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Introduction: Drug response prediction, especially in terms of cell viability
prediction, is a well-studied research problem with significant implications for
personalized medicine. It enables the identification of the most effective drugs
based on individual genetic profiles, aids in selecting potential drug candidates, and
helps identify biomarkers that predict drug efficacy and toxicity.A deeper
investigation on drug response prediction reveals that drugs exert their effects by
targeting specific proteins, which in turn perturb related genes in cascading ways.
This perturbation affects cellular pathways and regulatory networks, ultimately
influencing the cellular response to the drug. Identifying which genes are
perturbed and how they interact can provide critical insights into the
mechanisms of drug action. Hence, the problem of predicting drug response
can be framed as a dual problem involving both the prediction of drug efficacy
and the selection of drug-specific genes. Identifying these drug-specific genes
(biomarkers) is crucial because they serve as indicators of how the drug will affect
the biological system, thereby facilitating both drug response prediction and
biomarker discovery.

Methods: In this study, we propose DGDRP (Drug-specific Gene selection for Drug
Response Prediction), a graph neural network (GNN)-basedmodel that uses a novel
rank-and-re-rank process for drug-specific gene selection. DGDRP first ranks genes
using a pathway knowledge-enhanced network propagation algorithm based on
drug target information, ensuring biological relevance. It then re-ranks genes based
on the similarity between gene and drug target embeddings learned from the GNN,
incorporating semantic relationships. Thus, our model adaptively learns to select
drugmechanism-associated genes that contribute to drug response prediction. This
integrated approach not only improves drug response predictions compared to
other gene selection methods but also allows for effective biomarker discovery.

Discussion: As a result, our approach demonstrates improved drug response
predictions compared to other gene selection methods and demonstrates
comparability with state-of-the-art deep learning models. Case studies further
support our method by showing alignment of selected gene sets with the
mechanisms of action of input drugs.
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Conclusion: Overall, DGDRP represents a deep learning based re-ranking strategy,
offering a robust gene selection framework for more accurate drug response
prediction. The source code for DGDRP can be found at: https://github.com/
minwoopak/heteronet.
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drug response, gene ranking, gene selection, network propagation, graph neural network,
biological network

1 Introduction

As the paradigm of drug treatment shifts from a “one-size-fits-all”
approach to personalized medicine, drug response prediction has
become an essential task. Drug response prediction, especially in
terms of cell viability prediction, is a well-studied research problem
with significant implications for personalized medicine. It enables the
identification of the most effective drugs based on individual genetic
profiles, aids in selecting potential drug candidates, and helps identify
biomarkers that predict drug efficacy and toxicity. Although some
methodologies integrate multi-omics data for drug response
prediction (Sharifi-Noghabi et al., 2019; Oh et al., 2020; Feng et al.,
2021), many researchers prefer to focus solely on transcriptomic data
due to its higher availability, relatively lower cost, and the critical role
of gene expression in reflecting cellular states and responses (Jiang
et al., 2022; Shin et al., 2022; Yang and Li, 2023; Bang et al., 2024).

A deeper investigation into drug response prediction reveals that
drugs exert their effects by targeting specific proteins, which
subsequently perturb related genes in cascading ways. This
perturbation influences cellular pathways and regulatory
networks, ultimately affecting the cellular response to the drug.
Identifying which genes are perturbed and understanding their
interactions can provide critical insights into the mechanisms of
drug action. Therefore, the problem of predicting drug response can
be framed as a dual problem involving both the prediction of drug
efficacy and the identification of drug-specific genes. Recognizing
these drug-specific genes (biomarkers) among omics data is crucial
because they serve as indicators of how the drug will affect the
biological system, thereby facilitating both accurate drug response
prediction and biomarker discovery.

Despite the availability of extensive omics data, effectively
utilizing it for drug response prediction poses significant
computational challenges. One primary issue is the high-
dimensionality, low-sample problem, characterized by a
substantial imbalance between the number of gene features and
the available samples. While sequencing technologies allow for the
measurement of various biological entities, including RNA, DNA,
proteins, and metabolites, obtaining trainable patient samples
involves legal and ethical challenges. This imbalance often leads
to overfitting, where models perform well on training data but fail to
generalize to new, unseen data (Adam et al., 2020).

The dual approach is crucial because gene selection methods
not only reduce the dimensionality of omics data but also
facilitate the discovery of biomarkers that are directly linked
to drug response. Despite numerous biomarker identification
methods, only a few specifically target drug response prediction.
The problem of drug response prediction can thus be
formulated as:

Biomarkers � qϕ Drug,Target( )
Drug Response � pθ Drug, Profile of identified biomarkers( )

where the predictive function qϕ identifies the relevant biomarker
genes based on the drug, its target, and the biological network, and
pθ predicts the drug response using the profile of these biomarkers
along with the drug information.

