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Background: Sepsis is a serious condition that occurs when the body’s response
to infection becomes uncontrolled, resulting in a high risk of death. Despite
improvements in healthcare, identifying sepsis early is difficult because of its
diverse nature and the absence of distinct biomarkers. Recent studies suggest
that 5-methylcytosine (m5C)-related genes play a significant role in immune
responses, yet their diagnostic potential in sepsis remains unexplored.

Methods: This research combined and examined four sepsis-related datasets
(GSE95233, GSE57065, GSE100159, and GSE65682) sourced from the Gene
Expression Omnibus (GEO)database to discover m5C-related genes with
differential expression. Various machine learning methods, such as decision
tree, random forest, and XGBoost, were utilized in identifying crucial hub
genes. Receiver Operating Characteristic (ROC) curve analysis was used to
assess the diagnostic accuracy of these genetic markers. Additionally, single-
gene enrichment and immune infiltration analyses were conducted to investigate
the underlying mechanisms involving these hub genes in sepsis.

Results: Three hub genes, DNA Methyltransferase 1 (DNMT1), tumor protein P53
(TP53), and toll-like receptor 8 (TLR8), were identified and validated for their
diagnostic efficacy, showing area under the curve (AUC) values above 0.7 in both
test and validation sets. Enrichment analyses revealed that these genes are
involved in key pathways such as p53 signaling and Toll-like receptor
signaling. Immune infiltration analysis indicated significant correlations
between hub genes and various immune cell types, suggesting their roles in
modulating immune responses during sepsis.

Conclusion: The study highlights the diagnostic potential of m5C-related genes
in sepsis and their involvement in immune regulation. These findings offer new
insights into sepsis pathogenesis and suggest that DNMT1, TP53, and TLR8 could
serve as valuable biomarkers for early diagnosis. Further studies should prioritize
validating these biomarkers in clinical settings and investigating their potential for
therapy.
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1 Introduction

Sepsis is a serious condition caused by an uncontrolled reaction of
the body to an infection, resulting in organ failure and a high risk of
death (Singer et al., 2016). The Global Burden of Disease Study reports
that sepsis impacts around 49 million people each year and results in
11 million deaths globally, making up almost a fifth of all worldwide
fatalities (Rudd et al., 2020). Even with improvements in healthcare,
identifying and treating sepsis continues to be difficult because of its
diverse characteristics and the absence of distinct biomarkers (Seymour
et al., 2016; Singer et al., 2016). Current diagnostic methods rely heavily
on clinical criteria and laboratory tests that often lack sensitivity and
specificity, leading to delays in diagnosis and treatment (Gotts and
Matthay, 2016). Hence, it is imperative to develop new indicators that
can enhance the timely detection and prediction of sepsis.

Recent research has emphasized the significance of epigenetic
changes, like methylation, in the development of different illnesses,
including sepsis (Bomsztyk et al., 2015; van der Poll et al., 2017). One of
the changes that has received focus is m5C, which is known for its
control over gene expression and immune system reactions (Wnuk
et al., 2020; Qin et al., 2021; Zhang et al., 2022; Tian et al., 2023). Studies
have shown that genes related to m5C play a role in controlling the
function of immune cells and the body’s inflammatory reactions, both
of which are crucial in the advancement of sepsis (Medzhitov, 2008;
Angus and van der Poll, 2013). In cancer studies, m5C has been
demonstrated to impact the tumor microenvironment and
infiltration of immune cells (Zhang et al., 2020; Song et al., 2022; Yu
et al., 2022; Gu et al., 2023; Zhang et al., 2023), indicating its possible
involvement in regulating immune reactions during sepsis. However,
the diagnostic potential and immunological implications of m5C-
related genes in sepsis remain largely unexplored.

