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Relapse remains a determinant of treatment failure and contributes significantly
to mortality in acute myeloid leukemia (AML) patients. Despite efforts to
understand AML progression and relapse mechanisms, findings on acquired
gene mutations in relapse vary, suggesting inherent genetic heterogeneity and
emphasizing the role of epigenetic modifications. We conducted a multi-omic
analysis using Omni-C, ATAC-seq, and RNA-seq on longitudinal samples from
two adult AML patients at diagnosis and relapse. Herein, we characterized genetic
and epigenetic changes in AML progression to elucidate the underlying
mechanisms of relapse. Differential interaction analysis showed significant 3D
chromatin landscape reorganization between relapse and diagnosis samples.
Comparing global open chromatin profiles revealed that relapse samples had
significantly fewer accessible chromatin regions than diagnosis samples. In
addition, we discovered that relapse-related upregulation was achieved either
by forming new active enhancer contacts or by losing interactions with poised
enhancers/potential silencers. Altogether, our study highlights the impact of
genetic and epigenetic changes on AML progression, underlining the
importance of multi-omic approaches in understanding disease relapse
mechanisms and guiding potential therapeutic interventions.
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Introduction

Acute myeloid leukemia (AML) manifests as a complex disease marked by a multitude
of genetic mutations and dysregulated gene expression profiles stemming from genetic and
epigenetic alterations. These factors shape the trajectory of AML progression and confer
resistance to therapeutic modalities. In general, AML occurs at any age, but it is the most
prevalent form of acute leukemia in adults with a median age at diagnosis of 68 years and an
estimated 20,380 diagnoses and 11,310 related deaths were projected for 2023 (Kishtagari
and Levine, 2021; Siegel et al., 2023). In the past decade, extensive research has focused on
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AML heterogeneity at disease onset, leading to improved
classification (Döhner et al., 2022) and novel treatment agents
(DiNardo and Cortes, 2016; Stein et al., 2017; Stone et al., 2017)
that considerably help to achieve complete remission in most
patients, however, the 5-year overall survival (OS) rates are still
only at around 28% (Howlader N, et al., 2021). It is mainly due to the
high relapse rate, as 40%–60% of patients relapse within 3 years and
fail to respond to conventional chemotherapy regimen (Bejanyan
et al., 2015; Karlsson et al., 2017; Verma et al., 2010). Unfortunately,
most individuals who relapse ultimately die from the disease
(Schlenk et al., 2018). Prognosis in case of relapse is typically
more unfavorable, especially when the recurrence occurs within a
year after the initial remission (Rasche et al., 2021). Furthermore,
relapse is a primary factor contributing to treatment failure (Döhner
et al., 2015).

Recently, several investigations have leveraged next-generation
sequencing (NGS) to identify gene mutations specific to relapse in
certain AML subgroups, aiming to elucidate the disease’s course.
However, there is a considerable genetic heterogeneity among
different relapsed patients (Jan et al., 2012; Metzeler et al., 2016;
Papaemmanuil et al., 2016), even when focusing on specific AML
subgroups (Ahn et al., 2018; Gröschel et al., 2015; Wang et al., 2016).
This diversity hinders the discovery of consistent relapse-specific
signatures. Additionally, there are only a few studies that compare
the mutational profiles of diagnosis and relapse samples in AML
patients, and they focus on coding mutations (Farrar et al., 2016;
Masetti et al., 2016), despite growing evidence that non-coding
mutations in regulatory elements or structural variants altering
enhancer usage can also drive oncogenesis (Northcott et al.,
2014; Zhu et al., 2020). This underscores the significance of
epigenetic changes in the course of the disease and emphasizes
the necessity of considering the intrinsic and extrinsic disease
heterogeneity (Levin et al., 2021; Schwenger and Steidl, 2021;
Vicente-Dueñas et al., 2018). Furthermore, there is a paucity of
comprehensive molecular characterization of longitudinal AML
samples, including diagnosis and relapse pairs. Therefore, we aim
to assess the contribution of epigenetic factors, such as active
regulatory elements and their long-range chromatin interactions,
in conjunction with gene expression profiles across longitudinal
samples, elucidating their role in the progression of AML.