Various methods have been developed for gene selection to
reduce the dimensionality of omics data and facilitate
biomarker discovery. These methods generally fall into four
categories; the first is fixed sets, where knowledge-guided
predefined gene sets such as the L1000 Landmark gene set
(Subramanian et al., 2017), drug target genes, and cancer
hallmark genes (Menyhárt et al., 2016) are utilized. These
fixed sets serve as a starting point for identifying key
biomarkers, although they may not account for the specific
characteristics of different drugs or patient samples.

The second set is trainset-dependent sets, which include gene sets
selected based on differential expression (DEG) or gene expression
variance in the training dataset. These approaches, however, often lack
the specificity and adaptability required for optimal gene selection.

ML-driven sets, the third category, filter genes using feature
importance scores obtained from machine learning algorithms like
logistic regression or random forest Ding et al. (2016). Although
these methods are dynamic and data-driven, they often lack
biological interpretability and may not be tailored to the specific
mechanisms of individual drugs, limiting their effectiveness in
discovering relevant biomarkers.

Lastly, knowledge-graph based ranking methods including network
propagation perform ranking based on an input gene set and biological
network knowledge to identify relevant genes (Cowen et al., 2017). Given
the complexity of gene interactions, effective drug response prediction and
gene selection must account for gene-gene interactions. Many existing
studies have utilized network propagation techniques to model these
complex interactions. However, these methods are often insufficient for
identifying drug-target-based genes, and also lacking the context about the
semantics between the ranked genes. For example, there is no information
on how the genes ranked as first and second are associated with each
other, limiting the understanding of gene interactions and their collective
impact on drug response and biomarker discovery, thus necessitating the
development of new computational strategies.

To overcome these limitations, we propose DGDRP (Drug-
specific Gene selection for Drug Response Prediction), a novel
graph neural network (GNN)-based model designed for both
knowledge-based and data-driven drug-specific gene selection
(Figure 1. Our approach involves a unique rank-and-re-rank
process that enhances the specificity and adaptability of gene
selection, allowing for simultaneous drug-response biomarker
identification and drug response prediction:
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1. Knowledge-based ranking: We utilize drug target information to
rank and select genes related to each drug’s mechanism through a
pathway knowledge-enhanced network propagation algorithm,
NetGP (Pak et al., 2023). This ensures that the selected genes are
biologically relevant to the drug’s action. The top-k genes based on
NetGP scores are used to construct the drug mechanism network,
a heterogeneous network of drug-specific proteins and pathways,
capturing the intricate relationships between drug-affected genes
and their associated biological processes.

2. Similarity-based re-ranking: Genes are re-ranked based on the
similarity between the gene embedding and drug target
embedding vectors generated by through learning the drug
mechanism network with GNN. This similarity-based ranking
incorporates semantic information among the ranked genes,
enabling the understanding of their interrelationships and
relevance to the drug response.

Utilizing the re-ranked gene set, DGDRP selects the top-k genes
and predicts drug response using the transcriptomic profile of the
gene set along with drug structural information. As far as we are
aware, no existing studies simultaneously address both drug
response prediction and drug-specific gene selection.

The rationale behind our re-ranking strategy is rooted in the
understanding that gene functions are influenced by their

interactions with neighboring genes. Embedding representations
of genes are created by considering information about their
neighboring genes, which allows us to capture the intricate
relationships within the gene network.

By integrating both knowledge-based and data-driven
approaches, our method offers improved predictions of drug
response compared to other gene selection methods and
demonstrates comparability with state-of-the-art deep learning
models as a stand-alone model. These results indicate that our
approach successfully addresses the high-dimension, low-sample
problem, enhancing the accuracy and reliability of computational
drug response models. Case studies on the selected gene sets also
demonstrate the alignment of the gene set-associated pathways with
the mechanism of action (MoA) of the input drugs.

2 Materials and methods

2.1 Dataset

In this study, we formulated the problem of drug response
prediction an inference task that predicts drug response value given
cell line gene expression profile along with treated drug’s structure
and target information. The drug response end point used in this

FIGURE 1
The overall end-to-end framework of the DGDRP. For each drug’s drug target information and protein-protein interaction network, we rank genes
and obtain indirect targets through NetGP. And by incorporating pathway information, we construct a dru mechanism network (green box part, details is
illustrated in Figure 2) Then, a GNN encoder for drug mechanism network and a gene encoder for cell line expression are utilized to generate drug
mechanism and gene embedding vectors, respectively, and re-rank genes by calculating the similarity between drug target and gene embedding
vector (blue box). Finally, we predict the drug response value using the expression values of the top-k genes, along with the drug mechanism and
structural information.
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study is the half maximal inhibitory concentration (IC50) that
indicates the concentration of a drug that is required to inhibit a
biological function or process by half, in this case, cell viability. Since
IC50 takes on the form of a continuous value, the drug response
prediction task can be formulated as a regression task. The data for
cell line is represented by transcriptomic gene expression profile,
and the data for drug is represented by Simplified Molecular Input
Line Entry System (SMILES) sequence.

