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Nanopore sequencing, renowned for its ability to sequenceDNA and RNA directly
with read lengths extending to several hundred kilobases or even megabases,
holds significant promise in fields like transcriptomics and other omics studies.
Despite its potential, the technology’s limited accuracy in base identification has
restricted its widespread application. Although many algorithms have been
developed to improve DNA decoding, advancements in RNA sequencing
remain limited. Addressing this challenge, we introduce GCRTcall, a novel
approach integrating Transformer architecture with gated convolutional
networks and relative positional encoding for RNA sequencing signal
decoding. Our evaluation demonstrates that GCRTcall achieves state-of-the-
art performance in RNA basecalling.
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Introduction

Nanopore sequencing technology directly sequences single strands of DNA or RNA by
detecting changes in electrical current as the molecules pass through nanopores, eliminating the
need for PCR amplification. This technique enables rapid single-molecule sequencing with
significantly increased read lengths, reaching hundreds of kilobases or even magabases. It holds
immense potential in various omics sequencing studies such as genomics, transcriptomics,
epigenomics, and proteomics (Amarasinghe et al., 2020; Garalde et al., 2018; Jain et al., 2022; Sun
et al., 2020; Jain et al., 2018; Davenport et al., 2021; Quick et al., 2016; Wang et al., 2015; Faria
et al., 2017; Yakovleva et al., 2022; Boykin et al., 2019; Zhao et al., 2022).

Despite its advantages, the accuracy of basecalling has emerged as a significant
bottleneck, limiting further broader application of nanopore sequencing. Sequencing
signals are influenced not only by individual nucleotides but also by neighboring bases,
resulting in non-uniform translocation of the sequences and low signal-to-noise ratios
measured in picoamperes (pA). These challenges make accurate basecalling in nanopore
sequencing particularly difficult (Jain et al., 2022; Wick et al., 2019; Wang et al., 2021).

In recent years, several algorithms have been developed to improve the accuracy of
nanopore sequencing signal decoding and methylation detection. Methods like Metrichor
and Nanocall (David et al., 2017), which utilize Hidden Markov Models (HMM) (Niu et al.,
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2022), segment events in the current signal and calculate transition
probabilities for basecalling. Other approaches, such as Chiron (Teng
et al., 2018), Deepnano (Boža et al., 2017), and Guppy, leverage
Recurrent Neural Network (RNN) architectures, while Causalcall
(Zeng et al., 2019) and RODAN (Neumann et al., 2022) employ
Convolutional Neural Network (CNN) architectures to achieve end-
to-end basecalling. Additionally, SACall incorporates self-attention
mechanisms into nanopore signal decoding (Huang et al., 2022). Liu
Q. et al. (2019) proposed DeepMod based on bidirectional long short-
term memory (LSTM) (Chen et al., 2022) architecture to detect DNA
modifications. Ni et al. (2019) developed DeepSignal by combining
LSTM and Inception structure for DNA methylation prediction. Yin
et al. (2024) constructed NanoCon through Transformer and
contrastive learning for DNA modification detection. However, with
the exception of RODAN (Neumann et al., 2022), the focus of these
methods is primarily on DNA basecalling and modification prediction,
with limited research in RNA decoding.

Unlike several hundreds base pairs per second (bps)
translocation speed for DNA, RNA translocates at only about or
below 100 bps. Additionally, there are substantial differences in the
physical and chemical properties between DNA and RNA, resulting
in distinct signal patterns. Consequently, models designed for DNA
basecalling are usually ineffective for RNA signal decoding. To
address this gap, we propose GCRTcall, a Transformer based
basecaller for nanopore RNA sequencing, enhanced by Gated
Convolution and Relative position embedding through joint loss
training. This method achieves state-of-the-art decoding accuracy
on multi-species transcriptome sequencing data.

Materials and methods

Benchmark dataset

The benchmark dataset used in this study was proposed by
Neumann et al. (Neumann et al., 2022), which is also utilized in the
development of RODAN (Neumann et al., 2022).