This study aimed to explore the diagnostic effectiveness and
immune infiltration features of m5C-associated genes in cases of
sepsis. To identify m5C-related genes and their associated biological
pathways, we examined four sepsis-related datasets (GSE95233,
GSE57065, GSE100159, and GSE65682) obtained from the GEO
database through integration and analysis. Machine learning
techniques were employed to select key hub genes, and their
diagnostic performance was evaluated using ROC curve analysis.
Additionally, we conducted an analysis of individual genes to
identify enrichment and immune infiltration, aiming to understand
the possible mechanisms that contribute to the role of these central
genes in sepsis.

By providing a comprehensive analysis of m5C-related genes in
sepsis, our study aims to uncover novel biomarkers that can enhance
the early diagnosis and understanding of the immunological
landscape of this complex disease.

2 Materials and methods

2.1 Acquisition and merging of datasets

The datasets GSE95233, GSE57065, GSE100159, and
GSE65682 related to sepsis were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) (Table 1). The data
platforms of GSE95233 and GSE57065 were GPL570.
GSE95233 contained 22 normal samples and 102 sepsis samples.
In GSE57065, there are 25 samples classified as normal and
82 samples classified as sepsis. These two datasets were combined
using the R package inSilicoMerging, followed by the application of
the COMBAT method to eliminate batch effects. The merged
dataset was used as the test set. The GSE100159 data platform
was GPL6884, which contained 12 normal samples and 35 sepsis
samples. The GSE65682 data platform was GPL13667, which
contained 42 normal samples and 479 sepsis samples. The
required samples were extracted as the validation set, respectively.

2.2 Difference analysis and
enrichment analysis

According to the information on sample grouping, the groups were
analyzed differentially using the limma package in R. The genes with
adjusted p-value <0.05 and |logFC| > 0.263 (equivalent to a 1.2-fold
difference) were identified as differentially expressed genes (DEGs). The
differentially expressed genes were visualized using volcano plots created
with the ggplot2 package in R. A total of 48 m5C-related genes were
gathered from GeneCards (https://www.genecards.org/). The overlap
between the differentially expressed genes and m5C-related genes was
determined using a Venn diagram, resulting in m5C-related differential
genes. These m5C-related differential genes were then depicted in a
heatmap using the R package pheatmap. The clusterProfiler package in R
was utilized to conduct gene ontology (GO) functional annotation
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis for m5C-related differential genes.

2.3 Machine learning screening of hub genes

In order to screen the most diagnostically significant m5C-
related genes, we used R’s rpart package for decision tree analysis,
the randomForest package for random forest analysis, and the
xgboost package for XGBOOST analyses. We then performed
importance analysis on the included genes, respectively. We
selected only the top 5 genes in importance from each method
and used the common genes among them as hub genes.

2.4 Analysis and validation of hub genes
diagnostic efficacy

ROC analysis was performed using the pROC package in R. The
results were visualized using ggplot2 to assess the diagnostic efficacy
of the hub gene, with an AUC >0.7 indicating high diagnostic
efficacy. The diagnostic efficacy of the hub gene was verified using
GSE100159 and GSE65682.

TABLE 1 Information on selected datasets.

Dataset Normal
(N)

Sepsis
(N)

Platform Attribute

GSE95233 22 102 GPL570 Test set

GSE57065 25 82

GSE100159 12 35 GPL6884 Validation
set

GSE65682 42 479 GPL13667
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2.5 Single gene enrichment analysis of
hub genes

We obtained the Gene Set Enrichment Analysis (GSEA)
software (version 3.0) from the website of GSEA (http://software.
broadinstitute.org/gsea/index.jsp) and divided the samples into a
high expression group (≥50%) and a low expression group (<50%)
according to the expression level of the hub gene. We downloaded
the c2. cp.kegg.v7.4. symbols.gmt subset from the Molecular
Signatures Database (http://www.gsea-msigdb.org/gsea/
downloads.jsp) to assess relevant pathways and molecular
mechanisms. During GSEA analysis, based on gene expression
profiles and phenotypic grouping, we set a minimum gene set of
5 and a maximum gene set of 5,000. One thousand resamplings were
performed, and a p-value <0.05 and a false discovery rate (FDR) < 0.
25 were considered statistically significant.

