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Introduction: The advent of RNA sequencing (RNA-Seq) has significantly
advanced our understanding of the transcriptomic landscape, revealing
intricate gene expression patterns across biological states and conditions.
However, the complexity and volume of RNA-Seq data pose challenges in
identifying differentially expressed genes (DEGs), critical for understanding the
molecular basis of diseases like cancer.

Methods: We introduce a novel Machine Learning-Enhanced Genomic Data
Analysis Pipeline (ML-GAP) that incorporates autoencoders and innovative data
augmentation strategies, notably the MixUp method, to overcome these
challenges. By creating synthetic training examples through a linear
combination of input pairs and their labels, MixUp significantly enhances the
model’s ability to generalize from the training data to unseen examples.

Results: Our results demonstrate the ML-GAP’s superiority in accuracy,
efficiency, and insights, particularly crediting the MixUp method for its
substantial contribution to the pipeline’s effectiveness, advancing greatly
genomic data analysis and setting a new standard in the field.

Discussion: This, in turn, suggests thatML-GAP has the potential to performmore
accurate detection of DEGs but also offers new avenues for therapeutic
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intervention and research. By integrating explainable artificial intelligence (XAI)
techniques, ML-GAP ensures a transparent and interpretable analysis, highlighting
the significance of identified genetic markers.
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1 Introduction

RNA sequencing (RNA-Seq) employs advanced sequencing
technology to identify the nucleotide sequence of RNA molecules
and measure the abundance of specific RNA types within RNA
molecule populations (Deshpande et al., 2023). Typically, the main
goal of RNA-Seq analysis is to detect genes that are expressed differently
under various biological circumstances (Piao andRyu, 2017). Traditional
RNA-Seq analysis methodologies, while effective, often face limitations
in identifying differentially expressed genes (DEGs) that are crucial for
understanding the molecular underpinnings of diseases, including
cancer. This challenge is magnified by the complexity and sheer
volume of data generated, necessitating advanced analytical
approaches to fully harness the potential of RNA-Seq data.

Recent research has established that the application of machine
learning (ML) algorithms to RNA-Seq data can effectively classify
different problems based on gene expression profiles. Dag et al. (Dag
et al., 2023) introduced GeneSelectML, an open-source web-based tool
for gene selection from RNA-Seq data usingML algorithms. It features
6 ML algorithms, pre-processing steps, and graphical outputs like
heatmaps and network plots, alongside gene ontology analysis for
DEGs. Demonstrated on Alzheimer’s RNA-seq data, GeneSelectML
aids in identifying potential biomarkers by employing multiple ML
algorithms simultaneously for gene selection. This tool combines pre-
processing, visualization and ML methods. Stathopoulou et al.
(Stathopoulou et al., 2024) investigated the overlap of ML
algorithms in RNA-seq analysis for estimating gene expression
across various cancer types. Using Random Forest and Gradient
Boosting algorithms, their research demonstrated the
reproducibility and overlap in identifying significant DEGs,
enhancing the understanding of genes’ roles in cancer development.
Their findings highlight the efficacy of combining ML with RNA-seq
to improve the identification of critical DEGs, contributing valuable
insights into cancer biology and potentially improving diagnostic and
therapeutic strategies. Wang et al. (Wang et al., 2018) identified
important features with three feature selection algorithms
(Information Gain, Correlation Feature Selection, and ReliefF).
They employed five widely used classifiers (Logistic Regression,
Classification via Regression, Random Forest, Logistic Model Trees,
Random Subspace) to predict DEGs. Their study demonstrates the
applicability of ML to improve the prediction and understanding of
gene expression, specifically in relation to transcriptional regulation in
response to ethylene in plant seedlings. Piao and Ryu (Piao and Ryu,
2017) introduced a novel approach for identifying DEGs in RNA-seq
data by applying a feature selection method that utilizes symmetrical
uncertainty for gene ranking and a predefined relevance threshold for
selection. In their evaluation, the method achieved high sensitivity
(0.986) and specificity (0.982) on large-sample datasets, outperforming
traditional statistical approaches like edgeR (Robinson et al., 2009),
DESeq (Love et al., 2014), and baySeq (Hardcastle and Kelly, 2010) in

terms of Area Under the Curve values, with notable improvements
observed even in challenging small-sample conditions. Arowolo et al.
(Arowolo et al., 2020) developed a principal component analysis
(PCA) model to enhance RNA-seq malaria vector data
classification using k-nearest neighbour (KNN) and Decision Tree
algorithms. The team aimed to address the challenge of high
dimensionality in malaria vector RNA-seq data by employing PCA
for feature extraction. This method effectively reduced the dataset’s
complexity, making it more manageable for classification tasks. The
classification performance was evaluated on a mosquito Anopheles
gambiae RNA-Seq dataset, yielding accuracy rates of 86.7% for KNN
and 83.3% for Decision Tree classifiers.