In this study, we utilized the GDSC (Yang et al., 2012) (https://
www.cancerrxgene.org) and NCI-60 databases (Shoemaker, 2006)
as the primary source for drug response information. As one of the
most comprehensive resources for drug response data, GDSC
contains 576,758 dose-response curves. It comprises two versions.
GDSC1, which includes 970 cell lines, 403 drugs and
333,292 IC50 values, and GDSC2, which consists of 969 cell
lines, 297 drugs and 243,466 IC50 values. We used data from
both versions in this study, using the values from GDSC2 when
there were overlaps in drug response information. NCI-60 database
includes the measured GI50 (growth inhibition 50) values with
smaller set of total 59 cell lines, 215 drugs and 12,685 GI50 values.

We acquired the SMILES data of the drugs from the GDSC,
NCI-60 and CADD Group Chemoinformatics Tools and User
Services (https://cactus.nci.nih.gov/). Using the RDKit Python
package (https://www.rdkit.org), we canonicalized the SMILES
strings and generated Morgan fingerprints that were then fed
into the models requiring fingerprint properties of drugs as
input. Regarding cell line gene expression data, we initially
obtained profiles of 18,115 genes for GDSC and 18,077 genes for
NCI-60. However, due to their substantial memory and
computation resource requirements, we conducted preliminary
filtering to eliminate genes with minimal expression variation,
resulting in profiles of 10,000 genes. We further utilized the
GDSC and DrugBank (Wishart et al., 2018) databases to obtain
the drug-target information.

The biological network was obtained from the STRING
database v11.5 (https://string-db.org/, accessed July 2023). In
the STRING Protein-Protein Interaction (PPI) network, each
node represents a protein, while each edge indicates the
interaction between two proteins. These interactions can be
both direct (physical) or indirect (functional), supported by
evidence from computational prediction, text mining, and
laboratory experiments, including co-immunoprecipitation and
yeast two-hybrid system (Hu et al., 2021; Szklarczyk et al., 2021;
Bultinck et al., 2012).

The STRING dataset also offers the score of each edges, and
allows the user to select the desired confidence level of the network.
Among various pre-defined thresholds of 0.9 (high confidence), 0.7
(high confidence), 0.4 (medium confidence) and 0.15 (low
confidence), we utilized 0.8 and 0.9 for GDSC and NCI-60
respectively, during the knowledge-based ranking via NetGP
algorithm. Further more, during the drug mechanism network
construction, we did not utillize any cutoff value and utilized all
edges provided by the STRING database.

While STRING was the primary source for constructing our PPI
networks, we also explored alternative datasets such as HitPredict
for performance comparisons. HitPredict is another PPI database
that integrates experimentally validated physical interactions
(Patil et al., 2011). Although not utilized in the final model, these

comparisons are documented in the Supplementary Material to
provide a broader context for our network selection choices.

For the purpose of training and evaluation, we only incorporated
drugs with complete SMILES, drug response, and target information
in the each databases. Drugs missing any of these data points were
excluded. Furthermore, drugs with target proteins not present on the
STRING PPI network were also omitted. Following this filtration
process, the final drug response dataset used in this study consisted
of 227 drugs, 804 cell lines, and 168,244 drug response values for
GDSC database, and 118 drugs, 59 cell lines, and 6,962 drug
response values for NCI-60 database.

2.2 Model structure

This study introduces a deep learning model, DGDRP, which
selectively chooses genes in a drug-specific manner through a rank-
and-re-rank process. The structure of DGDRP is illustrated in
Figure 1. The model comprises two main parts: the gene-
selection step and the drug response prediction step.

The upper part of Figure 1 shows the gene-selection process,
which uses embeddings of the biological drug mechanism derived
from drug target information, cell line gene expression profiles, and
protein-protein interaction (PPI) networks. The lower part of
Figure 1 illustrates the prediction of drug response, based on the
combined embeddings of the drug mechanism, drug chemical
properties, and cell line gene expression profiles.

In the rank-and-re-rank gene-selection step, a heterogeneous
network is constructed for each drug, incorporating connections
between drug targets and related pathways. Initially, genes are
ranked based on the network propagation, which represents the
systemic propagation of biological mechanism of the drug. The top-
ranked genes, namely, ‘indirect targets’, is then integrated with direct
target genes ans pathway information, constructing a knowledge
graph that provides a comprehensive view of the drug’s
biological impact.

Subsequently, a re-ranking process is performed where genes
are re-evaluated based on the similarity between the cell line
embeddings and the refined network embeddings obtained from
a Graph Neural Network (GNN). This re-ranking step ensures
that the selected genes are contextually related, offering a deeper
insight into their interactions and relevance to the
drug mechanism.

By integrating the rank-and-re-rank gene-selection process into
the learning model, the entire procedure is performed in an end-to-
endmanner. This approach enhances the specificity and adaptability
of gene selection, improving the accuracy of drug response
predictions. The following sections provide detailed descriptions
of each steps on the network propagation-based ranking,
heterogeneous network construction and drug response prediction.

