frequently than it is expected to occur

in a population. Another variant of single imputation is to assign a
single predicted genotype by using a weighted random selection
from candidate haplotype pairs, which reflect their observed
frequencies within a population. This approach has the advantage
of reducing the bias of single imputation at the population level but
may introduce random errors for individuals.

Multiple imputation in the HLA context refers to a process of
repeatedly imputing from weighted distributions to calculate a set of
multiple options with corresponding likelihoods, in contrast to
selecting a single “winner-takes-all” option. There are many
strategies to perform multiple imputation, and in the context of
HLA, the multiple imputation options can be calculated by sampling
from weighted population frequencies or by brute force analysis of a
complete list, with an optional minimum frequency threshold.
Multiple imputation can become more accurate with deeper
sampling of options (Louzoun et al., 2018), but with the wide
variety observed in HLA haplotypes (Gragert et al., 2013)
considering all possible haplotype combinations is a challenge.
One popular tool used for multiple imputation is the NMDP
HaploStats application (Madbouly et al., 2014) (www.haplostats.
org). This platform considers all possible known haplotype
combinations, provides insights on expected genotype frequencies
and Hardy Weinberg equilibrium, and has potential use in epitope
studies (Krummey and Cliff Sullivan, 2022).

In situations where a single genotype is not necessary, such as
the case of analysis of quantitative epitope prediction, an approach
that aggregates a number of likely haplotype combinations
simultaneously can be considered. Algorithms considering these
multiple combinations need to aggregate epitope analysis of
transplant pairs by, e.g., using population frequencies as weights.
When these weighted genotype combinations are analyzed in
molecular matching algorithms, these weights (or summed
weights) can also be applied to the corresponding predicted
epitope scores, thereby providing a summed epitope score
(Geneugelijk et al., 2017).

The present study aimed to quantify the differences in epitope
predictions from genotypes derived from ancestry-based
imputation. We used simulated and real-world patient and donor
groups with high-resolution HLA genotyping. Single and multiple
imputation algorithms implemented in the PIRCHE prediction
pipeline (Geneugelijk et al., 2017) were applied considering
haplotype frequencies corresponding to different ancestries. The
imputed genotypes were analyzed for the number of predicted
indirectly recognizable T cell epitopes (PIRCHE score)
(Geneugelijk and Spierings, 2020) and surface-exposed amino
acid mismatches (Snow score) (Niemann et al., 2022; Niemann
et al., 2023). These imputations and epitope predictions were
repeated with multiple assumptions on their ancestry. Aggregated
epitope scores were compared between ancestry assumptions, and
between the contexts of single and multiple imputation.

As shown previously (Geneugelijk et al., 2017), we hypothesized
that a majority of transplant cases will only have small deviations
between true molecular matching scores calculated based on high-
resolution genotyping data and scores calculated through
imputation. In cases with incorrectly configured self-reported
race/ethnicity/ancestry, we hypothesized increased discrepancy
that may have limited clinical impact in most transplant cases
considering previously defined thresholds.
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Methods

Simulated patient and donor groups

Simulated high-resolution genotypes were generated based on
2011 NMDP haplotype frequencies (Gragert et al., 2013). The
frequencies in this dataset are divided into five broad categories
and subdivided into 21 sub-categories. Each of these categories
represents a distinct population (Supplementary Figure S1).
Furthermore, a “SUPER-population” was artificially generated for
use in imputation by aggregating all available haplotypes and
accumulating the haplotype frequencies and assigning a
normalized weight based on their relative frequencies within
each group.

For each of the 21 available ancestry sub-categories, a sample
dataset of 1,000 simulated individuals were generated for both the
patient and donor datasets. These individuals were simulated by a
weighted random selection of two haplotypes, where the likelihood
of selecting a haplotype corresponds to that haplotype’s reported
frequency. By pairing two haplotypes together, we create a simulated
individual’s HLA genotype, and an expected frequency within their
corresponding population calculated as the product of the respective
haplotypes’ reported frequencies. The assumed ancestry of each
simulated patient or donor is assigned to match the population
frequency dataset from which their haplotypes are derived. These
population-specific patient and donor datasets were paired in a
stratified manner across and within ancestry groups. This
stratification provided a “randomly paired” dataset that mimics
randomly allocated solid organ transplantations within populations,
as well as across populations. As the source ancestry in generated
genotypes is known, we used this as a reference ancestry in
downstream analysis.

Low-resolution (group-level) typings were derived from the
simulated high-resolution genotypes. To this end, two-field HLA
allele names (Marsh, 2022) were reduced to the first field of
nomenclature to yield allele-group level genotypes. In high-
resolution “control” and low-resolution cases, PIRCHE high-
throughput input files were generated in the standard paired
patient-donor. csv format for subsequent analysis. Serological
typing resolution (Kaur et al., 2018; Osoegawa et al., 2022) was
not considered in this analysis.