The training set comprises five species: Arabidopsis thaliana from
(Neumann et al., 2022), Epinano synthetic constructs from (LiuH. et al.,
2019), Homo sapiens from (Workman et al., 2019), Caenorhabditis
elegans from (Roach et al., 2020), and Escherichia coli from (Grünberger
et al., 2019). Initially, all reads were basecalled usingGuppy version 6.2.1
(Technologies and O.N., 2024). The decoded sequences were then
mapped to the reference genome with minimap2 (Li, 2018) to obtain
corrected sequences. Subsequently, Taiyaki (Technologies and O.N.,
2019) was utilized to generate an HDF5 file containing the raw signal of
each read, its corresponding corrected sequence, and their mapping
relationship. The training dataset contained 116,072 reads: with
24,370 from Arabidopsis, 29,728 from Epinano synthetic constructs,
30,048 from H. sapiens, 24,192 from C. elegans, and 7,734 from E. coli.

To ensure rigorous performance evaluation and avoid potential
biases from overlapping datasets, we used test samples derived from
entirely independent studies, distinct from those used for training.
The test set included also five species: H. sapiens from (Workman
et al., 2019), A. thaliana from (Parker et al., 2020), Mus musculus
from (Bilska et al., 2019), S. cerevisiae from (Jenjaroenpun et al.,
2021), and Populus trichocarpa from (Gao et al., 2021), each
consisting of 100,000 reads.

FIGURE 1
Schematics representation of the architecture of GCRTcall. GCRTcall compreises three CNN layers for downsampling and feature extraction, and
followed by 8 Conformer blocks and a CTC decoder. During training, a pair of forward and reverse decoder was added on top of the base architecture for
joint loss training.

FIGURE 2
Architecture of the gated depthwise separable convolution block of GCRTcall. The convolution block consists of a 1-D pointwise convolution
followed by a GLU, a 1-D depthwise convolution, 1-D batch normalization, and a swish activation function.
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Model architecture

Our model architecture was inspired by Google’s Conformer (Gulati
et al., 2020), a convolution-augmented Transformer known for effectively
modeling both global and local dependencies, outperforming traditional
Transformer (Zhang et al., 2020; Vaswani et al., 2017; Liu B. et al., 2019;
Zhang et al., 2024) and CNN (Li et al., 2019; Kriman et al., 2019; Han
et al., 2020; Abdel-Hamid et al., 2014; Li et al., 2021; Li and Liu, 2023; Li X.
et al., 2024) models in speech recognition tasks. GCRTcall compreises
three CNN layers for downsampling and feature extraction, with output
channels of 4, 6, and 512, and convolutional kernels of size 5, 5, and 19,
with strides of 1, 1, and 10, respectively. This is followed by 8 Conformer
blocks and a connectionist temporal classification (CTC) decoder (Gulati
et al., 2020; Wang et al., 2023; Zhu et al., 2023), amounting to a total of
50 million parameters. Our previous study indicated that training with a
joint loss, combining CTC loss and Kullback-Leibler Divergence (KLDiv)
loss, results in superior basecalling accuracy compared to using only CTC
loss under the same inference structure, and whether using decoder do
not influence decoding accuracy. However, retaining the decoder results
in a significant decrease in inference speed (Li Q. et al., 2024). Therefore,
during the training phase, GCRTcall incorporates additional forward and
backward Transformer decoders at the top, utilizing the joint loss for
improved convergence. Themodel architecture of GCRTcall is illustrated
in Figure 1.

Compared to traditional Transformers, the Conformer modules
in GCRTcall feature two key improvements: First, they combine
relative positional embedding with a multi-head self-attention
mechanism to enhance the model’s robustness to inputs of
varying lengths. Second, they integrate depthwise separable
convolutions based on gate mechanisms to process the outputs of
attention layers, thereby strengthening the model’s ability to capture
local dependencies within sequences.

Relative position multi-head self-
attention mechanism

Transformer-XL (Dai et al., 2019) integrates relative positional
embedding with a self-attention mechanism, enhancing the model’s
representational capacity for sequences of varying lengths. The relative
position multi-head self-attention mechanism processes input
sequences along with its sinusoidal position encoding. It performs
three linear projections on the input to generate Q, K, and V, and
also applying linear projection on positional embedding to obtain
Kp. Two biases, bk and bp, are initialized. The computation
principle of the relative position self-attention mechanism is as follows:

RelativeAttention � softmax
Q + bk( )× KT + relative shift Q + bp( )× KpT[ ]��

dk

√( )V

TABLE 1 Performance comparison between GCRTcall, RODAN, Dorado, and Guppy.