2.6 Immune infiltration analysis

To further explore the similarities and differences in the levels of
immune cell infiltration between the two groups of samples, we
uploaded the merged dataset (GSE95233 and GSE57065) to
CIBERSORTx (https://cibersortx.stanford.edu/) and analyzed the
immune cell infiltration using LM22 as the reference dataset, with
the cutoff point set to a p-value <0.05. We plotted bar graphs in R to
illustrate the percentage of each immune cell type in individual
samples, box line plots to show the infiltration of all immune cells
under different grouping scenarios, and correlation plots to show
correlation plots between each immune cell and each hub gene. In
addition, to directly view the correlation between hub genes and
immune cell infiltration levels, correlation scatter plots were
generated, and correlation curves were fitted for gene-immune
cell pairs with significant correlations (correlation coefficients
greater than 0.6).

2.7 Statistical analyses

Data processing and analysis were conducted using Excel
(Microsoft) and R software (version 4.2.1). To compare two sets
of continuous variables, the independent Student’s t-test was used to
determine statistical significance for normally distributed variables,
while the Mann-Whitney U test (also known as the Wilcoxon rank
sum test) was used for non-normally distributed variables. Either the
chi-square test or Fisher’s exact test was utilized for comparing and
analyzing the statistical significance of two groups of categorical
variables. The Kruskal–Wallis test was utilized for comparing
multiple groups, while the Wilcoxon test was employed for
comparing two groups. A two-tailed p-value <0.05 was
considered statistically significant.

2.8 Ethics statement

No ethical approval was necessary for the human studies as the
data from the GEO database is easily accessible to the public.
Participants or their legal guardians/next of kin were not

required to provide written informed consent to take part in this
study, as per national laws and institutional guidelines.

3 Results

3.1 Data pre-processing

Figure 1 shows the full text analysis flow. Figure 2 displays the
box-and-line and UMAP plots comparing data distribution before
and after batch effect removal for themerged dataset (GSE95233 and
GSE57065 merged). The box plots (Figures 2A, B) reveal significant
differences in the sample distribution of each dataset prior to batch
effect removal, indicating the presence of a batch effect. However,
after batch effect removal, the data distribution among datasets
becomes more consistent, with the median aligning on a straight
line. The UMAP plot (Figures 2C, D) indicates that the samples
within each dataset are closely grouped prior to batch effect removal,
implying the presence of a batch effect. Subsequently, the samples
from each dataset are intermingled post-batch effect removal,
indicating successful elimination of the batch effect.

3.2 Screening and enrichment analyses of
m5C-related DEGs

Differential expression analyses of 47 normal samples and
184 sepsis samples from the merged data (GSE95233 and
GSE57065 merged) cohort were performed using the limma
package, and a total of 6,390 DEGs were identified and plotted in
a volcano diagram (Figure 3A). A total of 48 genes associated with
m5C were gathered from GeneCards (Supplementary Table 1), and
29 differential genes related to m5C were identified by overlapping
the differential genes with m5C-related genes using a Venn diagram
(Figure 3B; Supplementary Table 2). Heatmaps for the m5C-related
differential genes were then created (Figure 3C). Functional
annotation analysis and pathway enrichment analysis were
conducted to identify the biological functions of the m5C-related
genes using the clusterProfiler package of R. The m5C-related genes
were primarily associated with large molecule modification, RNA
modification, and cellular stress response. They were also found to
be enriched in pathways such as the p53 signaling pathway, central
carbon metabolism in cancer, and Toll-like receptor signaling
pathway (Figure 3D; Supplementary Table 3).