Real patient and donor groups

As a confirmatory dataset to supplement simulated patient
and donor groups, supplementary analysis was performed on two
datasets of real-world transplantation data. All transplant
samples were anonymized and had available genotype data for
HLA-A, -B, -C, -DRB1 and -DQB1 at the two-field allele-level.
439 transplantations carried out at the Universitätsspital Basel
were selected (ethics committee approval number 2023–01992).
In the Basel dataset, ancestry data was not provided, and all
patients and donors were therefore assumed to be European
Caucasian (EURCAU) ancestry. A dataset from the University
of North Carolina at Chapel Hill (UNC) consisting of
9,471 samples with high-resolution HLA genotyping was also
analyzed. The UNC data contained self-identified race

information using broad ancestry categorizations
(Supplementary Figure S2), but did not specify patient and
donor pairing. Thus, the samples were randomly paired into
4,735 patient-donor pairs.

Similar to the approach to simulated genotypes, low-resolution
genotype datasets are generated by replacing each allele from the
high-resolution genotypes with its corresponding 1-field allele
group, separately for transplant patients and donors. The low-
resolution and high-resolution genotypes were analyzed using the
PIRCHE and SNOW modules, with imputation carried out using
the 27 specific and broad ancestry assumptions.

Imputation

High-resolution (two-field allele-level) genotypes were imputed
from the simulated low-resolution genotypes. Since genotypes are
generated using locus-specific genotyping methods, haplotype
definitions are not directly known. One multiple imputation
strategy has been suggested (Geneugelijk et al., 2017) by forming
all possible combinations of alleles to form pairs of haplotypes
corresponding to the provided genotype (Supplementary Figure S3).
These haplotype pairs were then searched for in the NMDP
haplotype frequency tables (Gragert et al., 2013), by considering
the alleles’ respective first field. In case no matching haplotypes are
identified in the NMDP tables, linkage assumptions between HLA
loci are removed stepwise (Supplementary Figure S4). This fallback
approach is penalized with lower frequency weights to favor
combinations of natural haplotypes. A genotype’s frequency is
defined as the product of its corresponding haplotype
frequencies. Frequencies of all identified genotypes are
normalized and to limit computational effort, only the top 99%
most frequent genotypes are considered in multiple imputation.

For each of the identified genotypes, molecular matching is
performed. Scores from multiple imputation options are aggregated
based on a weighted average, where weights correspond to the
imputed genotype frequencies (i.e., aggregated multiple
imputation). The aggregated multiple imputation algorithm is
incorporated in the PIRCHE webservice (www.pirche.com). The
imputation algorithm is automatically applied on the input low-
resolution HLA genotypes when using the PIRCHE bulk. csv
analysis tool. The protocol describing bulk. csv PIRCHE analysis
and data processing was previously described (Niemann et al., 2024).

To simulate single imputation, the same method was applied,
but only the single most frequent genotype was identified and
used in downstream analysis. Single imputation within the
PIRCHE service is facilitated by extracting imputed genotypes
first and only considering the most likely genotype results in
the analysis.

Strict imputation

Parallel to that, the above imputation was additionally applied
without the previously described fallback approach in case of absent
matching haplotypes (i.e., strict aggregated multiple imputation).
Instead, in these cases when no haplotype combinations are found,
imputation was aborted and no result was calculated.
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Allele-level mismatches

The high-resolution ground-truth genotypes were compared to
those generated by single-imputation. In each case where a two-field
imputed genotype does not match the original high-resolution
genotype, the allele mismatch was quantified and summarized.
Allele-level mismatches were calculated separately for imputation
in each ancestry assumption.

Molecular matching

As representative molecular matching algorithms, the PIRCHE and
the Snow algorithms were applied. PIRCHE represents the prediction of
indirect T cell epitopes. The PIRCHE-II score is calculated as previously
described (Geneugelijk and Spierings, 2020). In brief, donorHLA-derived
peptides likely to be presented by the recipientsDRB1 that are not present
in the presented self-peptidome are considered as PIRCHE. The number
of such distinct core peptide:HLA tuples is considered the PIRCHE score.

The recently described Snow algorithm is considered as an
approach for antibody epitope matching. In brief, Snow identifies
the number of surface-exposed amino acid mismatches between
patient and donor. For that purpose, Snow evaluates HLA protein-
specific solvent-accessible surface area (Niemann et al., 2022) and
local ellipsoid protrusion (Niemann et al., 2023).

In the case of imputed genotypes, PIRCHE-II and Snow molecular
mismatch loads are calculated by summing predicted mismatch loads
across all multiple-imputed genotype pairs. An aggregated score is
calculated by multiplying epitope scores with weights corresponding to
normalized predicted genotype frequencies.

Performance evaluation

For the virtual and real transplant datasets, high-resolution genotypes
were considered for calculation of ground-truth molecular mismatch
loads. The molecular mismatch score calculated for each patient-donor
pair on a high-resolution genotype provides an unambiguous baseline
score, which is subsequently used as a reference to calculate deviance
introduced by imputation in each population context. Using the

respective low-resolution genotypes, molecular matching scores were
calculated considering different imputation approaches using the
21 detailed ancestry groups, five broad ancestry categories and the
SUPER-population. The differences between imputed and ground-
truth scores were considered as deviation (Figure 1). Log-transformed
delta scores are calculated to compare the ground-truth molecular
mismatch load with the estimated scores derived from imputed
genotypes to quantify differences in predicted scores.