While the application ofML to RNA-Seq data shows promise, there
are concerns regarding the interpretability of the models. According to
Rudin (Rudin, 2019), black box ML models may not be suitable for
high-stakes decisions in the context of medical research. Instead, Rudin
suggests the use of interpretable models to ensure transparency and
understanding of the underlying mechanisms (Rudin, 2019). This
insight raises important considerations for the development and
application of ML models in the context of RNA-Seq data analysis.
The present study introduces a novel Machine Learning-Enhanced
Genomic Analysis Pipeline (ML-GAP) utilizing autoencoders and data
augmentation, aimed at addressing these challenges. By integrating ML
techniques with autoencoders and data augmentation strategies, ML-
GAP provides a new approach to enhance the detection of DEGs,
particularly those elusive to conventional methods. Our pipeline not
only facilitates a more in-depth analysis of RNA-Seq data but also aids
in the identification of potential genes associated with clinical outcomes,
thereby offering new avenues formedical research. The incorporation of
explainable artificial intelligence (XAI) techniques distinguishes ML-
GAP, enabling a transparent and interpretable analysis that underscores
the significance of identified genetic markers. ML-GAP stands as a
testament to the power of ML in genomic data analysis, setting a new
standard for accuracy, efficiency, and insights in the field.

The paper is organized as follows. In Section 2, the materials and
methods used in the study are presented, covering the
comprehensive workflow of ML-GAP for RNA-Seq data. In
Section 3, we present the findings from applying the ML-GAP to
RNA-Seq data, highlighting the performance of our approach in
identifying DEGs and showcasing the effectiveness of the MixUp
method in improving model generalization. Additionally, the full
forms of the abbreviations are listed in Supplementary Table S1.

2 Material and methods

2.1 Overview of the study

This study introducesML-GAP, an approach specifically designed
to address the challenges inherent in RNA-Seq data analysis. It

Frontiers in Genetics frontiersin.org02

Agraz et al. 10.3389/fgene.2024.1442759

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1442759


leverages advanced ML techniques, including autoencoders and data
augmentation strategies such as MixUp, to enhance the detection of
DEGs. These methods not only improve the accuracy of gene
expression analysis but also offer robustness against the noise and
variability typical of RNA-Seq data. The pipeline is further refined by
the incorporation of XAI techniques, ensuring that the analytical
process remains transparent and the results interpretable. We
constructed this pipeline using Python as the main programming
language, integrating several libraries such as Scikit-learn for machine
learning, SHAP and LIME for explainability, and other tools for
genomic data preprocessing and analysis.

1. Count Data The initial step involves compiling a data matrix,
denoted as X, which has dimensions p-by-n, representing
genes-by-samples.

2. Data Preprocessing
a. Filtering:Applying both low count filtering and zero-variance
filter to refine the count data.

b.Normalization: Employing DESeq median normalization to
adjust the data.

c.Transformation: Implementing variance stabilizing
transformation to make the data more suitable for analysis.

3. Dimension Reduction
a. Principal Component Analysis (PCA): PCA is employed to

reduce the gene count in the genetic or molecular profiles
dataset to 2000. This step significantly simplifies the
complexity of the data, making it more manageable for
subsequent analysis and improving interpretability.

b. Dimension Reduction for Differentially Expressed Genes
(DEGs): Following PCA, the gene count is further reduced
to 200 features using differential expression analysis. This
focused reduction selects genes that show statistically
significant differences in expression associated with
clinical outcomes, thus enhancing the potential for
meaningful biological insights and therapeutic targets.

4. Machine Learning Performance After applying the dimensionality
reduction techniques, we evaluated the performance of machine
learning models using three distinct approaches: PCA and DEGs,
Autoencoders, and Augmentation with MixUp. For each
approach, we calculated several performance metrics, including
Accuracy, Positive Predictive Value (PPV), Negative Predictive
Value (NPV), Sensitivity, Specificity, and F1 Score. These metrics
provide a comprehensive evaluation of the models’ effectiveness in
identifying DEGs across our datasets. We optimized the model
parameters using a 5-fold cross-validation grid search. To evaluate
the model performance, we used an independent test set, splitting
the dataset into training and testing sets with an 80/20 ratio using
the train_test_split function from Scikit-learn.
a. PCA and DEGs Approach: Dimensionality was first reduced
via PCA and DEGs selection. Machine learning models were
then applied to this refined dataset, and the performance was
assessed based on the aforementioned metrics.

b. Autoencoders Approach: Following dimensionality
reduction via autoencoders, models were trained and
evaluated similarly using the same set of metrics.

c. Augmentation Approach (MixUp): The dataset was augmented
using theMixUp technique before applying themachine learning

models, which were evaluated using the same metrics to assess
the impact of augmentation on model performance.

5. Explainable Machine Learning (XAI)
a. SHAP (SHapley Additive exPlanations) SHAP is employed to

determine the influence of each gene on the model’s output,
thereby enhancing the interpretability of the model’s decisions.
It identifies the top-10 features based on the performance
evaluation.

b. LIME (Local Interpretable Model-agnostic Explanations)
LIME elucidates model predictions by approximating the
model locally with an interpretable surrogate, which helps in
understanding the impact of various features on the model’s
decisions. Top-10 features are identified following the
analysis of model performance.

c. Variable Importance (VarImp) This technique highlights the
genes that significantly influence predictions, underlining
their biological importance. VarImp is used to determine
top-10 features after applying ML models and evaluating
their performance.

6. Biological Validation
a. Graphical Representations Visual representations are created
such as Volcano plots and Ven diagrams.

b. Gene Ontology The functionality of selected genes is compared
with existing literature to validate their roles and relevance in
biological processes and disease mechanisms.