3.3 Three machine learning screens for
hub genes

We performed three machine learning algorithms to analyze the
29 m5C-related differential genes, including Decision Tree,
XGB00ST, and Random Forest, and also showed the variable
importance of the different algorithms (Figures 4A–C). To screen
the most diagnostically significant genes, we selected only the top
5 genes in importance from each method and used the common
genes among them as hub genes, and the genes intersected by the
3 methods were DNMT1, TP53, and TLR8 (Figure 4D;
Supplementary Table 4).
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3.4 Validation of hub genes expression
differences and diagnostic performance

The merged data from GSE95233 and GSE57065 showed a
significant decrease in the expression of DNMT1 and TP53 in the
sepsis group compared to the control group, while the expression of
TLR8was significantly elevated in the sepsis group (Figure 5A), and the
ROC analysis found the AUC to be 0.979, 0.967, and 0.944 forDNMT1,
TP53, and TLR8, respectively (Figure 5D). In the validation set
GSE100159, the sepsis group showed significantly decreased levels of
DNMT1 and TP53 compared to the control group, along with
significantly increased levels of TLR8 (Figure 5B). The AUC values
from ROC analysis were 0.905, 0.740, and 0.950 forDNMT1, TP53, and
TLR8, respectively (Figure 5E).Within the GSE65682 validation set, the
levels of DNMT1 and TP53 were notably reduced in the sepsis group

compared to the control group, while TLR8 levels were significantly
elevated in the sepsis group (Figure 5C). The ROC analysis indicated
AUC values of 0.990, 0.797, and 0.889 for DNMT1, TP53, and TLR8,
respectively (Figure 5F). To sum up, in our research, in both the test set
and the validation set, DNMT1, TP53, and TLR8 exhibited notable
variations in expression levels between normal and sepsis sample
groups. The AUCs of these three central genes exceeded 0.7,
indicating a distinct diagnostic significance.

3.5 Single gene enrichment analysis of
hub genes

In the merged data (GSE95233 and GSE57065 merged),
single-gene GSEA analyses were performed on the three hub

FIGURE 1
Flowchart of full text analysis. GEO, gene expression omnibus; m5C, 5-methylcytosine; DEGs, differentially expressed genes; GO, gene ontology;
GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic.
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genes to obtain the associated pathways for each gene (Figures
6B–D), with 25 significantly enriched pathways by single-gene
GSEA analysis for DNMT1 (Supplementary Table 5),
15 significantly enriched pathways by single-gene GSEA
analysis for TP53 (Supplementary Table 6), and 27 pathways
were significantly enriched by single-gene GSEA analysis for
TLR8 (Supplementary Table 7). By intersecting the three hub
genes using a Venn diagram (Figure 6A), four common
significantly enriched pathways were identified: allograft
rejection, graft versus host disease, primary immunodeficiency,
and t cell receptor signaling pathway. These pathways, crucial for
the immune system, indicate that the three hub genes may be

pivotal in sepsis development through immune response
regulation.

3.6 Immune infiltration analysis

The CIBERSORT method was utilized to assess the variations
in immune cell penetration between standard samples and sepsis
samples. A bar chart was employed to demonstrate the
proportion of each kind of immune cell in individual samples
(Supplementary Figure 1), while a box plot was created to exhibit
the penetration of all immune cells under various grouping

FIGURE 2
Data set merging and de-batching. (A) Box line plot of data distribution comparison before data pooling and removal of batch effect for
GSE95233 and GSE57065; (B) Box line plot of data distribution comparison after data pooling and removal of batch effect for GSE95233 and GSE57065;
(C) Umap plot of data distribution comparison before data pooling and removal of batch effect for GSE95233 and GSE57065; (D) Umap plot of data
distribution comparison between GSE95233 and GSE57065 data set and after removal of batch effect.

Frontiers in Genetics frontiersin.org05

Lin et al. 10.3389/fgene.2024.1444003

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1444003


conditions (Figure 7). The findings revealed that the immune
cells showing distinct penetration levels between standard
samples and sepsis samples included B cells naive, plasma
cells, T cells CD8, T cells CD4 naive, T cells CD4 memory
resting, T cells CD4 memory activated, T cells regulatory
(Tregs), T cells gamma delta, NK cells resting, NK cells
activated, monocytes, macrophages M0, macrophages M2,
dendritic cells resting, dendritic cells activated, mast cells
activated, eosinophils, and neutrophils (Figure 7A). The
immune cells displaying different penetration levels between
the high and low expression groups of DNMT1 comprised
B cells naive, plasma cells, T cells CD8, T cells CD4 naive,
T cells CD4 memory resting, T cells follicular helper, NK cells
resting, monocytes, macrophages M0, macrophages M1,
macrophages M2, dendritic cells resting, mast cells resting,