To achieve this, we have profiled the long-range chromatin
interactions (using Omni-C), open chromatin regions (using
ATAC-seq), and gene expression (using RNA-seq) of two
matched adult AML patients at diagnosis and relapse. We found
significant alterations in the 3D chromatin landscape and accessible
chromatin regions between relapse and diagnosis samples.
Additionally, upregulated genes in relapse showed enrichment for
H3K27me3 in distal regions of diagnosis-specific interactions,
indicating loss of potential silencer connections during relapse.

Methods

Patient samples

We received live-frozen mononuclear cells from peripheral
blood of adult AML diagnosis and relapse paired samples from
Bolzano General Hospital, Italy. Each sample contained >50% blast

cells Supplementary Table S1. The project was reviewed by the
Hamad Bin Khalifa University Institutional Review Board and
approved under protocol #QBRI-IRB 2020-02–017.

Omni-C library preparation

We used the Omni-C kit (Dovetail Genomics), which is a
sequence-independent endonuclease-based proximity-ligation
protocol. Briefly, 1 × 106 live bone marrow cells were fixed in
DSG (disuccinimidyl glutarate), a non-cleavable and membrane-
permeable protein-protein crosslinker, followed by formaldehyde to
reversibly crosslink in vivoDNA-protein interactions. The fixed cells
were treated with DNase I to digest chromatin. Next, for the
proximity ligation, the chromatin ends were polished, and biotin-
tagged bridges were used to create chimeric molecules. The crosslink
of lysate was reversed, and the purified DNA was used for NGS
library preparation. Finally, the library was enriched for ligation-
containing chimeric molecules. The Omni-C libraries were
sequenced on an average of 14x coverage on the Illumina HiSeq
X Ten system with 151-base paired-end reads (>300M reads).

ATAC-seq library preparation

One of our objectives was to interrogate active chromatin
regions through an assessment of chromatin accessibility, which
was evaluated using ATAC-seq, a method known for its capability to
delineate regions of open chromatin. The Active Motif ATAC-seq
kit was used to perform ATAC-seq on living cells in accordance with
the Omni-ATAC-seq protocol described by (Corces et al., 2017). For
ATAC-seq, cryopreserved bone marrow samples were slowly
thawed using IMDM supplemented with 10% FBS and DNase.
Viability was calculated under a hemocytometer with trypan
blue–samples with a viability <80% were subjected to dead cell
sorting using MACS dead cell removal kit (cat: 130-090–101). 1 ×
105 cells were taken forward for ATAC-seq.

Briefly, for sample preparation, 1 × 105 cells were first pelleted
and washed with ice-cold PBS. Subsequently, the cells were re-
suspended in an ice-cold ATAC-Lysis buffer. Next, for tagmentation
the isolated nuclei were incubated at 37°C for precisely 30 min while
being shaken at 800 rpm in a transposition mixture containing
100 nM final transposase. For DNA purification Zymo DNA Clean
and Concentrator-5 Kit was used. Following that, PCR
amplifications of tagmented libraries were performed using
10 cycles of PCR and DNA was extracted using 60 µL SPRI
beads for size selection. To assess size distribution, PCR-
amplified libraries were analyzed with Bioanalyzer. Finally,
libraries were sequenced on the Illumina HiSeq 4,000 platform to
~50 million paired end 100bp reads.

RNA-seq library preparation

Total RNA was purified from 5 × 105 live bone marrow cells
using a Qiagen RNeasy Plus Micro kit. Briefly, the cells were
disrupted and homogenized using RLT buffer. Genomic DNA
eliminator spin columns were used to remove the DNA, and
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RNeasy MinElute spin columns were used to purify RNA. Total
RNA-seq libraries were prepared using TruSeq Stranded Total RNA
Library Prep Gold Kit. The prepared libraries were sequenced using
the Illumina Nextseq platform to ~60–50 million paired-end
101bp reads.

Omni-C data pre-processing

Omni-C libraries were processed through an in-house pipeline.
The quality control (QC) of sequencing of Omni-C libraries was
performed on fastq files using FastQC (Andrews et al., 2010). The
adaptor sequences from the reads were trimmed using TrimGalore.
The trimmed read pairs were aligned using BWA-MEM (version
0.7.17 or higher) to the GRCh38 version of the human genome. To
find ligation junctions in Omni-C libraries, the “pairtools parse”
module was used by setting MAPQ greater or equal to 40 and walks-
policy as 5unique. The pairtools pipeline records the strand of each
paired read and the outermost (5′) aligned base pair into a “pairsam”

file upon identification of a ligation event in the alignment file. The
pairsam format records Hi-C pair information along with SAM
entries, which was then sorted using “pairtools sort”. The “pairtools
dedup” command was used to remove PCR duplicates from sorted
pairsam files and here we also produced the statistics of the library by
using the flag “–output-stats”. Finally, the deduplicated pairsam files
were then used to create two different files, such as pairs file and
BAM file, which can be used for further downstream processing.

