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Background: The study aimed to investigate the molecular mechanisms
underlying kidney stones by analyzing gene expression profiles. They focused
on identifying differentially expressed genes (DEGs), performing gene set
enrichment analysis (GSEA), weighted gene co-expression network analysis
(WGCNA), functional enrichment analysis, and screening optimal feature
genes using various machine learning algorithms.

Methods: Data from the GSE73680 dataset, comprising normal renal papillary
tissues and Randall’s Plaque (RP) tissues, were downloaded from the GEO
database. DEGs were identified using the limma R package, followed by GSEA
and WGCNA to explore functional modules. Functional enrichment analysis was
conducted using KEGG and Disease Ontology. Various machine learning
algorithms were used for screening the most suitable feature genes, which
were then assessed for their expression and diagnostic significance through
Wilcoxon rank-sum tests and ROC curves. GSEA and correlation analysis were
performed on optimal feature genes, and immune cell infiltration was assessed
using the CIBERSORT algorithm.

Results: 412 DEGs were identified, with 194 downregulated and 218 upregulated
genes in kidney stone samples. GSEA revealed enriched pathways related to
metabolic processes, immune response, and disease states. WGCNA identified
modules correlated with kidney stones, particularly the yellow module.
Functional enrichment analysis highlighted pathways involved in metabolism,
immune response, and disease pathology. Throughmachine learning algorithms,
KLK1 and MMP10 were identified as optimal feature genes, significantly
upregulated in kidney stone samples, with high diagnostic value. GSEA further
elucidated their biological functions and pathway associations.

Conclusion: The study comprehensively analyzed gene expression profiles to
uncovermolecularmechanisms underlying kidney stones. KLK1 andMMP10were
identified as potential diagnostic markers and key players in kidney stone
progression. Functional enrichment analysis provided insights into their roles
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in metabolic processes, immune response, and disease pathology. These results
contribute significantly to a better understanding of kidney stone pathogenesis and
may inform future diagnostic and therapeutic strategies.
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1 Introduction

In the past 30 years, the incidence of kidney stones has significantly
increased due to environmental changes, including imbalanced diet and
restricted physical activity (Wigner et al., 2021). During this period, the
incidence of kidney stones has nearly doubled, with a particularly
notable increase among adolescents and young women (Hill et al., 2022;
Tasian et al., 2016). Kidney stones, as a common disease of the urinary
system, with calcium oxalate (CaOx) stones accounting for the highest
proportion, approximately 75%–85% of all urinary stones (Sakhaee
et al., 2012; Thongprayoon et al., 2020). The adherence of calcium
oxalate (CaOx) crystals to renal tubular epithelial cells serves as a critical
contributor in the development of CaOx stone formation (Qi et al.,
2020). To further explain this phenomenon, we introduced the concept
of Randall’s Plaque (RP). This is a widely accepted theory aimed at
explaining the formation mechanism of calcium oxalate stones (Khan
et al., 2021). Randall’s plaque was initially described by Randall in
1937 as a pre-stone lesion of kidney stones, and the vast majority of
kidney stones belong to the calcium oxalate stone type (Randall, 1937).

In order to further explore the biological characteristics and
formation mechanism of kidney stones, we first obtained gene
expression profile datasets covering normal renal papillary tissue and
Randall’s Plaque (RP) tissue from the GEO database. Subsequently, we
rigorously screened differentially expressed genes (DEGs) using the
limma algorithm and visualized these differences through volcano plots
and heatmaps. To further analyze the functional characteristics and key
functional modules of these differentially expressed genes, we utilized
the ClusterProfiler andWGCNA tools. Through these analyses, we not
only understood the role of these genes in the formation of kidney
stones but also identified potential key regulatory pathways. Through
the combined application of various machine learning algorithms, we
successfully screened out the optimal feature genes KLK1 and MMP10.
To gain deeper insights into the roles of these two genes in kidney
stones, we compared their expression levels and explored their
biological significance. In addition, we used GSEA and CIBERSORT
algorithms to further evaluate the relevance of these two optimal feature
genes to the formation of kidney stones and their impact on immune
cell infiltration. These analyses provide us with a deeper understanding
of the biological characteristics and potential mechanisms of kidney
stones, and offer new directions for future research.

2 Methods

2.1 Data collection and processing

We downloaded the GSE73680 dataset from the GEO database,
which includes gene expression profiles of 33 normal renal papillary
tissues and 29 Randall’s Plaque (RP) tissues.