Species Basecaller Identity (%) Insertion rate (%) Deletion rate (%) Mismatch rate (%)

Yeast Guppy 91.36 1.57 2.48 4.56

Dorado 92.08 1.31 2.34 4.23

RODAN 90.86 1.67 2.52 5.17

GCRTcall 92.59 1.54 2.02 3.83

Human Guppy 90.59 1.42 3.02 4.89

Dorado 88.77 1.15 3.86 6.11

RODAN 92.75 1.27 2.09 3.69

GCRTcall 94.22 1.10 1.68 2.85

Mouse Guppy 87.67 1.73 3.70 6.84

Dorado 85.88 1.10 4.72 8.23

RODAN 86.82 1.41 3.97 7.36

GCRTcall 89.96 1.44 3.07 5.44

Poplar Guppy 90.15 1.66 2.81 5.31

Dorado 91.36 1.32 2.57 4.66

RODAN 90.55 1.49 2.53 5.36

GCRTcall 92.25 1.51 2.07 4.08

Arabidopsis Guppy 91.58 1.33 2.69 4.36

Dorado 91.84 1.03 2.77 4.31

RODAN 93.93 1.10 1.87 2.63

GCRTcall 94.03 1.14 1.77 2.94

The bold values represent the evaluation metrics for the basecaller that performed the best under the respective test criteria for the species in question.
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The multi-head attention then combines and projects the
aforementioned attention computation results as follows:

MultiHead � Concat head1, ..., headh( )WO

Gated depthwise separable convolution

EfficientNet (Tan et al., 2019) utilizes depthwise separable
convolution to reduce the number of parameters and enhance
computational efficiency while maintaining state-of-the-art accuracy.
Similarly, Dauphin et al. (Dauphin et al., 2016) proposed gated
convolutional networks, which utilize CNNs to extract hidden states
from sequences and employ gated linear units (GLU) to augment non-
linear expression and mitigate the vanishing gradient problem. This
approach enables the model to compute in parallel, outperforming
LSTMs on multiple NLP datasets. GLU is computed as follows:

GLU a, b( ) � a ⊗ σ b( )
where a is the first half of the input matrices and b is the second half.

Inspired by these approaches, the structure of the gated
depthwise separable convolution block in GCRTcall is illustrated
in Figure 2.

Joint loss training

An additional forward and reverse transformer decoder were
added on the top of the inference structure of the model during
training. The forward decoder adopts a lower triangular matrix as a
causal mask, while the reverse decoder is equipped with an anti-
lower triangular causal mask.

The model is trained by optimizing a joint loss that includes
CTC loss and KLDiv loss to ensure convergence.

Ljoint x, y( ) � λLCTC xE, y( ) + 1 − λ( )LKLDiv xD, y( )
where xE is the output probability matrix of the encoder, and xD is
the output of the decoders, y is the label, λ is a hyperparameter
between 0 and 1. In this paper, λ was set to 0.5.

Model training

As previously demonstrated, using a joint loss that combines
CTC loss and KLdiv loss can help accelerate model convergence (Li
Q. et al., 2024). Therefore, during training, we added two layers of
forward and backward Transformer decoders at the top of
GCRTcall, which are not utilized during actual inference.

FIGURE 3
Performance comparison of different basecallers at different decoding lengths. (A) Identity rate comparison of different basecallers under different
sequence lengths. (B) Insertion rate comparison of different basecallers under different sequence lengths. (C) Deletion rate comparison of different
basecallers under different sequence lengths. (D) Mismatch rate comparison of different basecallers under different sequence lengths.
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GCRTcall was trained on an Ubuntu server equipped with 2 ×
2.10 GHz 36-core CPUS, providing 144 logical CPUs and 512 GB of
RAM. The training utilized 2 NVIDIA RTX 6000 Ada Generation 48G
GPUs for 12 epochs, totaling 12.95 h. The batch size of 140 was
employed, managed by the Ranger optimizer at a learning rate of
0.002 and weight decay of 0.01. The training was conducted using the
ReduceLROnPlateau learning rate scheduler based on validation set loss
monitoring with patience of 1, factor of 0.5, and threshold 0f 0.1.