Omni-C library QC and complexity

To check the quality of Omni-C libraries, we have used the stats
files calculated by “pairtools dedup”, which contains information on
total reads, mapped reads, duplicate reads, and total read pairs. In
addition, we used the get_qc.py pipeline from Dovetail Genomics to
summarize these stats in percentage and absolute values. We have
checked the complexity of Omni-C libraries using the lc_extrap
utility of the preseq package from Smith lab (github.com/
smithlabcode/preseq), which aims to predict the complexity of
sequencing libraries.

Contact matrix

The contact maps, which are compressed and sparse formats, are
produced from the pairs files using Juicer tools (Durand et al., 2016).
The pairs files were first converted into HiC files, which are highly
compressed binary representations of the contact matrices using
“pre” command of Juicer tools. The HiC contact matrices were
finally visualized using Juicebox (J. T. Robinson et al., 2018).

Differential interaction analysis

The systematic biases such as those arising from enzyme
digestion, DNA ligation, and PCR amplification from Omni-C
libraries were corrected using the HiCorr pipeline (Lu et al.,
2020). To prepare the input, the BAM files were sorted according

to co-ordinates and read pairs were thenmapped to select the cis and
trans read pairs. The HiCorr outputs were then used to apply a deep
learning-based tool called DeepLoop (Zhang et al., 2022) to perform
loop signal enhancement. We have used the pre-built models from
DeepLoop to improve the sensitivity, robustness, and quantitation of
Omni-C loops and output chromatin loop strength.

After that, we have created a count matrix (M (i, j)) where each
row (i) represents a chromatin loop and column (j) represents a
sample and it was populated with the loop strengths from
DeepLoop. The count matrix was normalized using the R
Bioconductor package edgeR (M. D. Robinson et al., 2010). The
normalized counts were used to calculate the standard deviation,
and we selected the top 100,000 most variable interactions based on
standard deviation. Finally, the matrix with only the most variable
interactions was used to perform differential interaction analysis
using the R Bioconductor package limma (Ritchie et al., 2015).

Omni-C downstream analysis

Exploratory analysis was performed in R version 4.3.1 using the
Bioconductor package GenomicRanges (Lawrence et al., 2013). All
interaction landscapes were visualized in the WashU Epigenome
Browser (Li et al., 2022).

ATAC-seq library pre-processing

Briefly, all libraries underwent FastQC testing (Andrews et al.,
2010) to evaluate the library quality and make sure that each library
is free of significant problems like low read quality or adapter
contamination. Next, we used Trimmomatic (Bolger et al., 2014)
with default parameters to filter low-quality reads, and Truseq
adaptors were trimmed off from the reads. Subsequently, these
reads were aligned to the hg38 version of the human genome
using Bowtie2 aligner, which created SAM files that were
converted to BAM files using samtools. After that, mitochondrial,
duplicate, and blacklisted reads were removed using samtools and
bedtools. Reads were shifted to adjust for tn5 binding using the
alignmentSieve tool. Finally, peaks were then called on the final
processed BAM files using the callpeak command with BAMPE of
the MACS2 peak calling algorithm.

ATAC-seq downstream analysis

MACS2 peaks were further used for downstream processing.
Peaks were assigned to genomic elements using BioMart (Durinck
et al., 2005) and TxDb.Hsapiens.UCSC.hg38. knownGene R
Bioconductor packages (Carlson, et al., 2015). All exploratory
analysis was performed in R version 4.3.1 using the
GenomicRanges Bioconductor package (Lawrence et al., 2013).

RNA-sequencing pre-processing

The QC of RNA-seq libraries was performed on fastq files using
the FastQC tool (Andrews et al., 2010). The adaptor sequences from
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the reads were trimmed using TrimGalore. The trimmed reads were
aligned to the hg38 genome using STAR and RSEM was used to
calculate the expression values as expected counts from the aligned
RNA-seq data. The count matrix was normalized using the R
Bioconductor package edgeR (M. D. Robinson et al., 2010).
Finally, the normalized counts were used to analyze differential
gene expression using the R Bioconductor package limma (Ritchie
et al., 2015). Significant upregulated and downregulated genes with
adjusted p-value <0.1 were selected based on log2 fold
change >1 and log2 fold change < −1, respectively.