Each patient or donor in the simulated and real-world datasets has
an assumed ground-truth ancestry (either self-identified or assigned in
the case of Basel dataset). Analyses were grouped by ground-truth
ancestry and imputation ancestry to evaluate ancestry-specific
deviations introduced by imputation. The ground-truth ancestry is
compared against the specific or broad frequency category used in
imputation to assign an imputation categorization “match” or
“mismatch”. Additionally, the imputation performance based on
allele mismatch was evaluated with different statistical metrics
including the area-under-curve (AUC) of receiver-operating-
characteristic curve score (Hanley and McNeil, 1982), Brier score
(i.e., mean-squared-error) (Brier, 1950; Steyerberg et al., 2010),
weighted F1-score (i.e., harmonic mean of precision and recall)
(Chinchor, 1992) and balanced accuracy (i.e., the arithmetic mean of
sensitivity and specificity) (Supplementary Figure S5).

Results

Imputation success depends on ancestry
assumption

Imputation of high-resolution 5-locus genotypes from low-
resolution genotypes presents inherent risk of inaccuracies
(Figure 2). This error is categorized by A) proportion of cases
where valid combination of HLA haplotypes could not be found
in the haplotype frequencies (“failed” imputation, Figure 2A), and B)
allele mismatches between the ground-truth high-resolution
genotype and the imputed genotype (Figure 2B).

Imputation success was observed to vary depending on ancestry
assumptions during imputation. In the simulated patient and donor
groups, imputation was successful in ~99.98% of the cases when the

FIGURE 1
Flowchart of imputation analysis Simulated patient and donor groups are generated and real-world transplant pairs are selected and prepared at
two-field resolution at five loci. From these, the first-field genotypes are extracted, and imputation methods are applied with varying ancestry
assumptions. In all cases, molecular matching scores were found and compared across ancestry assumptions.
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imputation population matched the sample ancestry (Figure 2A
Diagonal). Imputing genotypes with incorrect ancestry assumption
however we observed an average ~92.95% success rate. ALANAM
haplotypes were observed to most frequently fail to impute valid
genotypes, which is also the ancestry category with the fewest
listed haplotype frequencies (138) in the final 2011 dataset (Gragert
et al., 2013), corresponding to the lowest sample size used in frequency
estimation (1,376). Strict imputation is expectedly more susceptible to
imputation failure, with an observed average of 91.99% successful
imputations in case of correctly assumed ancestry and 45.95%
successful imputation in case of incorrectly assumed ancestry
(Supplementary Figure S6A).

Similar patterns were observed in the mean number of allele
mismatches in single imputation. When imputation ancestry was
matched with sample ancestry, we observed a lower mean allele
mismatch count compared with imputations with mismatched
ancestry (0.73 vs. 2.19, Figures 2B, C). We discovered that mean

allele mismatches are highest (mean = 5.36) in the case of Filipino
(FILII) individuals imputed based onAmerican Indian South or Central
America (AISC) ancestry assumptions. In strict single imputation,
although imputation failed more frequently, we observe
comparatively fewer mean allele mismatches (0.62 in the ancestry
matched and 1.39 in ancestry mismatched, Supplementary Figure S6B).

When considering the extra evaluation metrics (Supplementary
Figure S5), The Filipino (FILII) category suffers the most in general
from wrongly assumed ancestry when looking at the F1-score (mean =
0.72), Brier score (mean = 0.41), balanced accuracy (mean = 0.52) and
AUC score (mean = 0.81). This corresponds to the observations shown
in Figure 4 of Gragert et al. (2013) where haplotype frequencies for FILII
show the least similarity with other US populations as well as other API
populations. In general, the categories that fall within the API broad
category, which contains the FILII specific group, are quite genetically
distinct from other populations and appear to suffer the worst from
wrongly assumed ancestry.

FIGURE 2
Imputation success in simulated patient and donor groups. Heatmap (A) shows relative rates of failed imputation, where valid haplotype pairs were
not found based on ancestry assumptions (lower is better). This is most commonwhen using the ALANAM haplotype dataset for imputation. Heatmap (B)
shows mean allele-level mismatches between the high-resolution genotype and the successfully single imputed genotype (lower is better). A higher
degree of matching can be observed in cases with matched sample and imputation ancestry (Diagonal). Correspondingly, panel (C) provides a
histogram of allele mismatch, distinguishing matched, i.e., correct ancestry assumption (purple) and mismatched, i.e., incorrect ancestry assumption
(yellow), the latter showing a clear shift towards higher proportions of HLA mismatches.
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Accuracy of epitope analyses depends on
ancestry assumption

We evaluated deviations of multiple imputed PIRCHE and
Snow scores to evaluate the imputation accuracy in the context
of molecular mismatch analyses. Analysis was focused on simulated
datasets where only one party per transplant pair was imputed, with
the respective other individual keeping its true high-resolution
genotype. This allows more specific visualization and allows us to
assess the role of inaccuracies in either recipient or donor
imputation.

In this analysis, molecular mismatch loads (PIRCHE-II and
Snow) were calculated in high-resolution pairs and in the imputed
pairs. The log deviations (e.g., Ln (PIRCHE-II High Res) - Ln
(PIRCHE-II Multiple Imputed)) were calculated in every case,
and noticeable deviations were defined as cases which exceeded a
log-deviation of 0.1. Figure 3 indicates the proportions of such cases
for the simulated patient and donor groups where donors (Figures
3A, C) or patients (Figures 3B, D) were multiple imputed. The
simulated patient and donor groups consider individuals derived
from 21 sub-populations in the 2011 NMDP haplotypes frequencies.
Imputation was performed using the same 21 sub-populations, as
well as five broad categories and the derived SUPER-population.