Performance evaluation

Identity, mismatch rate, insertion rate, and deletion rate were
adopted as metrics to evaluate the decoding accuracy of the model.
These overall median metrics are commonly used in multiple
basecaller researches for performance evaluation and comparison:

Identity � Number ofmatched bases

Length of alignment
× 100%

Mismatch rate � Number ofmismatched bases

Length of alignment
× 100%

Insertion rate � Number of inserted bases

Length of alignment
× 100%

Deletion rate � Number ofdeleted bases

Length of alignment
× 100%

Results and discussion

Comparison of decoding performance with
different basecallers

We compared the basecalling accuracy of GCRTcall, Guppy
6.2.1, Dorado 0.8.1, and RODAN on a test set consisting of five
species. All basecalling results were aligned to the reference genomes
using minimap2, retaining only the optimal alignment results. As
shown in Table 1, GCRTcall achieved state-of-the-art accuracy levels
across all five species. Notably, according to Neumann et al.
(Neumann et al., 2022), while RODAN slightly outperforms
Guppy in basecalling accuracy for mouse and yeast, GCRTcall
significantly outperforms both in decoding accuracy for these two
species. Additionally, all four basecallers exhibited the poorest
performance on mouse, consistent with previous findings that
suggest substantial differences in sequencing signal patterns
between mice and other species. Further, the performance of

TABLE 2 Performance comparison between Dorado, Guppy, and GCRTcall on RNA004 sample.

Identity (%) Insertion rate (%) Deletion rate (%) Mismatch rate (%)

Dorado 96.54% 0.54% 0.94% 1.95%

Guppy 96.52% 0.54% 0.95% 1.97%

GCRTcall 81.48% 2.14% 5.27% 10.97%

TABLE 3 Performance comparison between GCRTcall, GCRTcall w/o RS, and Transcall.

Species Basecaller Identity (%) Insertion rate (%) Deletion rate (%) Mismatch rate (%)

Yeast Transcall 90.07 1.83 2.98 5.07

GCRTcall w/o RS 91.54 1.65 2.44 4.30

GCRTcall 92.59 1.54 2.02 3.83

Human Transcall 91.24 1.39 2.97 4.28

GCRTcall w/o RS 93.03 1.33 2.02 3.38

GCRTcall 94.22 1.10 1.68 2.85

Mouse Transcall 87.02 1.49 4.46 6.93

GCRTcall w/o RS 88.61 1.61 3.57 6.11

GCRTcall 89.96 1.44 3.07 5.44

Poplar Transcall 89.71 1.76 3.14 5.30

GCRTcall w/o RS 91.06 1.69 2.47 4.62

GCRTcall 92.25 1.51 2.07 4.08

Arabidopsis Transcall 91.24 1.40 2.97 4.28

GCRTcall w/o RS 92.87 1.31 2.19 3.45

GCRTcall 94.03 1.14 1.77 2.94

The bold values represent the evaluation metrics for the basecaller that performed the best under the respective test criteria for the species in question.
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various basecallers was compared at different decoding lengths
(Figure 3). It can be seen that GCRTcall performs best across all
lengths, especially in the case of extremely long read length,
GCRTcall still maintains the leading decoding accuracy.

The inference was conducted on an Ubuntu server equipped
with an Intel i9-13900K CPU, 125G RAM, and one NVIDIA RTX
3090 24G GPU. The inference speed of different basecaller model
was also evaluated and compared. Dorado achieved the fastest
decoding speed at 4.86E+07 samples per second because of its
highly industrial optimization. Guppy reached decoding speed at
1.02E+07 samples per second, owing to its smaller parameter count
of 2.2M. RODAN followed at 4.68E+06 samples per second, while
GCRTcall, with its 50M parameters, completed decoding with speed
at 1.68E+06 samples per second. Several acceleration optimization
algorithms for Transformer-based models, such as hardware-aware
techniques, sparse attention, and model quantization, have been
proposed to enhance inference speed. These algorithms will be
tested in the future development of GCRTcall.

In addition, we compared the decoding performance of Guppy,
Dorado, and GCRTcall on RNA004 sample of Hek293T from (Chen
et al., 2021), as presented in Table 2. Since the GCRTcall model was
trained on the RNA002 dataset, and RNA004 differs significantly
from RNA002 in terms of signal characteristics and sequence
composition, GCRTcall’s performance on RNA004 is
understandably inferior to that of Guppy and Dorado. The
distinct signal features and species-specific differences in
RNA004 require stronger generalization capabilities from
GCRTcall, which was not trained on these new data patterns,
leading to a decline in performance.

In contrast, both Guppy and Dorado have been optimized with
profiles specifically tailored for RNA004 sequencing data, enabling
them to better adapt to RNA004 and its corresponding human cell
line data. While GCRTcall performs well on RNA002, the
performance discrepancy on RNA004 highlights limitations in
the model’s generalization abilities across different RNA
sequencing datasets.