RNA-seq downstream analysis

The normalized reads were used for all exploratory analysis and
plots were generated using custom code in R version 4.3.1. Volcano
plots were created using the R Bioconductor package ggplot2.

Multi-omic data integration

Significant differential Omni-C interactions were used to
identify relapse-specific and diagnosis-specific anchors in each
sample and subsequently, we specified diagnosis-specific ATAC-
seq peaks by taking the overlap of two diagnosis samples and
relapse-specific ATAC-seq peaks by taking the overlap of two
relapse samples. Further, we removed the common peaks
between diagnosis-specific and relapse-specific ATAC-seq peaks.
Next, relapse-specific and diagnosis-specific Omni-C anchors and
ATAC-seq peaks were overlapped using the Bioconductor package
GenomicRanges (Lawrence et al., 2013) to investigate which
differentially interacting regions are accessible. Finally, we
assigned genes to these regions using BioMart (Durinck et al., 2005).

Furthermore, we investigated which differentially expressed
genes are linked to differentially accessible DNA in differentially
interacting regions (20 Kb). Then, we calculated enrichment for
differentially expressed genes in relapse and diagnosis-specific
interactions in comparison with 10 random, size-matched sets of
genes from the whole genome. Finally, the distal or other end of the
interactions of upregulated genes that have diagnosis-specific Omni-
C interactions and ATAC-seq peaks were overlapped with publicly
available H3K27me3 ChIP-seq data (accession number
GSM4565992) from CD34+ common myeloid progenitor cells, to
test whether their upregulation can be attributed to the loss of a
silencer contact. For these analyses, the R Bioconductor package
GenomicRanges (Lawrence et al., 2013) was used.

Motif enrichment

For the differential enrichment of transcription factor binding
motifs within differentially accessible regions found in differentially
interacting regions the Homer (Hypergeometric Optimization of
Motif EnRichment) motif suite of tools was used (Heinz et al., 2010).
The parameters findMotifsGenome.pl with -size −200,200 to centre
peaks to a 400bp region and -bg to set background of peaks. Motifs
with FDR<0.01 were considered significantly enriched. Relapse-
specific anchors and peaks were used as target sequences, and

diagnosis-specific anchors and peaks were used as
background sequences.

Results

Overview of multi-omics assays in diagnosis
and relapse AML

We integrated changes of the 3D genome structure, chromatin
accessibility, and gene expression to decipher the molecular changes
that occur inAML at relapse compared to at the time of diagnosis in two
initial diagnoses and relapse AML sample pairs (Supplementary Table
S1). We explored long-range regulatory interaction patterns using
Omni-C, active regulatory elements using ATAC-seq, and
transcriptional patterns through RNA-seq (Figure 1A). In addition,
we used Omni-C data to create genome-wide contact maps and assess
the spectrumof large chromosomal changes in these AML samples. The
contactmaps identified that all of the samples had a t(9; 11) orKMT2A::
MLLT3 translocation. This confirmed the initial diagnosis of one
patient; however, this translocation was undetected by cytogenetics
in the other patient. The KMT2A::MLLT3 subtype of AML is shown to
have a poor/intermediate prognosis, and the current mechanistic
understanding of KMT2A-rearrangement (KMT2Ar) prognosis has
not fully translated into therapeutic success due to the complexity of
genomic events contributing to the disease (Krivtsov and Armstrong,
2007; Liedtke and Cleary, 2009; Meyer et al., 2018). We additionally
observed within ourOmni-C data that relapse samples had gained extra
chromosomal abnormalities, for example, chromosome eight
duplication, t(3; 5), and t(1; X) (Figure 1B; Supplementary Figure
S1A–D). Such abnormalities are common occurrences at relapse in
AML (Kern et al., 2002).