2.2 Dataset and preprocesisng

We conducted an analysis utilizing two RNA-Seq datasets
pertaining to Renal Cell Carcinoma (RCC), sourced from The
Cancer Genome Atlas (TCGA) network.

2.2.1 Renal cell carcinoma (RCC)
From TCGA, we obtained sequencing reads for

20,531 recognized human RNAs from a cohort of 1,020 patients
diagnosed with RCC. These patients were classified into three
predominant subtypes: kidney renal papillary cell carcinoma
(KIRP), kidney renal clear cell carcinoma (KIRC), and kidney
chromophobe carcinoma (KICH), with respective sample counts
of 606, 323, and 91. In the RCC dataset, we excluded data labeled as
KICH, maintaining only the records for KIRC and KIRP patients,
culminating in a final tally of 929 observations.

2.2.2 Lung cancer data
We utilized data on lung cancer obtained from the TCGA

platform. This dataset includes the mapped read counts for
20,531 recognized human RNAs from 1,128 patients with lung
cancer. These patients were classified into two specific lung
cancer types: lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC), with respective sample sizes of 576 and 552.

Principal components plots for lung and RCC data, shown in
Figure 1, illustrate the separation of samples based on the first two
principal components. These plots highlight the inherent variance
within the datasets and the effectiveness of the preprocessing steps.
The dimensionality reduction achieved through PCA is crucial for
subsequent analyses, as it highlights the distinct clustering of the
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different cancer subtypes, thereby confirming the integrity and
quality of our dataset.

2.2.3 Data preprocessing
RNA-Seq data inherently presents an abundance of zero values

and encompasses variations between samples stemming from
experimental procedures. The preprocessing steps outlined in
Figure 2 are employed to mitigate the impact of low-quality
features and inter-sample variations. Initially, features with
exceedingly low counts were excluded through near-zero variance
filtering (Kuhn, 2008). Subsequently, a normalization process was
executed on the pre-filtered raw counts before progressing to
downstream analyses. This step aimed to mitigate the influence of
sequencing depth, technical variation, and potential biases, while
retaining the inherent biological variations among samples. To
achieve this, we implemented the median-ratio normalization
method from the DESeq2 package (Love et al., 2014), chosen for
its resilience against outliers and its efficacy in eliminating technical
variations across samples. We calculated the size factor sj using
DESeq normalization, as expressed by the following Equation 1:

sj � mj∑n
j�1mj

,mj � median
xij

Gi
{ }

i: Gi≠0
, Gi � ∏n

j�1
xij

⎛⎝ ⎞⎠1/n

(1)

whereGi represents the geometric mean of raw counts for the i-th
feature. The quantity mj is computed over features having non-zero
geometric means. Various alternative normalization techniques, such
as the trimmedmean of M-values, upper quantile, Reads Per Kilobase
per Million mapped reads (RPKM), and the logarithm of counts per
million reads (log-CPM), are discussed in pertinent literature (Bullard
et al., 2010; Mortazavi et al., 2008; Robinson and Oshlack, 2010). This
study employed the ‘variance stabilizing transformation (VST)’
(Anders and Huber, 2010; Love et al., 2014), as implemented in
the DESeq2 package. The primary objective was to mitigate the
dependence between mean and variance in normalized counts,
thereby approximating the data to normality and rendering it less
skewed. It is imperative to acknowledge that following the VST
transformation, the variances exhibit approximate independence
from the mean. Nevertheless, it is crucial to recognize that these
variances remain unequal across all genes, potentially leading to the
presence of outliers within the dataset (Zwiener et al., 2014).

FIGURE 1
Principal components plots for (A) Lung and (B) RCC data.
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In the preprocessing step, we transfer the data from raw counts
to normalized counts. Given that RNA-Seq data contains many
features and few observations (n≪p), it becomes imperative to
meticulously select a subset of features that exhibit associations with
the outcome and actively contribute to the efficacy of the fitted
model. Consequently, we are sequentially applying PCA and
differential expression analysis.

2.3 Dimension reduction

2.3.1 Principal component analysis (PCA)
Principal Component Analysis (PCA) is a statistical technique used

in data analysis and ML to emphasize variation and extract strong
patterns, with its modern version formalized by Hotelling (Hotelling,
1933). It simplifies complex genetic information by transforming it into
a lower-dimensional space, revealing key variables (principal
components). By highlighting significant relationships in high-
dimensional data, PCA aids in visualizing and analyzing genetic
patterns and biological processes. This study employs PCA after
normalizing RNA-Seq data to reduce its dimensionality.

2.3.2 Differentially Expressed Genes (DEGs)
The identification of differentially expressed genes (DEGs) is

crucial in bioinformatics to detect genes with statistically
significant differences in expression levels across various sample
groups. After applying PCA for dimensionality reduction, further
analysis focuses on identifying DEGs to gain insights into genetic
expression changes linked to clinical outcomes. This dual approach
ensures that features selected for ML models are highly informative,
both statistically and biologically, thereby reducing complexity while
highlighting potential therapeutic targets.