As observed in Figure 3 (Diagonal), aggregated multiple
imputation scores had a lower proportion of noticeably deviating
PIRCHE-II and Snow scores in all cases where imputation ancestry
matched the true ancestry vs. mismatched (PIRCHE-II: 1.7% vs.
8.6% for donors, 7.8% vs. 23.5% for patients; Snow: 2.8% vs. 14.5%
for donors, 2.4% vs. 10.8% for patients). Similar patterns were
observed in the single imputed context and in strict analysis
(Supplementary Figures S6–S10). Interestingly, single imputation
resulted in a slightly higher proportion of noticeably deviating
results (PIRCHE-II: 2.9% vs. 1.7 for donors, 8.0% vs. 7.8% for
patients; Snow: 4.1% vs. 2.8% for donors, 3.3% vs. 2.4% for
patients). When comparing the aggregated strict multiple
imputations, where only naturally occurring haplotype
frequencies were considered, had a slightly lower proportion of
noticeable molecular mismatch load deviations in the successful
imputations (PIRCHE-II: 1.5% vs. 1.7% for donors, 7.2% vs. 7.8% for
patients; Snow: 2.1% vs. 2.8% for donors, 2.6% vs. 2.4% for patients).

Generally, imputation of patients appears to be more susceptible
to deviations in PIRCHE-II score than imputation of donors.
Conversely, imputation of the donor has a greater effect on
calculating the Snow scores compared to imputing the patient
genotype. Furthermore, imputation using the evenly distributed
SUPER-population had the lowest average proportion of
noticeable deviations in molecular matching scores accumulated
across all individual ancestry, followed by the CAU broad ancestry
category, indicating an added value of large sample size in the quality
of estimated haplotype frequencies.

Risk stratification deviates depending on
ancestry assumption

To further categorize how much risk can be expected based on
the incorrect ancestry assumptions, these deviations were plotted in
the risk plots of Figures 4A–F. In these plots, the Y axis represents a

calculated deviation in the Ln (PIRCHE-II) or Ln (Snow) scores,
while the X axis is cumulative percentiles across the sample of
patient and donor pairs. Lines were plotted to show which
proportion of the samples falls below a certain risk threshold of
risk for varying imputation contexts.

Several observations were made based on this data. First, we
observed that the “Ancestry Match” lines (Yellow and Blue) lie lower
than their corresponding “Ancestry Mismatch” lines (Orange and
Pink, respectively), suggesting that less error was introduced when
the correct ancestry is assumed. Furthermore, we observed that the
error introduced by using the SUPER-population in imputation for
donors (Black) and for patients (Green) lies between their
corresponding “Ancestry Match” and “Ancestry Mismatch” lines.
This indicates the imputation using the SUPER-population
introduced more error than using the “matched” ancestry, but
less error than using the “mismatched” ancestry.

In all cases, for the 50% percentile, the maximum observed
deviation was less than 0.1, indicating that for at least half of the
sample there was no noticeable deviation in epitope score.
Furthermore, in nearly all contexts, for the 99% percentile
categories, delta scores were well below a delta of 1.0, which
notably has been used as a threshold where epitope scores may
be considered as a separate risk category (Geneugelijk et al., 2017).
We did however observe in the higher percentiles some cases with
greater variability between ground-truth epitope scores and scores
from imputed genotypes, which are explained below.

Regarding imputation algorithms, we observed that deviation
scores in general are higher in single imputation (dashed lines)
compared with their corresponding aggregated multiple imputation
(solid lines) of the same color. This indicates that in general the
multiple imputed scores more closely matched the high-resolution
scores than single imputed scores.

When contrasting T cell (Panels A–C) and B cell epitope analysis
(Panels D–F), we made similar observations to those from Figure 3.
In the PIRCHE-II context, imputation of the patient genotype (Blue,
Pink, Green) was observed to lead to deviations from the ground-
truth in their corresponding contexts than donor imputation
(Yellow, Orange, Black, respectively). And again, conversely,
imputation of the donor genotype was more likely to lead to
deviations in Snow scores; although in the simulated dataset,
ancestry match seems to play a more important role. In the cases
where the patient and the donor are both imputed (Supplementary
Figure S11), we observed generally higher deviations across the
population compared to cases where only one of the two are
imputed. This supports the hypothesis that imputing both patient
and donor genotypes may lead to more error than imputing a
single genotype.

There are a few outliers which can be noted in the 99.999 and
100 percentile, leading to the crossing of imputation context lines.
It should be noted that these are very rare cases, and the cause of
these deviations can be attributed to one of two situations: 1) The
ground-truth patient is HLA-DRB1 homozygous but their
corresponding low-resolution genotype was erroneously re-
imputed as HLA-DRB1 heterozygous (or vice-versa).
Alternatively, 2) when the ground-truth epitope score is 0, but
the imputed score is imputed as a low but non-zero. These
miniscule differences in molecular mismatch score, when log
transformed, can appear as drastic log-differentials.
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Discussion