Differential interactions and differentially
accessible regions in relapse versus
diagnosis samples

Next, we asked whether there are any regions that are
differentially interacting in the genome distinguishing relapse
from diagnosis samples. While we found higher intra-patient
similarity than intra-status (Figure 2A), we could detect common
diagnosis and relapse-specific interactions. By comparing relapse
versus diagnosis samples, we found 8,202 significantly differential
interactions (p-adj <0.1), where 5,262 interactions were defined as
diagnosis-specific, and 2,940 interactions were found to be relapse-
specific (Figure 2B). This highlights distinctive interaction patterns
between diagnosis and relapse timepoints that are consistent across
patients. Next, we compared the chromatin accessibility profile of
the diagnosis and relapse pairs using ATAC-seq. We estimated the
similarity between relapse and diagnosis samples using PCA based
on the global open chromatin profile, which again showed higher
inter-patient variability than inter-state variability (Figure 2C). We
performed an overlap analysis between two diagnosis samples and
two relapse samples, where we took the common diagnosis (20,197)
and common relapse (10,914) open chromatin regions.
Subsequently, by overlapping common diagnoses and relapse
peaks, we identified 16,363 consistent diagnosis-specific open
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FIGURE 1
(A) Schematics showing the experimental workflow where PBMCs obtained from adult AML samples at initial diagnosis underwent NGS library
preparation for Omni-C, ATAC-seq, and RNA-seq analyses. Subsequently, the same NGS libraries were prepared from samples upon relapse following
allogenic stem cell transplantation. (B) Contact maps derived from the Omni-C dataset, depicting the chromosomal architecture of diagnosis samples
(left) compared with relapse samples (right). The blue dotted lines show the chromosomal abnormalities each sample contains genome wide.
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chromatin regions and 6,966 relapse-specific regions in addition to
4,099 regions that were active in all samples (Figure 2D).

Integration of differential chromatin
interaction and accessibility signatures

We integrated the Omni-C anchors with ATAC-seq peaks to
investigate which differential interacting regions are also
differentially accessible (Supplementary Figure S2A). We found
150 unique relapse-specific anchors that were differentially

accessible in relapse samples, which were annotated with
107 genes. GO-term analysis of these genes reveals the biological
processes and pathways in which these genes were enriched, such as
regulation of canonical Wnt signaling pathway, negative regulation
of cell differentiation, Notch signaling pathway, and AML
(Figure 3A). Next, we investigated if relapse-specific peaks in
relapse-specific anchors are associated with different transcription
factors (TFs) compared to diagnosis-specific ones by performing
differential motif discovery on these two sets. We noted that a liver X
receptor beta (LXRb) was enriched in relapse-specific regions
(Figure 3B). Finally, we explored whether these differential

FIGURE 2
(A) PCA plot based on limma logfold change (logFC) of Omni-C data (B) Volcano-plot showing differential interaction of relapse versus diagnosis
interactions based on Omni-C datasets where each dot represents an interaction. Blue represents significant diagnosis-specific interactions (5,262), and
red represents significant relapse-specific interactions (2,940), whereas grey dots represent non-significantly differential interactions. (C) PCA plot based
on ATAC-seq normalized peak intensity. (D) Venn diagram representing the overlap of diagnosis-specific ATAC-seq peaks (upper left), relapse-
specific ATAC-seq peaks (upper right) between patients and of consistent diagnosis-specific and relapse-specific ATAC-seq peaks (bottom).
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FIGURE 3
(A) Bar plots representing the enrichment of biological processes and pathways based on genes annotated to consistent relapse-specific
interactions and peaks. (B) The top eight motifs enriched in relapse-specific Omni-C anchors and ATAC-seq peaks compared to diagnosis-specific
anchors and peaks. (C) Example of a relapse-specific Omni-C interaction and ATAC-seq peaks where theHOXA9 promoter region interacts with a distal
active enhancer at the downstream region of the SNX10 gene. (D)Bar plots representing the enrichment of biological processes and pathways based
on genes annotated to diagnosis-specific interactions and peaks. (E) Example of a diagnosis-specific interaction and ATAC-seq peaks at the promoter
region of ELF5 interacting with a poised enhancer within SLC1A2. Arcs represent long-range chromatin interactions, active enhancers are marked by
H3K27ac and H3K4me1, and poised enhancers are marked by H3K27me3 and H3K4me1.
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FIGURE 4
(A) PCA plot based on logfold change (logFC) of gene expression level. (B) Volcano plot showing significantly (p-adj <0.1) differentially expressed
genes; here blue dots are significantly downregulated genes, red dots are significantly upregulated, and grey are nonsignificant genes. (C) Bar plots
showing the enrichment of biological processes and pathways based on upregulated genes. (D) Bar plots showing enrichment of biological processes
and pathways based on downregulated genes. (E) Box plots representing the logfold change of upregulated genes that overlapped with relapse-
specific interactions and peaks (pink) and of 10 different random sets of upregulated genes. (F) Box plots representing the logfold change of upregulated
genes that overlapped with diagnosis-specific interactions and peaks (blue) and of 10 different random sets of upregulated genes.
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interactions are anchored at active or poised enhancers. For
instance, HOXA9, which is involved in cell differentiation and
upon dysregulation, contributes to leukemogenesis, was found to
form a relapse-specific long-range interaction with an active
enhancer at the 3′UTR of the SNX10 gene, marked by
H3K4me1/3 and H3K27ac (Figure 3C). In addition, we found
KMT2Ar subtype-specific patterns at known KMT2A target
genes, such as UBE2J1 and PARP8, in the loop anchors
(Supplementary Figures S2B, S2C). Overexpression of these genes
contributes to the blockage of normal hematopoietic differentiation
and promotes leukemogenesis.