2.2 Identification of differentially expressed
genes (DEGs) and gene set
enrichment analysis

Differentially expressed genes (DEGs) between Randall’s Plaque
(RP) tissues and normal renal papillary tissues were discerned utilizing
the “limma” R package. During the screening process, we applied strict
criteria of |log2 FC| > 0.5 and p-value <0.05. To visually display these
differential genes, volcano plots and heatmaps were generated using R
software version 4.3.0. Subsequently, to explore the functional
characteristics of these differential genes, gene set enrichment
analysis (GSEA) was performed using the “ClusterProfiler” R
package (Wu et al., 2021). Enrichment significance was determined
at a set q value (False Discovery Rate, FDR) < 0.05 and p. adjust <0.05,
with normalized enrichment scores (NES) serving as assessment
metrics. A positive NES signifies upregulation, while a negative value
indicates downregulation.

2.3 Weighted gene co-expression network
analysis (WGCNA)

Weighted gene co-expression network analysis was performed
utilizing the “WGCNA” R package to detect essential functional
modules that could elucidate the biological traits of kidney stone
samples (Langfelder and Horvath, 2008). Before constructing the
network, we carefully examined the merged gene matrix to ensure
no abnormal samples were erroneously included, thus ensuring the
accuracy of subsequent sample clustering. Genes displaying comparable
expression profiles were grouped into coherent co-expression modules
following the analysis of the weighted correlation adjacency matrix and
cluster analysis. Subsequently, the topological overlap matrix (TOM)
was constructed from the adjacency matrix to partition genes into
modules based on dissimilarities. A cutting height of 0.25, a minimum
module size of 50, and a soft threshold power of 24 (achieving a scale-
free R2 of 0.9) were chosen during this process. Following module
partitioning, gene significance (GS) and module membership (MM)
values were computed for each gene. To explore the relationship
between functional modules and kidney stones, Spearman
correlation coefficients and corresponding p values were computed
between control groups, kidney stone groups, and various functional
modules. Finally, key modules most relevant to kidney stones were
determined, and core genes were extracted for further analysis.

2.4 Functional enrichment analysis

Following the analysis, we identified overlapping candidate
genes from differentially expressed genes (DEGs) and module
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genes. A Venn diagram was generated using appropriate software to
visually represent the gene overlaps. Enrichment analysis of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Disease
Ontology (DO) was performed using the “clusterProfiler” and
“DOSE” R packages to explore the functions and pathways
linked to the common candidate genes (Wu et al., 2021).

2.5 Screening of optimal feature genes

A variety of machine learning algorithms, including LASSO, SVM-
REF, RF, Boruta, XGBOOST, GBM, and decision trees, were employed
for disease status prediction and identification of key prognostic factors.
Specifically, LASSO regression was utilized to select and regularize
variables to improve the predictive accuracy of the model (Sepulveda,
2020). Additionally, we employed widely-used supervised learning
methods such as SVM and RF to prevent overfitting and produce
interpretable results (Kanehisa and Goto, 2000; Yu et al., 2015).
Furthermore, we used the SVM-RFE algorithm to precisely locate
the most discriminative gene set, laying the foundation for
determining the most appropriate feature genes (Li et al., 2020). In
the context of predictive problems, decision trees, as the cornerstone of
random forests (RF), play an important role, and we determined the
optimal number of trees through testing. Following the construction of
the Random Forest (RF) model, the backward elimination technique
was applied to identify significant genes, with a gene importance
threshold of greater than 2 being a pivotal selection criterion in the
RF algorithm (Tian et al., 2020). Additionally, the Boruta algorithm
significantly influenced the feature selection process by creating shadow
features and comparing Z-scores of real features with shadow features
(Degenhardt et al., 2019). XGBOOST (XGB), similar to random forests,
also originates from decision tree-based ensemble learning (Bentéjac
et al., 2021). However, XGB further improves the predictive ability and
robustness of the model through its unique sequential learning strategy
and embedded gradient descent algorithm (Chen and Guestrin, 2016;
Shwartz-Ziv and Armon, 2022). Finally, decision trees excel in handling
nonlinear relationships between variables and provide excellent data
visualization (Quinlan, 1986). Through the comprehensive application
of these machine learning algorithms, we successfully determined the
optimal feature genes.