Imputation and self-identified ancestry

HLA genotype imputation is a controversial topic in molecular
HLA matching. Geneugelijk et al. reported a limited clinical impact
of the uncertainty introduced by multiple imputation, considering a
patient cohort mostly of European descent (Geneugelijk et al., 2017).
Opposed to that however, D’Souza et al. report considerable

deviations in molecular matching scores using single imputation
using most likely predictions through Haplostats (D’Souza et al.,
2018). A similar approach was used in analysis of Class II HLA-
derived AB-verified eplet scores by Renuncio-García et al. (2022). In
a cohort of 419 kidney transplant patients, Crane et al. (2024)
suggested high-resolution typing as a prerequisite for molecular
matching given the PIRCHE-II score deviations found in their
cohort. These studies suggest that imputation is a promising
approach to analyze ambiguous molecular matching data, so long

FIGURE 3
Proportions of noticeablemolecular mismatch deviations between high-resolution and aggregatedmultiple imputedmolecular matching scores. A
noticeable deviation is defined as a deviation in the Ln (PIRCHE-II) (A, B) or Ln (Snow) scores (C, D) greater than 0.1. Deviations introduced by imputation
of donor genotype is shown in (A, C), while imputation of the patient genotype is shown in (B, D). Heatmap cells show the proportion of cases that have
noticeable deviations across ancestry assumptions (lower is better).
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FIGURE 4
The Reliability of PIRCHE-II and Snow estimations in varying ancestry matching contexts. The X axis shows an overview of the patient and donor
groups stratified by cumulative percentile, with a Y axis showing the Delta Natural Log (PIRCHE-II) or Delta Natural Log (Snow). Colors represent whether
patients and/or donors are being imputed and whether or not the imputation ancestry matches the individuals’ ancestry. The solid and dashed lines show
contrast between aggregated multiple imputation against single imputation. This represents a comparison of maximum epitope error risk across a
sample in varying imputation contexts. The top panels (A–C) show Ln (PIRCHE-II) deltas (T cell epitopes), and the bottom panels (D–F) show Ln (Snow)
deltas (B cell epitopes). Reliability plots are shown for simulated datasets with separated Patient and Donor imputations (A, D), real world datasets from
Basel (B, E) and real-world UNC Data (C, F). No self-identified ancestry data was available for the Basel dataset, and all samples were assumed to fit the
“European Caucasian” categorization. In the UNC dataset, self-identified ancestry was provided in the five broad categories, and the relative numbers of
samples are shown in Supplementary Figure S2.
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as care is taken and certain restrictions are held. Imputation
approaches were successfully applied in large-scale retrospective
cohorts to enable molecular matching analyses, yet for specific cases,
imputationmay yield high deviations from the true molecular match
grade. As typing methods advance, real-time protein-level analysis
can be performed to confirm and refine the observations made here.

It is important to consider that self-identified race/ethnicity/
ancestry is not fool-proof and can introduce human error and
subsequent challenges in understanding patterns in HLA
genotypes and haplotypes (Hollenbach et al., 2015). Ancestry
may be intentionally or unintentionally incompletely represented
when it is self-reported. This is an important consideration when
choosing a reference ancestry for comparison and identifying
deviations from a reference epitope score. Thus, a reference
ancestry as it is used in this study is not to be considered as a
“correct” ancestry, but as a baseline for comparison. This is similar
to the concept of identifying genomic variance from a reference
sequence, where the reference is not necessarily more “correct” than
the analyzed variant.

We should note that the ancestry categorizations used within
this study and within the NMDP haplotype frequencies (Gragert
et al., 2013) are imperfect and do not fully capture the patterns in
genetic ancestry. Furthermore, these categorizations are not to be
considered an absolute truth or reflection of discrete differences in
populations. These categorizations may not reflect well-defined
population groups which adhere to commonly-accepted qualities
for use in statistical analysis such as random mating and Hardy-
Weinberg equilibrium (Chen et al., 1999). The simulated and real-
world patient and donor datasets do not represent any larger
populations, and population-level observations cannot be made
based on these datasets. Many of the ancestry categorizations
used within this study, such as “caucasian”, have been made
obsolete and are no longer appropriate as the common use
deviates from their original definition of originating from the
Caucasus (Gombault et al., 2023). Other studies, such as the
1,000 genomes project (Abi-Rached et al., 2018) use a distinct
system of genetic ancestry categorization, which if applied in an
imputation context could result in slightly varying conclusions and
interpretations. Comparing and contrasting these ancestry
categorizations and assessing these categories in, e.g., epitope
analysis based on imputation across these categories would be an
interesting followup study.

How to most effectively and ethically use ancestry
categorizations in transplantation is an ongoing discussion. This
is especially true within the NMDP, which periodically updates their
definitions as seen in the revision in the major definitions of SIRE
categorizations on donor recruitment forms in 2020 (Madbouly and
Bolon, 2024). It is critical to use care and exercise caution when
using these categorizations, and to keep in mind the ultimate aim of
providing equivalent access to medical care for all individuals.