On the other hand, we found 312 unique diagnosis-specific anchors
that were differentially accessible and in proximity to these peaks,
154 genes were present. Further, these genes were enriched in biological
pathways such as TGF-beta and Notch signaling (Figure 3D). Examples
of genes with diagnosis-specific interactions include ELF5, which is
associated with epithelial cell function and has implications in cancer.
Its promoter formed a diagnosis-specific contact with a poised enhancer
marked by H3K27me3 and H3K4me1, likely contributing to its low
expression in diagnosis samples (Figure 3E). Additionally, a TGF-beta
pathwaymember, BMP8A, also interacted with a poised enhancer. This
gene plays critical roles in various cellular processes, such as tissue
differentiation, cell proliferation, and apoptosis. ST8SIA1, which is
involved in cell signaling, recognition, and adhesion, was interacting
with an active enhancer near the 3′UTR of CMAS. Another gene with a
diagnosis-specific active enhancer contact isHPSE2, which has a role in
tumor microenvironment dynamics and cancer progression. Its
promoter is interacting with an active enhancer present in the
proximity of its own 3′UTR Supplementary Figure S2D–F).

Analysis of differential gene
expression dynamics

Finally, we explored the gene expression profile of these
longitudinal samples using RNA-seq. Similarly to what we found
using the other omics methods, samples do not cluster together
based on disease status, i.e., relapse and diagnosis (Figure 4A).
Nonetheless, we asked whether there are differentially expressed
genes between relapse versus diagnosis samples. Using limma-voom,
we found overall, 95 significantly dysregulated genes that were
selected using p. adj <0.1 and absolute log2FC > 1 (Figure 4B).
These genes were enriched in pathways like B-cell receptor signaling
pathway and immune and defense mechanism-related biological
processes, as well as AML (Supplementary Figure S2G). Further, out
of 95 significant dysregulated genes identified by comparing relapse
with diagnosis, there were 55 upregulated genes (Supplementary
Table S2) and 40 downregulated genes (Supplementary Table S3).
These upregulated genes were enriched in defense response and
interferon and cytokines signaling (Figure 4C), whereas
downregulated genes were enriched in B-cell receptor, Jak-STAT,
and interleukin signaling pathways (Figure 4D).

Multi-omic data integration exploration

Finally, we integrated all three omic datasets together to identify
consistently differentially regulated genes across relapse and

diagnostic timepoints. While there were only a handful of genes
that showed significant differences, we noted that in general, genes
that were associated with relapse-specific interactions and open
chromatin regions showed higher levels of upregulation than
those genes associated with diagnosis-specific interactions and
open chromatin regions, as well as random genes from the
genome, indicating that relapse-specific interactions are often
new active enhancer contacts (Figures 4E, F). Some of the genes
that were associated with diagnosis specific interactions and open
chromatin regions were also upregulated in relapse samples. We
hypothesized that these upregulated genes may have initially
interacted with silencers/poised enhancers, but upon relapse, this
interaction is lost (Supplementary Figure S3A). We found 13 genes
(ST8SIA1, IVD, ACAN, KIF5C, ADAMTS5, CFAP299, PITX2,
KLHL31, RBPMS, SNAI2, SOX17, CSMD3, and DMRTA1) where
the diagnosis-specific interaction linked them to regions marked by
H3K27me3, which is a significantly higher proportion than expected
by chance (p-value = 9.99 × 10−5) (Supplementary Figures S3B, C).
In contrast, genes associated with either relapse-specific or
diagnosis-specific interactions and open chromatin regions
showed a similar level of downregulation compared to random
genes from the genome (Supplementary Figures S3D, E). In an
independent study, we found that out of these 13 genes, nine genes
lost chromatin accessibility upon relapse (Nuno et al., 2024)
(Supplementary Figure S4).