2.4 Machine learning model performance

2.4.1 Autoencoders
Autoencoders, first introduced by McClelland et al. (1987), are a

type of neural network used in unsupervised learning, designed to
recreate their input. Their primary function is to learn useful features
or representations within the data. An autoencoder typically consists
of three key components: an encoder, a compressed representation
(also known as the bottleneck or latent layer), and a decoder as seen in

FIGURE 2
Workflow of the data processing and the pipeline in the proposedmethodology. The workflow utilized for processing and analyzing transcriptomics
data. Starting with raw count data, the process involves preprocessing steps such as filtering and normalization, followed by dimension reduction through
principal component analysis (PCA). The analysis identifies differentially expressed genes (DEGs), which are then processed through ML techniques,
including PCA and DEGs and Autoencoders, to measure and enhance algorithm performance. The pipeline integrates data augmentation
techniques to improve model robustness and employs explainable artificial intelligence (XAI) tools like SHAP to interpret the model outcomes. The
workflow concludes with molecular biology validation to confirm the biological relevance of the findings.
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Figure 3. The encoder condenses the data into a reduced-dimensional
space, and the decoder restores the data to its original shape. In our
study, we employed an autoencoder neural network structure to
explore dimensionality reduction within our dataset, which was
split into training and test sets. The input layer of the autoencoder
consisted of 200 neurons, corresponding to the dimensionality of the
data in the training set. This was followed by an encoder layer with
128 neurons and a hidden layer with 72 neurons, representing the
compressed representation of the input data. The decoder part of the
network then aimed to reconstruct the input data from this reduced
72-neuron representation. By training the autoencoder on the training
set and evaluating its performance on the test set, we were able to
assess themodel’s ability to reduce the dimensionality of the data from
200 to 72 while still retaining the essential characteristics necessary for
reconstruction. The observations in the test set that resulted in the
lowest reconstruction error, particularly the 72 with the most minimal
error, were identified as those best represented by the autoencoder,
demonstrating the model’s effectiveness in dimensionality reduction.

2.4.2 Augmentation (MixUp)
Zhang et al. (Zhang et al., 2017) introduced an advanced data

augmentation technique, called MixUp, devised to address the issue
of class imbalance by generating new samples through a strategic
combination of data points. This technique is grounded on the
Equation 2:

~x � λxi + 1 − λ( )xj, ~y � λyi + 1 − λ( )yj, (2)

where ~x and ~y denote the synthesized input and output pairs,
respectively. The coefficient λ is sampled from the Beta distribution,
Beta(α, α), highlighting the significance of α as a crucial
hyperparameter in modulating the mixing intensity. The inputs xi

and xj, along with their corresponding outputs yi and yj, are selected
from distinct samples within the dataset. A distinctive aspect of our
implementation of theMixUp algorithm is its application exclusively to
the minority class, aimed at improving the representation of
underrepresented categories within the dataset without altering the
distribution of the majority class. This targeted approach towards the
minority class is designed to enhance the model’s sensitivity to these
categories, potentially leading to improved fairness and accuracy in the
model’s predictions across varied datasets.

2.4.3 Machine learning model performance
In the analysis of RCC and lung cancer data, both Random Forest

andXGBoostML algorithmswere utilized to develop predictivemodels.
To optimize the performance of these models, a comprehensive grid
search was conducted to fine-tune their hyperparameters. This involved
the use of repeated k-fold cross-validation, specifically partitioning the
data into five folds, to ensure a robust evaluation of the model’s
performance across various subsets of the data. The grid search
method, executed with a 5-fold cross-validation approach, is crucial
for verifying the generalizability and efficacy of the ML models on
unseen data, thereby ensuring that the selected models are well-suited
for predicting outcomes in RCC and lung cancer cases based on their
respective optimized parameters. We explain different algorithm steps
in the following workflow as represented in Figure 2.

(a) PCA and DEGs: Initially, the dimensionality of the dataset was
reduced using PCA and the identification of DEGs. This step
was crucial for simplifying the dataset by focusing on the most
informative features.

(b) Autoencoders Approach: Following the initial dimensionality
reduction, autoencoders were utilized as an advanced technique
to further compress the dataset into a more manageable size. This
was particularly beneficial for capturing complex, nonlinear
relationships within the data. ML models were then applied to
this refined dataset, and their performancemetrics were evaluated.

(c) Augmentation Approach: To augment the dataset post-initial
dimensionality reduction (PCA and DEGs), an augmentation
technique, specifically MixUp, was implemented. This approach
not only reduced dimensionality but also increased the number
of samples by blending observations. Subsequently, ML models
were applied to this enhanced dataset, and their efficacy was
assessed through various performance metrics.

2.5 Explainable Machine Learning (XAI)

Upon determining the most effective dimensionality reduction
method—be it PCA and DEGs, Autoencoders, or Augmentation
approaches, based on accuracy metrics—we proceeded to apply XAI
techniques to elucidate the predictive models further. Specifically,

FIGURE 3
Detailed schematic of an autoencoder network for RNA sequencing data compression and reconstruction. The ‘Encoder’ stage (g(x)) processes the
input high-dimensional RNAseq data, compressing it into a condensed representation at the ‘Bottleneck Layer’ (z). Subsequently, the ‘Decoder’ stage (f(z))
aims to reconstruct the RNAseq data from this lower-dimensional representation to an output (x’) that is as similar to the original input as possible. This
process enables the reduction of data complexity and noise, facilitating more efficient storage and analysis.
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we utilized SHAP, LIME, and VarImp analyses and selected the top-
10 important features. These techniques were instrumental in
identifying the most significant features contributing to the
models’ predictions, thereby enhancing the transparency and
interpretability of our ML models. This step is critical for
understanding the underlying mechanisms of the models’
decisions, particularly in the complex domain of RCC and lung
cancer prediction, where interpretability is as crucial as accuracy.