mast cells activated, and neutrophils (Figure 7B). The immune
cells manifesting diverse penetration levels between the high and
low expression groups of TP53 encompassed B cells naive, plasma
cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting,
T cells gamma delta, NK cells resting, macrophages M0,
macrophages M2, dendritic cells resting, dendritic cells
activated, eosinophils, and neutrophils (Figure 7C). The
immune cells with varying penetration levels between the high
and low expression groups of TLR8 included B cells naive, plasma
cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting,
T cells regulatory (Tregs), NK cells resting, monocytes,
macrophages M0, macrophages M2, dendritic cells resting,
dendritic cells activated, and neutrophils (Figure 7D).

Figure 8 displays correlation plots showing the connections
between individual hub genes and various types of immune cells.

FIGURE 3
Screening and enrichment analysis of m5C-related DEGs. (A) Volcano plot of expression differences between normal and sepsis sample groups in
the combined data (GSE95233 and GSE57065 combined) cohort. (B) Wayne plots of differential and m5C-related genes. (C) Heatmap of m5C-related
differential gene expression in the combined data cohort. (D) Bar graph of GO and KEGG analysis of m5C-related differential genes. BP, biological
processes; CC, cellular components; MF, molecular functions; m5C, 5-methylcytosine; DEGs, differentially expressed genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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DNMT1 exhibited strong associations with T cells CD8 (R = 0.63)
(Figure 9A), T cells CD4 naive (R = 0.60) (Figure 9B), and NK cells
resting (R = 0.61) (Figure 9C), while showing an inverse relationship
with neutrophils (R = −0.69) (Figure 9D). TP53 showed a strong
positive association with CD8 T cells (R = 0.63) (Figure 9E) and a
negative correlation with neutrophils (R = −0.62) (Figure 9F). TLR8
exhibited inverse relationships with CD8 T cells (R = −0.71)
(Figure 9G) and resting NK cells (R = −0.63) (Figure 9H), while
demonstrating a direct correlation with neutrophils (R =
0.73) (Figure 9I).

4 Discussion

Sepsis is a serious medical condition caused by an uncontrolled
reaction of the body to an infection, resulting in organ failure and a
high risk of death (Singer et al., 2016). It poses a significant burden
on healthcare systems worldwide, with millions of cases reported
annually and substantial healthcare costs (Rudd et al., 2020). The
intricate nature of sepsis pathophysiology, which includes complex

interactions among the immune system and different organ systems,
makes diagnosing and treating it challenging (van der Poll et al.,
2017; Cecconi et al., 2018). Early and accurate diagnosis is crucial for
improving patient outcomes, yet current diagnostic methods are
often insufficiently sensitive or specific (Gotts and Matthay, 2016;
Seymour et al., 2016). Hence, it is crucial to develop new indicators
and diagnostic instruments to improve the early identification and
treatment of sepsis.

The research is centered on exploring the diagnostic
capabilities of m5C-associated genes in sepsis and their
impact on immune infiltration, with the goal of connecting
molecular mechanisms to practical clinical use. Through the
integration of various sepsis-related datasets and the utilization
of advanced bioinformatics and machine learning methods, we
discovered crucial m5C-associated genes that are differentially
expressed and identified hub genes that have a strong diagnostic
performance (AUC >0.7). These findings were further validated
in independent datasets, underscoring their robustness and
potential clinical utility. Additionally, the study’s immune
infiltration analysis revealed significant correlations between

FIGURE 4
Three machine learning screening hub genes. (A) Variable Importance in Decision Tree. (B) Variable Importance in XGB00ST. (C) Variable
Importance in Random Forest. (D) Wayne diagram of three machine learning screening hub genes.
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hub genes and immune cell types, providing new insights into
the immune regulatory mechanisms in sepsis. This thorough
method not only improves our comprehension of sepsis
development but also opens up opportunities for creating
more accurate diagnostic and treatment plans.