As an alternative to imputation using a self-identified ancestry
categorization, it would be interesting to perform imputation based
on an assessed genomic ancestry category. This predicted
categorization could come from an HLA imputation algorithm
itself, as demonstrated in Israeli et al. (2023), or alternatively
from a separate test to determine genetic ancestry based on a
panel of polymorphism. Using, e.g., a panel of SNPs to directly
determine an individual’s genetic ancestry could alleviate some

human error involved with self-identification, and possibly
categorize individuals from admixed ancestry, as well as provide
assessment in cases where self-identified ancestry cannot be
practically, legally, or ethically obtained. However, this
assessment would introduce a separate set of ethical, consent,
practical, or financial challenges. To our knowledge, a curated
dataset directly correlating population-specific HLA haplotype
frequencies with directly-assessed genetic ancestry does not yet
exist, and can therefore not be practically applied in imputation
algorithms. In any case, directly assessing an individual’s genetic
ancestry would need to be undertaken only after consideration of the
ethical considerations.

Imputation quality

Depending on the ancestry used in imputation and whether or
not it matches the ground-truth ancestry, we observed a high
variance in rates of successful imputation (Figure 2A). However,
we also observed a poor success rate for ALANAM, a population
dataset for which very few haplotype frequencies are provided.
Notably, frequencies are provided for only 138 distinct
haplotypes (compared with, e.g., 37,645 available haplotype
frequencies for CAU), which reflects the very low sample size
from which these frequencies were derived (1,376 compared
with, e.g., 3,912,440 individuals used in estimating CAU
frequencies) (Gragert et al., 2013). The difficulty in imputing
based on this limited dataset suggests that for individuals that are
under-represented in the haplotype frequencies, imputations based
on broad groups may provide more helpful genotype predictions.
Specifically, in the case of ALANAM or other population groups
with lower representation in the haplotype frequencies, a more
accurate risk estimation could be made by assuming a broad
NAM population, which was generated based on 46,147 individuals.

Similar conclusions can be drawn when comparing mean allele
mismatches from relatively distinct ancestry groups. Notably, we
observed the highest mean allele mismatch counts when Filipino
individuals were imputed based on American Indian South or
Central America assumptions. This likely reflects a large genetic
distance between these two populations, as was previously reported
in Gragert et al. (2013) in the Nei’s Genetic Distance plot (Figure 2)
and Kendall Rank Correlation plot (Figure 4). This could indicate
that imputation based on more closely related (but still mismatched)
populations might be more successful or accurate as opposed to
distant and distinct populations. Categorizing imputation quality
and scaling by population genetic distance could be an interesting
followup study.

Epitope deviations

An interesting conclusion from Figures 3, 4 was that in the
context of PIRCHE-II, imputation of the patient genotype resulted
in more deviation than imputation of the donor genotype. This
conclusion is logical, because PIRCHE-II T cell epitopes are defined
by (donor-derived) peptides predicted to be presented in the context
of a (patient-derived) presenter HLA-DRB1. If a (patient) HLA-
DRB1 allele is “incorrectly” imputed and assessed, the erroneous
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HLA-DRB1 may predict a distinct potential peptidome and have a
notable effect on the resulting PIRCHE-II score. However, when a
single allele from the donor is “incorrectly” imputed and assessed,
we would expect a comparatively smaller number of potentially
presented peptides. This suggests that the availability of a patient
high-resolution genotype is more important in PIRCHE-II analysis
than the availability of a high-resolution donor genotype.

Conversely, we observed in Figures 3, 4 that imputed donor
genotypes had more of an effect on deviation in the context of Snow
B cell epitopes. This is also intuitive, as we define B cell epitopes by
predicted antibody-accessible amino acids on the surface of the
(donor-derived) HLA. Self-epitopes are only subtracted from a
molecular mismatch score if they are also found on the donor
HLA, so an “incorrectly” imputed and assessed patient-derived HLA
would be less likely to affect the predicted molecular mismatch load.
The suggestion here is that in Snow B cell analysis, the availability of
donor high-resolution genotype is more important than availability
of high-resolution patient genotype.

In Figure 4 we saw that there were rare cases in the single
imputation figures. In these cases of apparently high deviation, we
looked for the cause, and found that it can be explained by one of two
situations. In the first scenario, a very small differential is amplified
during the logarithmic transformation. In one specific case, the
high-resolution typing as simulated was a 9/10 match, wherein every
HLA-A, -B, -C, and -DRB1 allele matches. The only difference was in
HLA-DQB1, where a patient and donor had a DQB1*06:02 vs.
DQB1*06:04 mismatch. By reducing the genotypes to allele group
level and re-imputing, the resulting single-imputed genotypes are
identical. Therefore, imputation results in a slightly different
PIRCHE-II score; In the high-resolution case we saw a PIRCHE
score of 5, while in single imputation we see a score of 0. Both of
these scores are quite low and are not likely to result in a different
risk categorization. But the difference is somewhat drastically
amplified in the logarithmic Ln (PIRCHE) differential. This
suggests that in rare cases the process of single imputation can
lead to single allele discrepancies and care should be taken in
interpretation.

A second scenario was identified where the patient’s
homozygosity or heterozygosity can result in deviation molecular
mismatch scores. PIRCHE scores are derived from a count of
potential T cell epitopes. We consider a single distinct T cell
epitope as a presenter HLA combined with a putative presented
peptide. In the case of homozygous HLA-DRB1 individuals, there are
a lower number of distinct presenter HLAs compared with a
heterozygous individual, and epitopes defined by the two identical
homozygous presenters are not counted separately. This could indeed
affect comparability across clinical cases. This is a common challenge
among molecular matching algorithms, especially in imputed
PIRCHE, where uncertainty may be identified at multiple stages.
In the edge cases in Figure 4A with the highest deviation, the
difference can be attributed to patients who are ground-truth
HLA-DRB1 homozygous, but erroneously imputed to be HLA-
DRB1 heterozygous (or vice-versa), resulting in a log differential
reflecting approximately double (or half) the PIRCHE score. The
impact of heterozygosity and homozygosity in molecular matching
context is to be explored further in future studies.