2.3 Rank-and-re-rank gene selection

2.3.1 Knowledge guided propagation-based
ranking (NetGP)

DGDRP employs a unique method for gene selection, leveraging
a knowledge-enhanced network propagation algorithm, NetGP
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(Pak et al., 2023). The core of NetGP is the network propagation
algorithm Cowen et al. (2017), which performs propagation of gene
effects throughout the network. This algorithm is fundamentally
associated with the Random Walk with Restart (RWR) technique,
where the probability distribution vector pt at step t is updated
iteratively until convergence as follows:

pt+1 � 1 − α( )Wpt + αp0

Here,W is the column-normalized adjacency matrix of the network,
α is the restart probability, and p0 is the initial probability vector
indicating the starting positions or ‘seed genes’ (e.g., drug targets).
The network propagation can be viewed as a simulation technique
that computes the effect of drug-target interactions throughout the
cell, enabling quantification of the degree of perturbations for each
gene resulting from drug treatment with the consideration of gene
interactions.

NetGP enhances this simulation by reinforcing the ranking
process with pathway knowledge during propagation.
Specifically, it incorporates a gene set enrichment algorithm to
adjust the propagation dynamically, ensuring that the influence
of pathway-relevant genes is amplified. This integration of
pathway knowledge allows NetGP to provide a more accurate
and contextually relevant ranking of genes, reflecting the
biological mechanisms of drug action more effectively. Since
our model leverages the STRING PPI network to identify and
rank genes, it is essential that the same gene set is used as the
background in the enrichment analysis to ensure that the results
are relevant and accurately reflect the biological context of the
STRING network.

With each drugs’ ‘direct target’ genes as seeds, we performed
NetGP algorithm and obtained the NetGP propagation scores for
each gene on the network. Then, we defined the top 20 genes with
the highest scores as ‘indirect targets’. High NetGP scores imply
that the corresponding genes are significantly perturbed by the
drug. Since a drug acts by perturbing the target proteins and the
perturbations propagate through protein-protein interactions,
we regarded the most significantly perturbed genes as
indirect targets.

2.3.2 Drug mechanism network construction
After obtaining the direct and indirect targets, we then

constructed a heterogeneous drug mechanism network by
connecting the targets with biological pathways that contain
them. The intra-target connections between direct targets and
indirect targets are determined by the STRING database
(Szklarczyk et al., 2021). As mentioned above, we did not
apply any filtering criterion and utilized all the edges from the
database. Additionally, the associations between the indirect
target genes and the pathways are established as defined by
the KEGG database (Kanehisa and Goto, 2000). This process
yields one representative network per drug, containing its
mechanism-relevant genes and pathways, which is then fed to
a single overviewing graph neural network that is trained on all
the drug mechanism networks.

The heterogeneous drug mechanism network G � (V, E), with
V and E as its nodes and edges, is illustrated in Figure 2 and can be
formulated as follows:

<Heterogeneous Graph>
TD � g1, g2, . . . , gd{ }: a set of direct target genes
TI � g1, g2, . . . , gi{ }: a set of indirect target genes
GT � VT, ET( ): graph connectingTD, TI

PI � p1, p2, . . . , pk{ }: a set of pathways containingTI

GP � VP, EP( ): graph connectingTI, PI

G � VT + VP, ET + EP( ): heterogeneous graph
where d and i are the number of direct target genes and indirect
target genes respectively. VT denotes the set of combined genes of
TD and TI. ET denotes the set of gene-gene interactions between TD

and TI. k is the number of KEGG pathways that contains TI.
The resulting heterogeneous network, which captures both

direct and contextual biological interactions relevant to each
drug, enables the quantification of complex gene-pathway
relationships and is further learned through a graph neural
network to represent the drug-target information into an
embedding vector suitable for drug response prediction.

2.3.3 Deep learning and embedding similarity-
based re-ranking

The generalizability of deep learning roots in its ability to
generate expressive embedding space. Using the drug-specific
heterogeneous network constructed in the previous step, gene
selection is performed using the similarity between the
embeddings of the drug mechanism and the embeddings of the
genes generated by end-to-end neural networks. For drug i and cell
line j, the detailed gene-selection steps are as follows.