2.6 Biological Validation

2.6.1 Graphical representations
Following the identification of effective features through the

application of XAI techniques, we visually represented these selected
features using Volcano plots and Venn diagrams. Volcano plots
were employed to depict the statistical significance versus the
magnitude of change of the features, offering a clear visualization
of the most influential features identified by our models. Similarly,
Venn diagrams were utilized to illustrate the overlap and uniqueness
of significant features across different models or dimensionality
reduction techniques.

2.6.2 Gene ontology (GO)
In our analysis pipeline, we incorporated a Gene Ontology (GO)

step to ascertainwhether the selected features are relevant to lung cancer
or RCC. This bioinformatics approach enables us to categorize the
identified genes based on the related biological processes, cellular
components, and molecular functions. By mapping the significant
features to GO terms, we were able to validate the biological
significance of these features in the context of lung cancer and RCC.
This step is crucial for ensuring that the ML models are not only
statistically robust but also biologically relevant, thereby enhancing the
credibility and applicability of our findings in clinical settings. In this
step, we checked the selected features that are related to the literature on
lung cancer and listed the results listed in Table 2.

3 Results and discussion

In our study, as delineated in Figure 2, we initiated our data
preprocessing by applying a “Filtering” step to the lung cancer and
RCC count data. This filtering aimed at excluding features with low
variability, specifically targeting those with negligible
variance—often referred to as ‘near-zero variance’. This
preliminary refinement was critical to ensure the integrity of our
dataset, thereby preventing potential biases in the analysis due to
superfluous or non-informative data. Subsequent to the filtering, we
proceeded with the normalization of the data in the “Normalization”
step. For this purpose, we employed a median-ratio normalization
method, which is a part of the DESeq2 bioinformatics tool. This
particular normalization technique is known for its effectiveness in
reducing technical biases without distorting the genuine biological
differences between the samples. By employing this approach, we
were able to achieve a normalized dataset that reliably reflects the
underlying biological conditions. In the subsequent phase of our
analysis, following the filtering and normalization steps, we
employed “PCA” step as a dimensionality reduction technique.

PCA is a robust statistical method that converts the data into a
series of linearly independent variables called principal components.
This technique enables us to reduce the complexity of our data by
transitioning from a high-dimensional space—comprising
approximately 19,000 variables—to a more manageable, lower-
dimensional space. By doing so, PCA accentuates the most
significant patterns and relationships within the data, which are
essential for our further analysis. The dimension reduction
accomplished through PCA is instrumental in enhancing
computational efficiency and improving the interpretability of the
dataset, thus preparing the ground for the subsequent identification
of DEGs. Subsequent to dimensionality reduction through PCA,
where we effectively condensed our dataset’s features from around
2000 to 200 features, we embarked on the critical phase of
identifying DEGs in “DEGs” step. DEGs are genes that show
statistically significant differences in expression levels between
different biological states or experimental conditions. In our
analysis, the reduced dimensionality facilitated a more targeted
and efficient investigation into gene expression changes. By
applying statistical tests to the principal components, we were
able to detect genes whose expression levels were consistently
altered across our sample groups. This identification of DEGs is
a pivotal step in our research, as it lays the groundwork for
understanding the molecular mechanisms that may underlie the
biological phenomena under study. The DEGs serve as valuable
markers for potential pathways that are activated or suppressed in
response to specific conditions, providing insights that are essential
for further biological interpretation and validation. After the
filtering and dimension reduction steps, we compare the
proposed methods with classic PCA and DEGs dimension
reduction techniques in the Machine Learning Solution step. In
this step, we compare three different methods as seen below.

1. Machine learning algorithms, including XGBoost and Random
Forest, were applied to a dataset of 200 genes that had been
refined through PCA and DEGs identification methods. The
effectiveness of these algorithms was evaluated using various
performance metrics.

2. Autoencoders were then employed to further reduce the
dimensionality of the dataset, which resulted from PCA and
DEGs methods, down to 72 features. Subsequently, the
XGBoost and Random Forest algorithms were applied to
this reduced dataset, and performance metrics were
calculated to assess the impact of this
dimensionality reduction.

3. The dataset of 200 genes, derived from PCA and DEGs
methods, was augmented using the MixUp technique, which
artificially expands the data pool without additional
dimensionality reduction. This augmentation is intended to
enhance the robustness and generalizability of the ML models.
After augmentation, the same ML algorithms were re-applied,
and the resulting performance metrics were examined to
determine the effectiveness of this augmentation.

As detailed in Table 1, the MixUp technique, when applied to the
RCC dataset, emerged as the most effective strategy across various
metrics, particularly when used with the XGBoost model. This method
achieved outstanding performance, with perfect scores for NPV
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(1.0000) and Recall (Sensitivity) (1.0000), indicating its accuracy in
correctly identifying both true negatives and true positives. Additionally,
MixUp delivered impressive results in terms of Accuracy (0.9946),
Precision (PPV: 0.9915), and the F1 Score (0.9957), which highlights the
balance between Precision and Recall.