A somewhat surprising observation was in the combined SUPER
dataset in Figures 2, 3. This set is created by combining, with equal

weight, haplotype frequencies from all 21 of the split ancestry
categories. Although this dataset does not nearly represent any
real-world population, it does have a wide variety of available
haplotypes which can be used in imputation. With such a wide
variety, it was successful in 100% of imputations (Supplementary
Figure S6A), but resulted in an average of 1.03 allele mismatches
(compared with the 0.73 observed in ancestry-matched imputation).
The CAU broad population also performed quite well in imputation
success with similar drawbacks in allele-level mismatches. This
suggests that in the absence of a known ancestry, or in situations
or countries where ancestry information cannot be practically or
ethically collected, SUPER could be a viable assumption, and
otherwise CAU. However, since this is a flawed assumption, and
especially based on the equally-distributed ancestry frequencies, this
would introduce risk and more reliable conclusions could be made
by using a correctly assessed ancestry.

Limitations

This study has several limitations. Only 5 HLA loci are
considered and assessed in this analysis, and T cell epitopes are
predicted only in the context of a presenter HLA-DRB1. Other HLA
loci are certainly important in transplantation (Daniëls et al., 2021),
and polymorphism across the MHC including all HLA loci could
help to define haplotype patterns (Matern et al., 2020). Furthermore,
imputing ancestry of human individuals will need to be considered
regarding ethics and investigated regarding IRB regulations.

The haplotype frequencies used in this study are based on the
2011 NMDP dataset (Gragert et al., 2013). This dataset was selected
due to its non-volatility and because of its common use within the
field. However, there may be value in using a more recent or
complete dataset. One alternative would be to use a broader set
of allele frequencies from, e.g., allelefrequencies.net (Gonzalez-
Galarza et al., 2020) which collects and provides global HLA
allele and haplotype frequencies. But there remains a challenge in
collecting and curating this data, which exists at varying HLA
genotype resolutions, and unstandardized definitions of ancestry
or geography. But it remains a challenge to collect and curate the
data at varying resolutions. Another idea would be to use frequency
data from alternative polymorphism datasets such as the
1,000 genomes project (Fairley et al., 2020), which categorizes
polymorphism in terms of population frequency. While HLA
information can be derived or assessed for the samples in this
project (Gourraud et al., 2014; Abi-Rached et al., 2018), it likely
is not suitable for use in analysis of ancestry-specific HLA haplotype
frequencies used in imputation, as the lower sample sizes and
targeted sample inclusion would not be able to generate
haplotype frequencies that reflect real-world donor and patient
populations.

Several other imputation contexts could be considered and
compared against imputation from first-field genotypes. For
example, this study could be extended by imputing a missing
genotype at a given locus. Another strategy would be to reduce
our ground-truth genotypes to antigenic equivalents or NMDP
multiple allele (MAC) codes, rather than first-field group-level
genotypes. And a third strategy would be, in the single
imputation approach, to randomly sample a genotype prediction
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from the full imputation output instead of selecting the most likely
genotype prediction. In all of these contexts, we might expect a
different range of differential scores, but would likely come to similar
conclusions regarding ancestry assumptions.

Conclusion

To the best of our knowledge, our study is the first to compare
uncertainty introduced by single and multiple imputation in the context
of molecular HLA matching and to quantify error introduced by
unknown or incorrectly configured ancestry. It confirms earlier
observations specific to a European cohort and is extended to more
global heterogeneous cohorts, as well as real-world populations, and
builds on previous observations on limited impact of imputation. We
have shown that choosing a population frequency dataset for imputation
that matches the ancestry of a patient or donor, compared to an
unmatched ancestry, can lead to more accurate imputation results
and epitope analysis. We have also shown that the use of multiple
imputation can lead to amore balanced analysis with lower rates of error
in epitope analysis compared with single imputation.

The comparatively low failure rates in strict imputation is
encouraging, and indicates that the use of adaptive imputation
strategies (Supplementary Figure S4) is a promising approach. It
further suggests that imputation by analyzing blocks of the MHC in
stronger linkage disequilibrium is a reasonable approach to predictmost
likely genotype combinations and suggests a need for refined
imputation algorithms. While reducing to known haplotypes from
subsets of the genotypes provides one shortcut to haplotype estimation,
there is room for improvement. The combined SUPER-population does
show promising results for a first-pass imputation strategy but should
be refined to find more likely haplotype combinations to more
accurately predict resulting genotypes.

These results reinforce that the use of high-resolution genotypes
will result in more accurate epitope predictions, and should be used
as a best-case solution, especially in cases where ancestry data cannot
be legally collected. But in the absence of high-resolution genotypes
in a vast majority of cases, the epitope scores will be similar and does
not result in clinically relevant distinct risk categorization.
Furthermore, this analysis can only be performed with the
availability of complete and high-quality data, and further
reinforces the value of providing and collecting self-reported race,
ethnicity, and ancestry data (Madbouly and Bolon, 2024).