First, the embedding of drug mechanism (Zi
T) is extracted by

feeding the drug-specific heterogeneous network (Gi) into a GNN
module, composed of three layers of Graph Attention Network
(Velickovic et al., 2017) with Top-k pooling layer (Gao and Ji, 2019;
Cangea et al., 2018; Knyazev et al., 2019). Cell line gene expression
values are used as the node features for each gene nodes whereas 0 is
assigned to the pathway nodes, which can be formulated as
Equation 1:

Zi
T � GNN Gi,Xj

C( ), Gi � Vi, Ei( ) (1)

Xj
C ∈ Rg is the gene expression profile vector of cell line j, where g is

the number of genes. Vi and Ei are the set of nodes and edges in the
heterogeneous network for drug i respectively. Next, the genes in the
cell line j are embedded into vectors Zj

G using a Multi-Layer
Perceptron (MLP) as in Equation 2:

Zj
G � GeneENC Xj

C( ) (2)

Then, the dot products between each gene embedding vector
(each row) in the resulting gene embedding matrix Zj

G ∈ Rg×d and
the drug mechanism vector Zi

T ∈ Rd are calculated to obtain the
similarity scores (S(i,j) ∈ Rg) between the mechanism of the drug
and each gene as shown in Equation 3:

S i,j( ) � Zj
G · Zi

T (3)

The genes are subsequently ranked according to their similarity
scores to construct a mask m(i,j)

k ∈ Rg. In this mask, positions
corresponding to the top k scoring genes are assigned the value
1, while all other positions are assigned the value 0 as shown in
Equation 4:
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m
i,j( )

k � 1 rk S i,j( )( ) ∈ top k genes( ) (4)

where rk(·) is the ranking operator that identifies top k similarity
score genes, and 1(·) is the indicator function that takes on the value
1 if the gene belongs to the top k genes and 0 otherwise. The specific
value for k used in this study is 100. Finally, the gene expression
profile of the cell line is filtered by applying the calculated mask as
shown in Equation 5:

X′ i,j( )
C � Xj

Cpm
i,j( )

k . (5)

Hence, our deep learning and embedding similarity-based re-
ranking strategy ensures that the selected genes are not only relevant
to the drug mechanism but also contextually interconnected,
compared to the naïve network propagation score-based ranking,
where each scores are independent. This approach enhances the
utility of gene selection by providing a more biologically meaningful
and context-aware set of genes.

2.4 Drug response prediction step

After acquiring the drug mechanism embedding and selecting
the relevant genes, the filtered cell line gene expression profile, along
with the drug property data, is fed into the predictor module, which

then determines the final drug response values. Initially, the filtered
cell line gene expression profiles X′C and the drug structural
information XD for drug i and cell line j are separately input
into the cell line encoder and the drug encoder, respectively as
shown in Equations 6, 7:

Z
i,j( )

C � CellENC X′ i,j( )
C( ) (6)

Zi
D � DrugENC Xi

D( ). (7)

The cell line representation dynamically adapts to the drug input
due to the drug-specific gene selection filters. During our
experiments, we utilized the Extended-Connectivity Fingerprints
(ECFP) with a dimension of 128 and a radius of 2 as the structural
information for each drug, computed through the RDKit
Python package.

Following the acquisition of fixed-size embedding vectors for
both the cell line (Z(i,j)

C ∈ Rd) and the drug (Zi
D ∈ Rd), these

vectors are concatenated with the drug mechanism vector Zi
T

from Equation 1. This combined vector is then input into the final
fully connected layers of the predictor module, resulting in the
output of the final predicted IC50 value ŷ(i,j) as shown in
Equation 8:

ŷ i,j( ) � pred Zi
D, Z

i,j( )
C , Zi

T[ ]( ) (8)

FIGURE 2
The construction process of the heterogeneous drug mechanism network. Using drugs’ direct targets as seeds, NetGP algorithm is performed on
the PPI network (yellow box). Genes are then ranked based on their NetGP scores to identify the top K indirect targets. Lastly, pathways associated with
indirect targets aremerged to construct a heterogeneous graph of direct, indirect targets and pathway entities. Drugmechanism networks of all the drugs
are then encoded through a universal graph neural network into a drug mechanism embedding vector.
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Here, [·, ·] represents the concatenation operation. In essence, our
model is designed to select genes in a way that is guided by domain
knowledge. This method enables a more precise and informed
selection, thereby enhancing the accuracy and reliability of our
predictions.

The overall hyperparameter selection on the neural network
parameter search space and network databases are detailed in the
Supplementary Tables S1, S2, respectively.

2.5 Experimental setup

In the context of drug response prediction, each sample is a pair
of a drug and a cell line. Traditional machine learning methods of
splitting data into train, validation, and test sets could potentially
lead to overestimating the performance of a model due to repeated
exposure to the same drugs and cell lines that the model has already
seen during training. To address this issue, we employed a data
splitting strategy that completely blinds the model to certain drugs
during training, which we refer to as “drug split”. In the “drug split”
scenario, the test set comprises only those drugs that the model has
not encountered during training. This method is crucial for
assessing whether the model has effectively learned the general
characteristics of drugs.

A common phenomenon observed in previous studies (Nguyen
et al., 2021; Koras et al., 2021; Pak et al., 2023) is that prediction
performance is much lower when models are tested on samples with

unseen drugs during training compared to when tested on samples
with unseen cell lines. Specifically, for data split settings based on cell
lines, drug response prediction models exhibit Pearson correlation
coefficient (PCC) performance of around 0.9, whereas in the drug
split setting, models show average PCC values around 0.3 to 0.4.
Given that model performance in the cell line split is saturated while
there is significant room for improvement in the drug split, this
study focuses on performance comparisons in the drug split setting.