2.6 Expression and diagnostic significance of
optimal feature genes

Wilcoxon rank-sum tests were performed to evaluate the
expression levels of optimal feature genes in kidney stone
samples compared to control samples. Additionally, to further
validate the predictive efficacy of these feature genes, receiver
operating characteristic (ROC) curves were used for evaluation.

2.7 GSEA and correlation analysis of optimal
feature genes

Moreover, the biological significance of optimal feature genes
was explored using gene set enrichment analysis (GSEA) with the
“c2. cp.kegg.v11.0. symbols” gene set as a reference. To ensure result

accuracy, gene set permutation was iterated 1,000 times for each
analysis to derive normalized enrichment scores. Enrichment of
gene sets with q values below 0.05 was deemed significant.
Furthermore, Pearson correlation analysis was performed to
evaluate the relationships between expression levels of optimal
feature genes and identify correlations among them.

2.8 Evaluation of marker gene sets and
immune cell infiltration

The CIBERSORT algorithm, as a gene expression-based
deconvolution method, was used to assess the variation of the
internal genome of samples and compare it with the changes in
other genes (Newman et al., 2019)In this study, the CIBERSORT
algorithm was employed to ascertain the infiltration status of
22 immune cells in both normal and kidney stone samples.
Boxplots were utilized for a visual representation of the variances
in immune cell composition among patients exhibiting diverse
immune patterns (Leek et al., 2012). Through Wilcoxon rank-
sum tests, we conducted differential analysis of the proportions
of these immune cells, considering p values less than 0.05 as
statistically significant differences.

Moreover, to assess the relative levels of 50 marker gene sets
(h.all.v7.5.1. symbols.gmt) in the combined dataset, the single-
sample gene set enrichment analysis (ssGSEA) algorithm was
utilized. Additionally, Spearman correlations were computed to
investigate the relationship between these marker gene sets and
the optimal feature genes.

3 Results

3.1 Identification of DEGs and gene set
enrichment analysis in the kidney
stone dataset

Following a thorough analysis, a detailed list of 412 Differentially
Expressed Genes (DEGs) was compiled. Among these DEGs, 194 genes
were observed to be downregulatedwhile 218 genes were upregulated in
the disease state, as illustrated in volcano plots and heatmaps
(Figure 1A). Additionally, a heatmap focusing on the top 60 genes
exhibiting the highest variance was generated to investigate prominent
differences between the disease and control groups (Figure 1B).
Furthermore, to deepen the analysis, Gene Set Enrichment Analysis
(GSEA) was utilized to explore the dataset.

Based on the Normalized Enrichment Score (NES), we
categorized enriched pathways into downregulated and
upregulated groups. In the downregulated group, several
significantly enriched pathways included taurine and hypotaurine
metabolism, ascorbate and aldarate metabolism, porphyrin
metabolism, PPAR signaling pathway, drug metabolism-
cytochrome P450, ribosome, fat digestion and absorption,
glycine, serine and threonine metabolism, and cocaine addiction,
among others (Figure 1C). In the upregulated group, significantly
enriched pathways included systemic lupus erythematosus, arginine
biosynthesis, Vibrio cholerae infection, nitrogen metabolism,
rheumatoid arthritis, intestinal IgA production immune network,
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collecting duct acid secretion, Staphylococcus aureus infection, and
asthma, among others (Figure 1D).

3.2 Selection of WGCNA modules and
hub genes

A co-expression network was established through Weighted
gene co-expression network analysis (WGCNA) with
32,077 genes, encompassing 33 control samples and 29 kidney
stone samples. Initial steps involved sample clustering and outlier
specimen exclusion using a predetermined threshold, as illustrated
in Figure 2A. To ensure the network’s scale-free attribute and
optimal average connectivity, a soft power threshold of 24 was
set, resulting in a scale-free R̂2 value of 0.9, as shown in Figure 2B.

Subsequently, under a clustering height cut-off of 0.25, we
merged highly correlated modules and ultimately identified
5 modules for in-depth study. The initiation and merging
processes of these modules were clearly displayed in the
clustering tree (Figure 2C). To assess the correlation between
these modules, we conducted correlation analysis, which revealed
no significant associations between modules, demonstrating the
rationality and independence of our module division (Figure 2D).

To validate the reliability of module characterization, we also
performed intra-modular transcriptional correlation analysis,

revealing no substantive relationships between modules, further
confirming the accuracy of module division (Figure 2E).
Additionally, we used module eigengenes (ME) to examine the
correlation between module features and clinical traits, revealing
a strong correlation between the yellow module and kidney stones
(R = 0.27, P = 8e-08) (Figures 2F, G).