Although the computational time for MixUp was higher due to
the increased dataset size from synthetic data generation (as
reflected in Table 1), the significant improvements in predictive
performance more than justify this added cost. Particularly in cases
where achieving a balance between Precision and Recall is critical,
MixUp proved to enhance model robustness and overall
classification performance. The technique’s superior results in
handling imbalanced data, especially in the RCC dataset,
underscore its potential to improve model reliability across
various performance metrics.

Given the superior results yielded by the MixUp method, we
proceeded to identify the most impactful features affecting our
RNA-Seq data within this framework in “XAI” step. To

accomplish this, we calculated VarImp using the Random Forest
and XGBoost algorithms applied to both lung and RCC datasets. We
further enriched our analysis by implementing SHAP and LIME
methodologies to ascertain the top-10 most essential genes in our
model’s performance. The selected genes were not only prominent
based on variable importance rankings but also stood out in SHAP
and LIME analyses, confirming their significant role in the
predictive model. We have listed the top-10 features obtained
from the XGBoost and Random Forest models—namely SHAP,
LIME, and VarImp—in Figure 4.

In the “Biological Validation”, we utilize Volcano plots to
graphically illustrate the significant gene expressions identified
during the XAI analysis. Figures 5, 6 in showcase these pivotal
findings for RCC and lung cancer data respectively. The plots
incorporate algorithms such as random forest and XGBoost in
conjunction with interpretability methods like LIME, SHAP, and
Variable Importance. Each plot is methodically constructed with
the x-axis representing the log fold change (logFC) and the y-axis

TABLE 1 Comparative analysis of model evaluation metrics for XGBoost and Random Forest across different datasets: RCC and lung datasets. The
performance metrics are shown for different data processing techniques including PCA & DEGs, Autoencoders, and MixUp augmentation.

XGBoost

Accuracy Precision NPV Recall Specificity F1 Score Time (s)

PCA and DEGs (Lung) 0.9690 0.9758 0.9608 0.9680 0.9703 0.9719 416.07

(1128 × 201)

Autoencoders (Lung) 0.9601 0.9531 0.9694 0.9760 0.9406 0.9644 213.42

(1128 × 63)

MixUp (Lung) 0.9823 0.9754 0.9904 0.9917 0.9717 0.9835 573.21

(2256 × 201)

PCA and DEGs (RCC) 0.9624 0.9756 0.9365 0.9677 0.9516 0.9717 341.86

(929 × 201)

Autoencoders (RCC) 0.9516 0.9528 0.9492 0.9758 0.9032 0.9641 173.84

(929 × 63)

MixUp (RCC) 0.9946 0.9915 1.0000 1.0000 0.9857 0.9957 466.98

(1858 ×s 201)

Random Forest

Accuracy Precision NPV Recall Specificity F1 Score Time (s)

PCA and DEGs (Lung) 0.9602 0.9394 0.9894 0.992 0.9208 0.9650 421.96

(1128 × 201)

Autoencoders (Lung) 0.9602 0.9462 0.9792 0.9840 0.9307 0.9647 348.23

(1128 × 63)

MixUp (Lung) 0.9757 0.9636 0.9902 0.9917 0.9575 0.9774 742.91

(2256 × 201)

PCA and DEGs (RCC) 0.9355 0.9444 0.9167 0.9597 0.8871 0.9520 749.18

(929 × 63)

Autoencoders (RCC) 0.9570 0.9677 0.9355 0.9677 0.9355 0.9677 442.19

(929 × 63)

MixUp (RCC) 0.9946 1.0000 0.9860 0.9913 1.0000 0.9957 766.60

(1858 × 201)
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depicting the negative logarithm of the p-value (-log10 p-value).
This arrangement accurately measures the degree of changes in
gene expression and their statistical importance. As expected,
none of the top genes identified as influential features are located
within the gray zone of these plots, which signifies

non-significant gene expression. This absence of features in
the gray zone underscores the distinct and substantial impact
that these genes have in relation to kidney and lung cancer, as
determined by the advanced feature selection techniques
employed in our study.

TABLE 2 Differential Gene Expression in Lung and Renal Cell Carcinoma Tissue. The table outlines the regulation patterns of specific genes in lung (Lung
XGB, Lung RF) and renal cell carcinoma (RCC XGB, RCC RF) tissues. Gene symbols, their full names, and references for the associated studies are provided
alongside the regulation status. Genes are selected by at least two methods: SHAP, LIME, and VarImp.

Analysis Gene symbol Real gene name References Up/Downregulated

Lung XGB ATP1B3 ATPase Na+/K+ Beta 3 Relli et al. (2018) Upregulated

CALML3 Calmodulin Like 3 Zhan et al. (2015)

CLCA2 Chloride Channel Accessory 2 Shinmura et al. (2014)