We trained all the models for 100 epochs with early stopping
patience of 5 epochs, applying a uniform learning rate of 1e-4. For
robust performance measurement, each model training was carried
out using 5-fold cross-validation. The details of the hyperparameter
search space for DGDRP are described in Supplementary Table S1.
All the models used the same random seeds, and the average
performance metric values across all the seeds and cross-
validations are reported as the final performance measurements.

2.5.1 Evaluation metrics
For each experiment, we compared the predicted drug response

values ŷ with the actual ground truth IC50 values y using various
metrics to ensure fair comparisons. The objective of the experiments
is to verify if the drug response predictions of our model
demonstrate a significant improvement over existing prediction
methods. As drug response prediction fundamentally takes on
the form of a regression task, we used traditional regression
metrics such as Root Mean Square Error (RMSE) to quantify
accuracy. Furthermore, we evaluated the performance using

TABLE 1Drug response prediction performance comparison against SOTA deep learningmodels onGDSCdataset under drug-split. The best performance is
highlighted in bold, and the second-best performance is underlined. The standard deviation is indicated as ±.

Prediction models PCC (↑) RMSE (↓) SCC (↑) Model description

DGDRP (ours) 0.5154 (± 0.045) 2.3180 (± 0.083) 0.4140 (± 0.063) Network propagation and GNN-based model

GPDRP (Yang and Li, 2023) 0.4730 (± 0.076) 2.4045 (± 0.273) 0.4015 (± 0.058) Pathway activity score-based Graph Transformer model

Precily (Chawla et al., 2022) 0.4673 (± 0.125) 2.7150 (± 0.240) 0.4192 (± 0.134) Pathway-based deep neural network

DeepTTA (Jiang et al., 2022) 0.4241 (± 0.155) 2.5096 (± 0.358) 0.3771 (± 0.117) Transformer-based model

AGW (Su et al., 2022) 0.3683 (± 0.149) 2.6053 (± 0.297) 0.3373 (± 0.146) Siamese neural network-based model

DEERS (Koras et al., 2021) 0.2939 (± 0.132) 2.6225 (± 0.375) 0.2743 (± 0.108) Auto-Encoder-based model

MLP 0.3799 (± 0.129) 2.5871 (± 0.292) 0.3433 (± 0.120) Baseline model

TABLE 2 Gene selection methods comparison in drug-split on two databases: GDSC and NCI-60. The best performance is highlighted in bold, and the
second-best performance is underlined. The standard deviation is indicated as ±.

Selection Methods Drug-specific End-to-end GDSC NCI-60

PCC (↑) RMSE (↓) PCC (↑) RMSE (↓)
DGDRP Yes Yes 0.5154 (± 0.045) 2.3180 (± 0.083) 0.4390 (± 0.02) 0.8431 (± 0.01)

ML-Driven (L1) Yes No 0.4621 (± 0.058) 2.4020 (± 0.225) 0.3537 (± 0.30) 0.8155 (± 0.08)

High Variance No No 0.3849 (± 0.075) 2.4522 (± 0.218) 0.3464 (± 0.01) 0.8551 (± 0.01)

Landmark Genes No No 0.3820 (± 0.072) 2.4408 (± 0.254) 0.3385 (± 0.02) 0.8557 (± 0.01)

All Genes (10,000) No No 0.3655 (± 0.076) 2.5048 (± 0.278) 0.3261 (±0.01) 0.8589 (± 0.00)
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additional metrics such as Pearson Correlation Coefficient (PCC)
and Spearman Correlation Coefficient (SCC), offering a diverse view
on the prediction performance of the models. Each metric was
calculated as shown in Equations 9–11:

RMSE y, ŷ( ) � ������������∑n
i�1 yi − ŷi( )2

n

√
(9)

PCC y, ŷ( ) � ∑n
i�1 yi − ŷi( )2
σyiσŷi

(10)

SCC y, ŷ( ) � PCC r y( ), r ŷ( )( ) (11)
where r(y) and r(ŷ) denote the ranked vectors of y and ŷ,
respectively.

These metrics are computed based on the difference between the
actual drug response values (y ∈ Rn) and the predicted drug
response values (ŷ ∈ Rn), where n represents the number of
samples consisting of drug and cell line pairs. yi and ŷi denote
the drug response value of the ith sample.

3 Results

The goal of DGDRP is to select genes in drug-specific and
adaptive way so that the gene selection process can be guided by
domain knowledge and also be integrated into the learning process
in the hope that such method can enhance the performance of drug
response prediction. In this section, we show how integrating
heterogeneous network built based on drug target information
contributes to improving drug response prediction by evaluating
the performance of the proposed method.