To enhance GCRTcall’s performance on RNA004 and other
emerging datasets, we plan to expand the model’s training set in
future work to include more diverse RNA data sources, particularly

sequencing data from RNA004 and other human cell lines. By
incorporating broader datasets, we expect a significant
improvement in the model’s generalization capabilities.
Additionally, we aim to explore fine-tuning strategies specifically
tailored for different RNA datasets to better address the challenges
posed by varying signal patterns.

In future studies, we will focus on enhancing the model’s
decoding accuracy, particularly in handling novel RNA
sequencing data and more complex signal patterns. By
integrating larger, more diverse datasets with continuous
architectural optimizations, we expect that GCRTcall will achieve
more stable and efficient performance across a wider range of
transcriptomic applications.

Ablation study

To further explore the impact of model structures on the
basecalling accuracy of GCRTcall, we conducted two sets of
ablation experiments: first, removing relative shift operation for
position scores (GCRTcall w/o RS); and second, replacing
Conformer modules with Transformer modules (Transcall).

In Transformer-XL, absolute position representation is initially
performed to reduce the computational complexity of relative
positional encoding. A relative shift of position scores is then
applied to obtain relative position embeddings for sequences. To
investigate the impact of relative position embeddings on model
performance, GCRTcall was trained without the relative shift
operation for 12 epochs using the same training set. The test
results (Table 3) show a decrease in decoding performance
compared to GCRTcall, indicating that relative position
embeddings enhance the robustness of attention mechanisms to
sequence position representation.

To investigate the impact of gated convolution neural networks
on model performance, Transformer modules were used to replace
Conformer modules, and the model was also trained for 12 epochs.
The test results (Table 3) indicate that the model’s decoding
performance deteriorated compared to GCRTcall and GCRTcall
w/o RS. This suggests that gated convolutional networks, which

FIGURE 4
Training curves of GCRTcall, GCRTcall w/o RS, and Transcall. GCRTcall and GCRTcall w/o RS exhibit similar training curve. While Transcall, without
convolutional enhancement, converges slower and to a higher loss compared to both GCRTcall and GCRTcall w/o RS.
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enhance the representation of local dependencies, play an important
role in accurate basecalling.

The training curves of GCRTcall, GCRTcall w/o RS, and
Transcall are illustrated in Figure 4. It can be observed that the
form of position encoding has little impact on convergence during
training, mainly enhancing the model’s generalization ability for
decoding sequences of varying lengths. However, Transcall, without
convolutional enhancement, converges slower and to a higher loss
compared to both GCRTcall and GCRTcall w/o RS.

CNN is proficient at capturing local features due to their ability to
apply convolutional filters across input sequences (Xiang et al., 2023). By
integrating convolutional modules within each encoder layer, the model
can effectively capture local patterns and features intrinsic to sequential
data. This is crucial for recognizing local dependencies. Furthermore,
convolutional operations can capture information at various scales by
utilizing different kernel sizes. This allows model to integrate multi-scale
contextual information, enhancing its representational capacity across
different temporal granularities. The combination of self-attention and
convolution allows the model to capitalize on the complementary
strengths of self-attention and convolution. While self-attention
mechanisms are adept at capturing global dependencies and long-
range relationships, convolutional operations excel at extracting local
features. This combination enables the model to handle both local and
global contextual information efficiently.

Relative positional embedding captures the relative positional
relationships between elements in a sequence, as opposed to absolute
positional encoding which only indicates the position of each
element. This approach is particularly beneficial for handling
sequences of varying lengths, as it remains invariant to the length
of the input sequence, thereby improving the model’s robustness. By
using relative positional embedding, the model can flexibly represent
positional information, which is crucial for tasks that rely heavily on
the sequential nature of data, such as nanopore signal decoding. This
encoding method allows the model to maintain a consistent
representation of positional relationships, improving its ability to
model sequences effectively.

Conclusion

This study introduces GCRTcall, a Transformer-based
basecaller designed for nanopore RNA sequencing signal
decoding. GCRTcall is trained using a joint loss approach and
is enhanced with gated depthwise separable convolution and
relative position embeddings. Our experiments demonstrate that
GCRTcall achieves state-of-the-art performance in nanopore RNA
sequencing signal basecalling, outperforming existing methods in
terms of accuracy and robustness. These results highlight the
effectiveness of integrating advanced transformer architectures

with convolutional enhancements for improving RNA
sequencing accuracy.

Overall, GCRTcall represents a step forward in nanopore RNA
sequencing, offering a robust and precise solution that can facilitate
a deeper understanding of transcriptomics and other related fields.
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