Based on this finding, we included 326 candidate genes from the
yellow module in subsequent analyses. These genes may play
important roles in the pathogenesis of kidney stones, providing
new clues for our in-depth study of the biological mechanisms
underlying kidney stones.

3.3 Functional enrichment analysis of
overlapping DEGs

From the previously identified DEGs and genes in the yellow
module, we successfully screened out 62 overlapping genes, named
candidate feature genes, which were visually displayed in the figure
(Figure 3A). To further elucidate the biological functions and
enriched pathways that these candidate feature genes may be
involved in, we performed KEGG (Kyoto Encyclopedia of Genes
and Genomes) and DO (Disease Ontology) analyses.

KEGG enrichment analysis revealed signaling pathways that
these candidate feature genes may participate in. These pathways

FIGURE 1
Identification of DEGs and gene set enrichment analysis in the kidney stone dataset.
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include the proximal tubule bicarbonate reclamation pathway in the
kidney, crucial for maintaining acid-base balance; protein digestion
and absorption in the digestive system, providing amino acids to
support energy production and tissue repair; pathways involving
glucose and galactose metabolism in carbohydrate metabolism,
critical for energy metabolism and biosynthesis processes; as well
as multiple processes related to endocrine regulation, such as
calcium reabsorption, mineral absorption, steroid hormone
biosynthesis, and insulin secretion. Furthermore, these genes are
also involved in chemical carcinogen metabolism, bile secretion, IL-
17 signaling pathway, and other important biological processes
(Figures 3B, D–F).

DO analysis showed that these candidate feature genes are
mainly associated with various disease states. For example, they
are significantly associated with metabolic abnormalities such as
glucose intolerance and hyperglycemia, obesity, and nutrient excess
states; as well as digestive system disorders such as constipation and
intestinal dysmotility, and urinary system diseases such as renal
failure and glomerulonephritis. Additionally, these genes are
associated with immune system defects, cardiovascular diseases,
various types of cancers, and other disease states such as
arthritis, anemia, varicose veins, and connective tissue diseases.
In summary, candidate feature genes play important roles in the
pathogenesis of kidney stones (Figure 3C).

FIGURE 2
Selection of WGCNA modules and identification of hub genes.
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3.4 Identification of optimal feature genes
through integration of multiple machine
learning algorithms

To identify putative feature genes, we employed seven different
machine learning algorithms. Firstly, through LASSO analysis, we
screened out 9 genes from the 62 candidate feature genes as
diagnostic markers for kidney stones (Figure 4A). Simultaneously,
we utilized the SVM-REF algorithm to cross-validate all candidate
genes, demonstrating that all 62 genes have distinctive features
(Figure 4B). Additionally, we used random forest (RF) algorithm to
identify 36 feature genes with importance scores greater than 0
(Figure 4C), 10 key genes were identified through decision tree (DT)
algorithm (Figure 4D), 51 feature genes were selected through gradient
boosting machine (GBM) algorithm (Figure 4E), 46 important genes
were determined using XgBOOST algorithm (Figure 4F), and 6 feature

genes were confirmed by the Boruta algorithm (Figure 4G). Upon
intersecting the feature genes identified by the seven aforementioned
algorithms, two optimal feature genes, namely, KLK1 and MMP10,
were successfully pinpointed (Figure 5). These two genes not only serve
as potential diagnostic markers for kidney stones but also may be key
genes in the progression of kidney stones.

3.5 Evaluation of expression and diagnostic
significance of optimal feature genes

The expression levels of the two optimal feature genes,
KLK1 and MMP10, were validated in 29 kidney stone samples
and 33 normal samples. The results indicated a significant
upregulation of KLK1 and MMP10 genes in kidney stone
samples, suggesting their pivotal roles in kidney stone

FIGURE 3
Functional enrichment analysis of overlapping differentially expressed genes (DEGs).
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progression (p < 0.01) (Figures 6A, B). To further assess the
diagnostic and predictive potential of these genes quantitatively,
ROC curve analysis was conducted. The analysis revealed an AUC
value of 0.724 for KLK1 and 0.737 for MMP10, highlighting their
substantial diagnostic value in evaluating kidney stone progression
(Figures 6C, D).

3.6 Functional identification of
2 feature genes

Given the important significance of these two feature genes in
prognosis, we further conducted Gene Set Enrichment Analysis
(GSEA) to explore their potential biological functions. We stratified
kidney stone samples into two subgroups based on the median
expression levels of these two optimal feature genes.