3.1 Drug response prediction performance
comparison

To demonstrate and assess the effectiveness of our framework as
a stand-alone drug response prediction model, we compared the
performance of DGDRP with other state-of-the-art (SOTA) deep
learning-based models on the GDSC dataset. For this experiment,
DGDRP was compared to six other models: Adaptive Gene
Weighting (AGW), DEERS (Koras et al., 2021), DeepTTA (Jiang
et al., 2022), Precily (Chawla et al., 2022), GPDRP (Yang and Li,
2023), and a baseline MLP. The AGWmodel draws inspiration from
the SRDFM (Su et al., 2022) model, with the “Outcome Generation
Component” replaced by an MLP, as SRDFM outputs the rank of
drug response instead of the actual drug response value.

Table 1 presents the performance comparison results.
DGDRP achieved the highest Pearson correlation coefficient

(PCC) and the lowest root mean square error (RMSE), and it
secured the second-best Spearman correlation coefficient (SCC).
These results indicate that DGDRP delivers SOTA performance
as an independent drug response prediction model, even without
pre-filtering the input gene expression data, unlike some of the
other models in comparison.

3.2 Gene-selection methods comparison

In order to quantitatively evaluate the effectiveness of the
proposed gene-selection method, we first directly compared the
performance against four different gene-selection settings,
namely, the selection of “genes with high variance”, “landmark
genes from LINCS L1000”, “genes selected by Machine Learning
(ML)-driven feature selection method”, and “all genes
(10,000 genes)”. For “genes selected by data-driven feature
selection method”, we obtained the genes using the
L1 regularization-based feature selection method using the
Scikit-learn Python package (Pedregosa et al., 2011). The
architectures of the predictor modules (fully-connected layers)
are the same for all models being compared, including
the DGDRP.

As shown in Table 2, DGDRP shows the best PCC and RMSE
performance. For SCC performance, DGDRP shows the second best
value. Considering the fact that the model for the best performing
method “ML-driven (L1)” was pre-exposed to the samples and the
corresponding drug response values during gene-selection phase,
our model still achieved a comparable performance even without
such advantage. Moreover, only the proposed method has the
characteristics of both drug-specificity and the ability to be run
in end-to-end fashion.

3.3 Ranking and re-ranking approach
enables accurate predictions

Next, an ablation study was conducted to investigate the
contribution of each element within the heterogeneous network
towards the prediction of drug response. As described in Section
2.3.2, the heterogeneous network comprises a unique structure
for each drug encompassing its direct target genes, the indirect
target genes derived via the NetGP algorithm, and the pathways
containing these target genes. In this section, a comparison has
been made among the heterogeneous networks of the following
structures: network inclusive of all direct targets, indirect targets,
and pathway nodes; network without pathway nodes; and
network without both indirect targets and pathway nodes. For

TABLE 3 Ablation study across different heterogeneous network structures. The best performance is highlighted in bold, and the second-best performance
is underlined. The standard deviation is indicated as ±.

Network structure PCC (↑) RMSE (↓) SCC (↑)
DGDRP 0.5154 (± 0.045) 2.3180 (± 0.083) 0.4140 (± 0.063)

DGDRP w/o Pathway 0.4939 (± 0.063) 2.3656 (± 0.118) 0.3994 (± 0.069)

DGDRP w/o (Pathway, Indirect targets) 0.5034 (± 0.065) 2.3469 (± 0.118) 0.4054 (± 0.072)
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network without both indirect targets and pathway nodes, the
topology was obtained from the STRING PPI network. To reduce
the size of the network to match the size of the original
heterogeneous network, the PPI network was filtered to
contain only the edges with STRING combined score of over
990 while preserving any edges that incorporated a target gene.

Table 3 shows that the heterogeneous networks that contain
all direct targets, indirect targets, and pathway nodes achieved
the best performance in all three metrics. Interestingly, the
networks without both indirect targets and pathway nodes
showed better performance than the networks without
pathway nodes but with indirect targets. It can be
hypothesized that indirect targets and pathways work in a
combinatorial way to learn the characteristics of drugs.

3.4 Investigation on selected gene sets and
drugs’ mechanism of action

The proposed method of gene selection can also bring
interpretability to the deep learning model. Using the top k
score genes (Figure 1), gene set for each drug-cell line pair
can be obtained. To investigate the genes selected for a
specific drug, the gene selection masks were extracted by
running the model on the test set. The results were then
filtered for each drug. The selected gene set was then used to
conduct pathway enrichment analysis, allowing us to understand

the biological mechanisms related to the selected genes. This
allows us to compare the alignment of the selected genes with the
MoA of the input drugs. The enrichment was performed on the
pathways obtained from the KEGG pathway database (Kanehisa
and Goto, 2000) using the gseapy (Subramanian et al., 2005;
Mootha et al., 2003; Xie et al., 2021) python package, with
enrichment background genes set as STRING PPI genes.

The results show that the selected genes enrich pathways related
to the MoA of the drugs with statistical significance (Adjusted
p-value < 0.05).