There were five genes that showed significant differences in all
three analyses. Our findings revealed that among genes that were
upregulated in relapse, SDC2 and CD70 were in consistent relapse-
specific anchors and peaks, while NCAM2 and IFI44 were in
consistent diagnosis-specific anchors and peaks. These genes have
been shown to have some link with different types of cancers. For
example, the SDC2 (syndecan-2) protein functions as an integral
membrane protein and participates in cell proliferation, cell
migration and cell-matrix interactions via its receptor for
extracellular matrix proteins, and altered SDC2 expression has
been detected in several different tumor types (Akl et al., 2015;
Canarte et al., 2023). Among the downregulated genes in relapse,
TSPYL5, which is a TP53 suppressor via its interaction with USP7
(Epping et al., 2011), was found in a consistent diagnosis-specific
anchor and peak. Dysregulation of most of these genes was
corroborated by independent studies. Using nine diagnosis and
relapse pair samples, Nuno et al. found that NCAM2, IFI44, and
TSPYL5 significantly lost their accessibility upon relapse
(Supplementary Figure S5). Finally, explored the relationship
between the expression of these genes and clinical outcome, in
terms of survival, using the Leucegene AML RNA-seq prognostic
cohort (n = 373). We observed that high expression of these genes,
including TSPYL5, negatively impacts the overall survival of AML
patients, except for CD70, which did not show a significant effect
(Supplementary Figure S6).

Discussion

AML aggressive subtypes are often linked to rearrangements in
the mixed lineage leukemia gene (KMT2Ar). 10% of adult acute
leukemias with a very poor prognosis and chemoresistance are
caused by clinically significant and genetically well-defined
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KMT2Ar (Krivtsov and Armstrong, 2007; Liedtke and Cleary, 2009;
Meyer et al., 2018). Therefore, it is important to understand what
genetic and epigenetic changes characterize relapse. Patients with
t(9; 11)(p22; q23), the most frequent translocation which leads to the
KMT2A::MLLT3 fusion gene, carried by the patients in this study,
show relatively acceptable results with intensive chemotherapy
(Grimwade et al., 2010; Mrózek et al., 1997; Stölzel et al., 2016;
Chen et al., 2013; Pigneux et al., 2015), placing them in the
intermediate risk group according to ELN 2017 and ELN
2022 classifications (Döhner et al., 2017; 2022). This highlights
the importance of identifying the oncogenic translocation for
clinical decision making. Our chromatin conformation data
revealed an undetected 9;11 translocation in one patient,
indicating the need for more in-depth karyotyping using next-
generation sequencing-based techniques. One option is targeted
RNA-seq, which is becoming routine in diagnostics to detect low
level fusion genes (Kerbs et al., 2022).

Advances in pharmacological inhibitors and targeted immuno-
therapies have considerably improved the treatment options for
KMT2Ar leukemias (Issa et al., 2023; van der Sluis et al., 2023).
However, KMT2Ar leukemias show highly heterogenous response
to therapeutic regimens despite their similar oncogenic lesions (Issa
et al., 2023; Lambo et al., 2023). Common genetic mechanisms
leading to therapeutic resistance include clonal selection and the
acquisition of secondary mutations. Additionally, a subset of these
leukemias may also evade targeted therapies through epigenetic
mechanisms that remain poorly understood (Tirtakusuma
et al., 2022).

In this study, we explored epigenetic and transcriptomic changes
in AML progression by integrating Omni-C, ATAC-seq, and RNA-
seq data in two pairs of diagnosis and relapse samples. We found
substantial chromatin remodeling, which was indicated by
differences in the 3D chromatin structure, with a significant loss
of chromatin interactions and open chromatin regions in relapse.
Furthermore, differential gene expression analysis of those
longitudinal samples revealed that upregulated genes are enriched
in broad immune response pathways, including those related to
cytokine signaling, especially interferon-alpha/beta signaling, while
downregulated genes show enrichment in signaling pathways
associated with Jak-STAT and interleukin.