The enrichment analysis results from our study revealed that the
m5C-related DEGs are significantly involved in several key
biological processes and pathways, including macromolecule
methylation, RNA methylation, and the p53 signaling pathway.
The results align with earlier research emphasizing the
significance of RNA alterations and the p53 pathway in
controlling immunity and responding to cellular stress (Vousden
and Prives, 2009; Smith and Meissner, 2013; Levine, 2020).
Specifically, the p53 signaling pathway is well-known for its role
in regulating cell cycle, apoptosis, and genomic stability, which are
critical processes in the pathophysiology of sepsis (Vousden and
Lane, 2007; Kastenhuber and Lowe, 2017).

DNMT1, TP53, and TLR8 were identified as hub genes through
our machine learning analysis, and their diagnostic effectiveness was
confirmed with AUC values exceeding 0.7. DNMT1 plays a crucial
role in DNAmethylation, which is linked to controlling gene activity
and immune system reactions (Cedar and Bergman, 2012; Moore
et al., 2013). The TP53 gene, known for suppressing tumors, is
essential for responding to cellular stress and has been found to
engage with different immune pathways (Vousden and Lane, 2007;
Vousden and Prives, 2009). TLR8 belongs to the Toll-like receptor
group, playing a crucial role in identifying pathogens and triggering
the body’s natural defense system (Kawai and Akira, 2010;
Eigenbrod et al., 2015).

The analysis of a single gene using GSEA showed significant
enrichment of DNMT1, TP53, and TLR8 in immune-related
pathways like allograft rejection. This route plays a role in the
body’s defense against transplanted tissues and has similarities with
the immune system dysfunction seen in sepsis. The presence of these

FIGURE 5
Differential expression of the hub gene in normal and sepsis samples and its ROC analysis results. (A) Violin plot showing the expression difference of
DNMT1, TP53, and TLR8 genes in normal vs sepsis groups in the merged data (GSE95233 and GSE57065 merged). (B) Violin plot showing the expression
differences of DNMT1, TP53, and TLR8 genes in the GSE100159 dataset in the normal group vs the sepsis group. (C) Violin plot showing the expression
differences of DNMT1, TP53, and TLR8 genes in the GSE65682 dataset in the normal group versus the sepsis group. (D) ROC curves analyzing the
diagnostic efficacy of the three hub genesDNMT1, TP53, and TLR8 in the combined data (GSE95233 and GSE57065 combined). (E) ROC curves analyzing
the diagnostic efficacy of the three hub genes DNMT1, TP53, and TLR8 in the GSE100159 dataset. (F) ROC curves analyzing the diagnostic efficacy of the
three hub genes DNMT1, TP53, and TLR8 in the GSE65682 dataset.
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hub genes in pathways related to the immune system highlights their
possible involvement in regulating immune reactions in cases
of sepsis.

The analysis of immune cell infiltration showed notable
variations in the quantities of different immune cells in normal
and sepsis samples, as well as in groups with high and low expression
of the hub genes DNMT1, TP53, and TLR8. DNMT1 and TP53
showed a strong positive relationship with T cells CD8 (R = 0.63 for
both) and a negative relationship with neutrophils (R = −0.69 and
R = −0.62, respectively). In contrast, there was an inverse
relationship between TLR8 and CD8 T cells (R = −0.71), while a
direct correlation was observed with neutrophils (R = 0.73). These
findings are consistent with previous studies that have highlighted
the critical role of T cells CD8 and neutrophils in the immune
response during sepsis (Hotchkiss and Karl, 2003; Boomer
et al., 2011).