DSG3 Desmoglein 3 Zhan et al. (2015) Upregulated

KRT5 Keratin 5 Yuan et al. (2020) Upregulated

LASS3 Ceramide Synthase 3 Su et al. (2019) Upregulated

SERPINB13 Serpin Family B Member 13 Yuan et al. (2020) Upregulated

SLC44A4 Solute Carrier Family 44 Member 4 Arroyo et al. (2020) Downregulated

TMC5 Transmembrane Channel Like 5 Zhan et al. (2015) Downregulated

Lung RF BNC1 Basonuclin 1 Kim et al. (2010), Yuan et al. (2020) Upregulated

CALML3 Calmodulin Like 3 Zhan et al. (2015) Upregulated

DSC3 Desmocollin 3 Zhan et al. (2015) Upregulated

DSG3 Desmoglein 3 Zhan et al. (2015) Upregulated

KRT5 Keratin 5 Yuan et al. (2020) Upregulated

KRT74 Keratin 74 Keogh et al. (2022) Upregulated

LASS3 CERS3 Dwivedi et al. (2023) Upregulated

SERPINB13 Serpin Family B Member 13 Yuan et al. (2020) Upregulated

RCC XGB CAPN1 Calpain 1 Downregulated

CC2D1A Coiled-Coil and C2 Domain Containing 1A Downregulated

CLDN3 Claudin 3 Lechpammer et al. (2008)

COL25A1 Collagen Type XXV Alpha 1 Chain Upregulated

KCNAB1 Potassium Voltage-Gated Channel Subfamily Sun et al. (2022)

A Regulatory Beta Subunit 1

PLXNB1 Plexin B1 Gómez-Román et al. (2010), Li et al. (2021) Downregulated

KDELC2 KDEL (Lys-Asp-Glu-Leu) Containing 2 Upregulated

APLN Apelin Tolkach et al. (2019) Upregulated

RCC RF APLN Apelin Tolkach et al. (2019) Upregulated

ARHGAP39 Rho GTPase Activating Protein 39 Yao et al. (2023) Downregulated

C4orf32 Chromosome 4 Open Reading Frame 32 Upregulated

P4HTM Prolyl 4-Hydroxylase, Transmembrane Downregulated

PLXNB1 Plexin B1 Gómez-Román et al. (2010), Li et al. (2021) Downregulated

TCF4 T cell Factor 4 Zhao et al. (2016), Xu et al. (2016), Lin et al. (2000) Upregulated

EBF2 Early B-Cell Factor 2 Upregulated

RGS5 Regulator of G Protein Signaling 5 Su and Shahriyari (2020)
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Additionally, we selected the top 10 important features and
listed those selected by at least two algorithms in Figure 7. The
Venn diagrams presented in Figure 7 offer a visual comparison
of the interpretability methods applied to the Random Forest
(RF) and XGBoost (XGB) models across Lung and RCC datasets.
These diagrams illustrate the features selected by at least two
methods, namely, SHAP, LIME, and VarImp. For the RF Lung
model (a), we see that eight features were identified by at least
two methods as important, suggesting a strong consensus on
these features’ influence on the model’s predictions: BNC1,
CALML3, DSC3, DSG3, KRT5, LRT74, LASS3, and
SERPINB13. In the case of the XGB Lung model (b), nine
features were identified by all three methods as important,
suggesting a strong consensus on these features’ influence on
the model’s predictions: ATP1B3, CALML3, CLCA2, DSG3,
KRT5, LASS3, SERPINB13, SLC44A4, and TMC5. For the RF
RCC model (c), at least two methods selected APLN,
ARHGAP39, C4orf32, P4HTM, PLXNB1, TCF4, EBF2, and
RGS5. Lastly, the XGB RCC model (d) shows a notable
distribution with eight features, CAPN1, CC2D1A, CLDN3,
COL25A1, KCNAB1, PLXNB1, KDELC2, and APLN,
identified by VarImp, SHAP, and LIME.

As illustrated in Table 1, given that both methods exhibited
performances that were roughly equivalent to each other, we
investigated the efficacy of the genes located at the intersection of
these two methods, as depicted in Figure 7, by analyzing their

effectiveness in accordance with studies in the literature, as will
be seen in Table 2.

In Table 2, we present a summarized overview of gene regulation
patterns discernible in lung tissue and RCC, which are listed among
the intersected genes in Figure 7. This table is pivotal for delineating
the differential expression of genes, as it systematically catalogs those
that are upregulated and, notably, the singular gene that is
downregulated in the context of RCC. Our analysis employed
two distinct methodologies, denoted as XGB and RF, to analyze
gene expression patterns across lung and RCC tissues. The ‘Up/
Downregulated’ column indicates whether a gene is expressed at
higher (upregulated) or lower (downregulated) levels than a
predetermined baseline, which in this context is the normal
tissue expression level. For lung tissue, the uniform upregulation
across both analytical methods (XGB and RF) highlights a consistent
over-expression of genes like ATP1B3, which encodes the beta-3
subunit of the Na+/K+-ATPase, and CALML3, which is associated
with the calmodulin-like protein family. Similarly, keratin-
associated genes KRT5 and KRT74 also exhibit upregulation,
suggesting a possible link to structural or regulatory changes in
lung tissue under pathological conditions. In contrast, the RCC
tissue analysis reveals an intriguing pattern: while the majority of
genes such as PLXNB1, associated with cellular structure and
signaling, are upregulated, TCF4 stands out as the sole gene that
is downregulated. TCF4, or Transcription Factor 4, is a pivotal
element of theWnt signaling pathway, and its downregulation could