Savolitinib (Figure 3A) is an anti-cancer drug with MoA of
c-MET (Hepatocyte growth factor receptor) inhibition (Markham,
2021). c-MET inhibition directly affects signaling mediated by the
phosphorylation of STAT proteins, which are associated with the
JAK-STAT pathway. This leads to the enrichment of terms such as
“JAK-STAT signaling pathway” and “Regulation Of Tyrosine
Phosphorylation Of STAT Protein”. The c-Met-integrin
cooperation or c-Met/β1 Integrin Complex is a well-studied
interaction (Henry et al., 2016), correlating with the “Integrin-
Mediated Signaling Pathway” term. Additionally, c-MET
activation through GPCRs Barrow-McGee et al. (2016) provides
a clue for the enrichment of the “Regulation Of G Protein-Coupled
Receptor Signaling Pathway” term.

WIKI4 is a potent inhibitor of TNKS2 (tankyrase), a component
of the Wnt/β-catenin signaling pathway (James et al., 2012)
(Figure 3B). WIKI4 inhibition leads to decreased expression of
β-catenin target genes and affects cellular responses to Wnt/

FIGURE 3
Enrichment results on the selected gene sets fromDGDRP. Related pathways significantly enriched for (A) Savolitinib, (B)WIKI4, (C) AT-7519, and (D)
MK-2206 are well aligned with the MoA of the drugs.
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β-catenin signaling, which aligns with the “Cell-Cell Signaling By
Wnt” term listed among the top-5 enriched terms. Wnt signaling is
known to regulate cellular protein catabolism (Albrecht et al., 2019),
which is further associated with the “Regulation Of Proteolysis
Involved In Protein Catabolic Process” and “Signal Peptide
Processing” terms.

Compound AT-7519 is a drug known to target “Cell cycle”
according to GDSC and DrugBank (Yang et al., 2012; Wishart
et al., 2018). The enrichment analysis result (Figure 3C) shows
that indeed Cell cycle and related pathways such as Apoptosis are
significantly enriched. In addition, the result for MK-2206 which
targets “PI3K/MTOR signaling” also shows PI3K-Akt signaling
pathway as one of the most significantly enriched
pathways (Figure 3D).

Such results suggest that DGDRP was able to take biological
mechanisms of the drugs into consideration when performing gene-
selection in an end-to-end manner.

4 Discussion

In this study, we developed DGDRP, a drug-specific and
adaptive gene-selection model for drug response prediction,
leveraging a heterogeneous network constructed from drug target
information and protein-protein interaction (PPI) networks. Unlike
most existing studies that use cell data with genes as features,
DGDRP addresses the high-dimension and low-sample problem
inherent in drug response prediction. Typically, the number of genes
far exceeds the number of available samples, necessitating
dimensionality reduction through gene selection.

Traditional methods reduce gene numbers using pre-
defined gene sets, which do not consider the unique
characteristics of each drug and cannot be integrated into
the learning process for end-to-end prediction. To overcome
these limitations, we introduced a novel rank-and-re-rank
computational approach that adaptively selects genes guided
by domain knowledge. Since drugs exert their effects by
perturbing target proteins, and these perturbations propagate
through the cell via protein-protein interactions, we
constructed a heterogeneous network comprising target
proteins and related pathways for each drug.

Our approach utilizes embeddings extracted from this
heterogeneous network along with cell line gene data to select
genes based on similarity scores between the network and the
genes. This adaptive selection process ensures that the chosen
genes are biologically relevant to the drug’s mechanism of action.

The DGDRP model outperforms existing gene selection methods
by offering a more precise and informed selection of genes, leading to
improved prediction accuracy. Additionally, DGDRP demonstrates
state-of-the-art performance as an independent drug response
prediction model, achieving superior results without requiring pre-
filtering of input gene expression data. This highlights the robustness
and efficacy of our rank-and-re-rank approach in integrating both
knowledge and data for more accurate drug response predictions.

Our proposed model poses two limitations. First, DGDRP
relies on the availability of known drug target information for
constructing the drug mechanism network. This dependency
limits the model’s applicability to drugs with well-

characterized targets. For novel drugs or those with unknown
targets, DGDRP cannot be directly applied. One potential
solution is to use drug-target interaction models to infer
potential targets for these drugs, which can then be integrated
into the DGDRP framework. Second, the quality and
completeness of the biological networks (e.g., PPI networks)
used in DGDRP can introduce biases. Incomplete or biased
network data may lead to the exclusion of relevant genes or
the inclusion of irrelevant ones, affecting the accuracy of gene
selection and drug response prediction. Hence, continuous
updates and validation of the biological networks are essential.
Incorporating multiple network sources and cross-validating
results can help mitigate this bias.

Overall, DGDRP represents a significant advancement in the
field of drug response prediction by offering a robust gene selection
framework that integrates both domain knowledge and data-driven
approaches, enhancing prediction accuracy and enabling effective
biomarker discovery, simultaneously.
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