T cells CD8 are known for their cytotoxic functions, which
are essential for eliminating infected cells and controlling
infections (Harty et al., 2000). The connection between
DNMT1 and TP53 implies that these genes could help boost

the cytotoxic reaction, possibly aiding in the elimination of
pathogens during sepsis. On the other hand, neutrophils are
the first responders to infection and are crucial for the initial
immune response (Kolaczkowska and Kubes, 2013; Fine et al.,
2020; Richardson et al., 2021). However, their excessive
activation can lead to tissue damage and exacerbate sepsis
(Kolaczkowska and Kubes, 2013). The negative correlation of
DNMT1 and TP53 with neutrophils implies a potential regulatory
role in mitigating the detrimental effects of neutrophil
overactivation (Formosa et al., 2022).

TLR8, part of the Toll-like receptor group, plays a role in
identifying pathogens and triggering the body’s natural defense
system (Kawai and Akira, 2010; Eigenbrod et al., 2015). Its
positive correlation with neutrophils and negative correlation
with T cells CD8 suggests a complex regulatory mechanism
where TLR8 may enhance the innate immune response while
potentially suppressing the adaptive immune response. This dual
role could be critical in the context of sepsis, where a balanced
immune response is necessary to control infection without causing
excessive inflammation (Venet and Monneret, 2018).

FIGURE 6
Single gene enrichment analysis and intersection pathway analysis of hub genes. (A) Screening of DNMT1, TP53, and TLR8 for single gene
enrichment analysis of significantly enriched pathways inWayne plots. (B) Single gene enrichment analysis ofDNMT1. (C) Single gene enrichment analysis
of TP53. (D) Single gene enrichment analysis of TLR8.
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FIGURE 7
Analysis of differences in immune cell infiltration between groups of normal and sepsis samples and at different hub gene expression levels. (A)
Differences in immune cell infiltration between normal and sepsis samples. (B) Differences in immune cell infiltration between groups with high and low
DNMT1 expression. (C) Differences in immune cell infiltration between high and low TP53 expression groups. (D) Differences in immune cell infiltration
between high and low TLR8 expression groups.
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Discovering these connections offers fresh perspectives on the
immune control processes in sepsis, emphasizing the possibility of
DNMT1, TP53, and TLR8 as markers for diagnosis and targets for
treatment. Comprehending how these hub genes interact with the
infiltration of immune cells can assist in creating better approaches
for treating sepsis, leading to enhanced results for patients.

Although the results are promising, there are various constraints
in this research. Firstly, the research relies solely on bioinformatics
analysis without incorporating wet lab experiments, which could
provide more direct evidence to support the computational
predictions. Secondly, while we utilized large datasets from the
GEO database, the absence of specific bioinformatic data on
sepsis subtypes prevented a more granular analysis. As a result,
we treated sepsis as a homogeneous entity, which is a limitation
given the diverse etiologies and mechanisms involved in sepsis.
Thirdly, the sample size, although pooled from various datasets, may
not fully capture the heterogeneity of sepsis, potentially limiting the
generalizability of our findings. Moreover, the lack of clinical
validation means that the diagnostic potential of the identified
hub genes remains to be confirmed in real-world settings. Finally,
while the integration of multiple datasets increased the overall
sample size, the possibility of batch effects, despite mitigation
efforts using the COMBAT method, may still influence the
results and their interpretation.

5 Conclusion

In summary, this study successfully identified m5C-related
differentially expressed genes in sepsis and highlighted their
potential biological functions through GO and KEGG enrichment
analyses. Through the utilization of machine learning methods, we
pinpointed crucial central genes that exhibit strong diagnostic
effectiveness, as illustrated by the analysis of ROC curves and
subsequently confirmed in separate datasets. Analysis of gene
enrichment and immune infiltration in a single gene shed light
on the molecular mechanisms and immune regulatory functions of
these central genes in cases of sepsis. Despite the limitations, these
findings offer a new perspective on the diagnosis and immune
regulation of sepsis, paving the way for future research and
potential clinical applications. Future studies should aim to
validate these findings through wet-lab experiments and clinical
trials to confirm their diagnostic and therapeutic potential.
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FIGURE 8
Heatmap of correlation analysis between each immune cell and each hub gene.
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