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the University of
Basel Ethics Committee. The studies were conducted in accordance
with the local legislation and institutional requirements. Written
informed consent for participation was not required from the

participants or the participants’ legal guardians/next of kin in
accordance with the national legislation and institutional requirements.

Author contributions

BM:Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. ES:
Conceptualization, Methodology, Writing–review and editing. SB:
Investigation, Validation, Visualization, Writing–original draft,
Writing–review and editing. AM: Conceptualization, Data curation,
Methodology, Validation, Visualization, Writing–original draft,
Writing–review and editing. SS: Data curation, Resources, Validation,
Writing–original draft, Writing–review and editing. EW: Data curation,
Validation, Writing–original draft, Writing–review and editing. MN:
Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Project administration, Software, Supervision, Validation,
Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

Thanks to Loren Gragert and Alyssa Paynter for their insights
on techniques of imputation analysis and validation.

Conflict of interest

Authors BM, SB, and MN were employed by PIRCHE AG.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1444554/
full#supplementary-material

Frontiers in Genetics frontiersin.org11

Matern et al. 10.3389/fgene.2024.1444554

https://www.frontiersin.org/articles/10.3389/fgene.2024.1444554/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1444554/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1444554


SUPPLEMENTARY FIGURE S1
Twenty-one detailed ancestry categories and descriptions and five broad ancestry
categorieswere considered as suggested byGragert et al. (2013). In parentheses is
the number of individuals from which these haplotype frequencies were
generated, as shown in Tables 1, 2 of Gragert et al. (2013). An artificial SUPER-
population aggregating all haplotype frequencies has been generated.

SUPPLEMENTARY FIGURE S2
Broad ancestry categories in the UNC dataset. The 9,471 analyzed samples
from a dataset provided by University of North Carolina at Chapel Hill varied
in their self-reported ancestry categories. Most samples had a self-
identified CAU or AFA ancestry.

SUPPLEMENTARY FIGURE S3
Unphased HLA genotyping methods do not identify the maternal and
paternal haplotypes but only provide a list of HLA genes. A high number of
combined haplotypes can thus explain the provided typing result.

SUPPLEMENTARY FIGURE S4
For haplotypes not present in the frequency table, a stepwise removal of
linkage between HLA loci is considered by the PIRCHE
imputation algorithm.

SUPPLEMENTARY FIGURE S5
Imputation performance based on number of allele mismatch. Heatmaps
indicating different evaluation metrics for comparing the imputed
genotypes with the ground-truth genotypes. Both the results for the
patients and donors were used, considering that only the actual performance
of the imputation is evaluated here. The results were evaluated with the AUC
score (A), Brier score (B), weighted F1-score (C) and balanced accuracy (D).
The scaling differs between the different evaluation metrics: in panels (A, C,
D) a higher score indicates better performance, but a Brier score (B)
measures mean-squared error, and thus lower is better. In all panels a
darker blue color indicates better observed performance.

SUPPLEMENTARY FIGURE S6
Imputation Quality in Strict Imputation. Heatmap (A) shows relative rates of
failed imputation, where valid haplotype pairs were not found based on
ancestry assumptions (lower is better). Rates of failure are higher than in
non-strict imputation (Figure 2A). Heatmap (B) shows mean allele-level
mismatches between the high-resolution genotype and the successfully
single imputed genotype (lower is better). In strict imputation we observed

fewer allele mismatches in general in the (comparatively rare) successful
imputations, compared with non-strict imputation.

SUPPLEMENTARY FIGURE S7
Comparison of proportions of noticeable PIRCHE-II deviations between the
aggregated multiple imputed context and the single imputed context.
Panels (A, B) show deviations in donor imputation, while panels (D, E) show
deviations in patient imputation. Panels (C, F) indicate a comparison between
deviations between the aggregated and single imputed contexts.

SUPPLEMENTARY FIGURE S8
Comparison of proportions of noticeable PIRCHE-II deviations between the
aggregated multiple imputed context and the single imputed context in
strict imputation. Panels (A, B) show deviations in donor imputation, while
panels (D, E) show deviations in patient imputation. Panels (C, F) indicate a
comparison between deviations between the aggregated and single
imputed contexts.

SUPPLEMENTARY FIGURE S9
Comparison of proportions of noticeable Snow deviations between the
aggregated multiple imputed context and the single imputed context.
Panels (A, B) show deviations in donor imputation, while panels (D, E) show
deviations in patient imputation. Panels (C, F) indicate a comparison between
deviations between the aggregated and single imputed contexts.

SUPPLEMENTARY FIGURE S10
Comparison of proportions of noticeable Snow deviations between the
aggregated multiple imputed context and the single imputed context in
strict imputation. Panels (A, B) show deviations in donor imputation, while
panels (D, E) show deviations in patient imputation. Panels (C, F) indicate a
comparison between deviations between the aggregated and single
imputed contexts.

SUPPLEMENTARY FIGURE S11
Imputing pairs of low-resolution HLA data. This figure shows a pessimistic
estimation of risk, by imputing the patient and donor from low-resolution
genotypes. Lines are separated by whether or not the patient and donor
used a correct ancestry assumption in imputation. We observe in all cases
that risk is reduced when the correct ancestry is assumed for both the
patient and donor, compared to when both are imputed under wrong
ancestry assumptions.
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