FIGURE 4
Comparative visualization of feature importances as determined by XGBoost for RCC dataset: (A) LIME scores, (B) SHAP values, and (C) variable
importance metrics.
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FIGURE 5
Volcano plots for Random Forest (RF) and eXtreme Gradient Boosting (XGB) models displaying selected feature importance in RCC data. Each plot
utilizes a different interpretability method, namely LIME, SHAP, and Variable Importance (VarImp), to highlight the most influential features. The x-axis
shows the log fold change (logFC), indicating the magnitude of change in gene expression, while the y-axis represents the negative logarithm of the p-
value (−log10 p-value), denoting statistical significance. The plots differentiate between significant (red), non-significant (green), and unregulated
(gray) gene expressions. (A) RF LIME - Random Forest model feature importance using LIME explanation method. (B) RF SHAP - Random Forest model
feature importance using SHAP values for explanation. (C) RF VarImp - Random Forest model feature importance using Variable Importance. (D) XGB
LIME - eXtreme Gradient Boosting model feature importance using LIME explanation. (E) XGB SHAP - eXtreme Gradient Boosting model feature
importance using SHAP values for explanation. (F) XGB VarImp - eXtreme Gradient Boosting model feature importance using Variable Importance.
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FIGURE 6
Volcano plots for Random Forest (RF) and eXtreme Gradient Boosting (XGB) models displaying selected feature importance in lung data. Each plot
utilizes a different interpretability method, namely LIME, SHAP, and Variable Importance (VarImp), to highlight the most influential features. The x-axis
shows the log fold change (logFC), indicating the magnitude of change in gene expression, while the y-axis represents the negative logarithm of the p-
value (−log10 p-value), denoting statistical significance. The plots differentiate between significant (red), non-significant (green), and unregulated
(gray) gene expressions. (A) RF LIME - Random Forest model feature importance using LIME explanation method. (B) RF SHAP - Random Forest model
feature importance using SHAP values for explanation. (C) RF VarImp - Random Forest model feature importance using Variable Importance. (D) XGB
LIME - eXtreme Gradient Boosting model feature importance using LIME explanation. (E) XGB SHAP - eXtreme Gradient Boosting model feature
importance using SHAP values for explanation. (F) XGB VarImp - eXtreme Gradient Boosting model feature importance using Variable Importance.
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imply a significant deviation from normal cellular signaling and
transcriptional regulation in RCC.

Feature selection in RNA-Seq studies is typically performed using
well-establishedmodeling techniques available in R/BIOCONDUCTOR
packages like DESeq2 and edgeR. However, these methods are not
specifically designed to identify features that contribute most effectively
to classification models. Some features, despite being differentially
expressed between comparison groups, may not significantly improve
the predictive power of a fitted model. To address this, we proposed a
hybrid feature selectionmethodology that aims to select features that are

both differentially expressed and contribute meaningfully to the
classification model’s performance.

While our methodology is robust, its effectiveness may be
influenced by factors such as sample size, feature count, and
overdispersion in the data. A comprehensive simulation study,
particularly one focusing on Type-I and Type-II error rates,
would be valuable for further evaluating these factors. However,
this falls beyond the current scope of our study and could be
explored in future research. The limitations mentioned have been
acknowledged within the manuscript.

FIGURE 7
Comparison of XAI methods across different models and datasets. The Venn diagrams illustrate the overlap and uniqueness of selected features as
determined by SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Modelagnostic Explanations), and Variable Importance (VarImp) for
Random Forest (RF) and eXtreme Gradient Boosting (XGB) models on Lung and RCC datasets. Each number within the diagrams represents the count of
features identified by the corresponding methods.
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4 Conclusion

This study introduced a ML-GAP that utilizes autoencoders and
data augmentation to enhance the detection and interpretation of
DEGs from RNA-Seq count data. The overarching goal was to
address the limitations of traditional RNA-Seq analysis methods by
incorporating advanced ML techniques, thereby providing a deeper
understanding of gene expression patterns and their associations
with clinical outcomes. The ML-GAP workflow includes several key
steps: data preprocessing to mitigate low-quality features and inter-
sample variations; dimensionality reduction through PCA and
DEGs identification; and data augmentation to increase the
robustness and generalizability of the ML models. Notably, the
MixUp augmentation method demonstrated superior results,
especially in the context of RCC, indicating its effectiveness in
enhancing the predictive accuracy of our models. Therefore, we
further analyzed the results obtained from the MixUpmethod in the
next step XAI. The application of XAI techniques, such as SHAP and
LIME, has been crucial in ensuring the transparency and
interpretability of our findings. These methods allowed us to
identify the most impactful features, aligning with our objective
to not only predict but also understand the biological significance
behind the predictions. The integration of GO analysis further
validated the relevance of these features in the context of lung
cancer and RCC, underscoring the biological and clinical
implications of our results.

The ML-GAP represents a significant advance in genomic
analysis, combining the strengths of ML, data augmentation, and
interpretability to uncover novel insights into gene expression
dynamics. However, challenges such as data quality,
computational demands, and the need for further methodological
refinement remain. Future work will focus on addressing these
challenges, exploring additional datasets, and continuing to
enhance the pipeline’s accuracy and applicability to various
genomic contexts. Additionally, in future work, it will be valuable
to explore the use of generative deep learning models for generating
realistic bulk RNA-Seq gene expression data. Similar toWang et al.‘s
study (Wang et al., 2024), which used Generative Adversarial
Networks (GANs) to produce augmented datasets and analyzed
them with SHAP, integrating these models into our ML-GAP
pipeline could significantly enhance data augmentation and
improve downstream analyses in high-throughput transcriptomics.
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