Combined multi-omics data pinpointed three upregulated genes
(SDC2, NCAM2, and IFI44) that showed negative effects on survival
in a larger leukemia cohort. TSPYL5 was downregulated in both of
the relapse samples we tested, and higher expression of this gene was
also associated with worse prognosis in the Leucegene cohort. In
conclusion, our integrated analysis highlights distinct genomic and
epigenomic profiles in relapse compared to diagnosis. Although the
small sample size limits our study, the genes highlighted here
showed dysregulation and had a prognostic effect in independent
patient cohorts warranting their further exploration in larger
cohorts to assess their clinical relevance and the therapeutic
implications of these observations for KMT2Ar AML.
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SUPPLEMENTARY FIGURE S1
Each bar plot represents the average read coverage of cis interactions across
chromosomes. (A, B) show the average coverage at diagnosis (C, D) show
the average coverage at relapse. (C) is the relapse sample of (A), (D) is the
relapse sample of (B).

SUPPLEMENTARY FIGURE S2
(A) Schematics of identifying relapse-specific differential interactions and peaks
anddiagnosis-specific interactions andpeaks. (B-F)Examplesof relapse-specific
(B, C) and diagnosis-specific (D–F) Omni-C interactions and ATAC-seq peaks
of UBE2J1 and PARP8; and BMP8A, ST8SIA1, and HPSE2, respectively. Red track
shows H3K27me3, blue shows H3K27ac, and green shows H3K4me3/1 in
Common Myeloid Progenitor – CD34 positive cells. (G) Bar plots showing the
enrichment of biological processes and pathways based on significantly
dysregulated genes between relapse versus diagnosis.

SUPPLEMENTARY FIGURE S3
(A) Schematics portraying the interactions of promoter regions with distal
poised enhancers marked by H3K27me3. (B) Examples of gene promoters
interacting with silencers. (C) Bar plots showing the proportion of
diagnosis-specific and random interactions where the distal element is
marked by H3K27me3. Error bars indicate the standard deviation of the
random proportions based on 10,000 Monte Carlo simulations. (D) Box
plots representing downregulated genes that overlapped with relapse-
specific interactions and peaks and their comparison with the expression

level of 10 different random sets of downregulated genes.(D) Box plots
representing downregulated genes that overlapped with diagnosis-specific
interactions and peaks and their comparison with the expression level of
10 different random sets of downregulated genes.

SUPPLEMENTARY FIGURE S4
Box plots representing ATAC-seq data from Nuno et al. of 18 stable initial
diagnosis (blue) and relapse (brown) AML samples. 13 genes, which were
upregulated and lost their interaction with a silencer. Diagnosis and relapse
sample pairs are connected by grey lines. The log2FC differences and
adjusted p-values are taken from the differential accessibility analysis
between relapse and diagnosis using gene score,(a metric to estimate the
accessibility of chromatin regions associated with specific genes).

SUPPLEMENTARY FIGURE S5
Box plots representing ATAC-seq data from Nuno et al. of 18 stable initial
diagnosis (blue) and relapse (brown) AML samples. These five genes were
found consistent across all three analyses. Diagnosis and relapse sample
pairs are connected by grey lines. The log2FC differences and adjusted
p-values were taken from the differential accessibility analysis between
relapse and diagnosis using gene score, a metric to estimate the
accessibility of chromatin regions associated with specific genes.

SUPPLEMENTARY FIGURE S6
Kaplan-Meier plots showing the overall survival (OS) of patients from the
Leucegene Acute Myeloid Leukemia (AML) cohort based on gene
expression levels of five different genes that we found significant. Each
displays the survival probability over time, stratified by gene expression levels
(above or below median). Patients with above-median gene expression
levels of (A) SDC2, (B) CD70, (C) NCAM2, (D) IFI44, and (E) TSPYL5 show
significant differences in survival compared to those with below-median
levels, with p-values of 0.0004, 0.0194, 0.0001, 0.0135, and 0.0003,
respectively.

SUPPLEMENTARY TABLE S1
Clinical characteristics of AML patients at diagnosis and relapse.

SUPPLEMENTARY TABLE S2
List of upregulated genes of relapse versus diagnosis AML samples with
logFC >1 and adj-pval < 0.1.

SUPPLEMENTARY TABLE S3
List of downregulated genes of relapse versus diagnosis AML samples with
logFC < −1 and adj-pval < 0.1.
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