For the high KLK1 expression subgroup, we found significantly
enriched pathways related to asthma, allograft rejection, systemic lupus
erythematosus, type I diabetes, and the impact on intestinal immune

networks for IgA production, among others (Figure 7A). In contrast, in
the low KLK1 expression subgroup, significantly enriched pathways
included nicotine addiction, adolescent-onset type diabetes, linoleic acid
metabolism, steroid hormone (Figure 7B).

In the highMMP10 expression subgroup, pathways significantly
enriched included those associated with allograft rejection, systemic
lupus erythematosus, type I diabetes, mucin-type O-glycan
biosynthesis, and graft-versus-host disease (see relevant figures
for details). Conversely, in the low MMP10 expression subgroup,
pathways significantly enriched included adolescent-onset type
diabetes, linoleic acid metabolism, drug metabolism-cytochrome
P450, protein digestion and absorption, and dilated
cardiomyopathy (Figure 7C).

It is noteworthy that, regardless of whether in the high
expression group of KLK1 or MMP10, the type I diabetes
pathway was significantly enriched. Whereas, in the low
expression groups of KLK1 and MMP10, pathways related to
adolescent-onset type diabetes and linoleic acid metabolism were
significantly enriched (Figure 7D).

FIGURE 4
Identification of optimal feature genes through integration of multiple machine learning algorithms.
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3.7 Signature gene sets and immune cell
infiltration

To assess variances in immune cell infiltration and signature
gene sets between kidney stone patients and control samples, we
utilized the CIBERSORT algorithm. Evaluation of differential
immune cell infiltration revealed no substantial variances
between the two groups at the immune cell level (Figures 8A, B).
Furthermore, to explore enrichment variations in signature gene sets
between the kidney stone and control groups, the ssGSEA algorithm
was employed to analyze significant differences in 50 signature gene
sets based on enrichment scores.

The analysis results revealed significant differences in the
distribution of 50 signature gene sets between kidney stone
patients and control samples. Specifically, several characteristic
gene sets exhibited significant differences, including
downregulation of typical KRAS signaling transduction, markers
of spermatogenesis, and differences in the spermatogenesis gene set
characteristics. Consequently, it can be reasonably inferred that
these signature gene sets are overactivated in the kidney stone
group compared to the normal group (Figure 8C).

Furthermore, we also found that the performance of the two optimal
feature genes (KLK1 and MMP10) was generally consistent in most
signature gene sets. For example, both of these feature genes showed
positive correlations with the interferon gamma and alpha response
signature gene sets. Furthermore, KLK1 was positively correlated with
the apical surface signature gene set and negatively correlated with the
pancreatic beta cell signature gene set, whileMMP10 exhibited a positive
correlation with the allograft rejection signature gene set (Figure 8D).

These findings provide important clues about the various roles
that these two optimal feature genes may play in the pathogenesis of
kidney stones, warranting further comprehensive investigation.

4 Discussion

In our study, we utilized a range of methods to comprehensively
investigate the biological characteristics and potential mechanisms
underlying kidney stones. Initially, we obtained the GSE73680 dataset
from the GEO database, which includes gene expression profiles of
normal renal papillary tissues and Randall’s plaques (RP) tissues. After
rigorous screening using the R package “limma”, we identified
194 downregulated and 218 upregulated differentially expressed genes
(DEGs). Subsequently, through gene set enrichment analysis using
“ClusterProfiler”, we revealed key biological pathways closely
associated with kidney stones. Additionally, we conducted weighted
gene co-expression network analysis (WGCNA) to identify core
functional modules during the pathogenesis of kidney stones.

In the subsequent integration of machine learning algorithms, we
identified two optimal feature genes—KLK1 and MMP10, and
confirmed their significant upregulation in kidney stone samples.
Within proteases, renal KLK1 and matrix metalloproteinase-10
(MMP-10) have emerged as key players in renal function and blood
pressure regulation (Sonkar et al., 2022; Golias et al., 2007). KLK1, initially
discovered in human urine, is expressed in renal tubular epithelial cells
and involved in electrolyte and water homeostasis, blood pressure
regulation, and inflammation (Naicker et al., 1999). Studies have
shown that renal KLK1 deficiency is associated with sodium retention
and hypertension (Devetzi et al., 2018). MMP-10, also known as
Stromelysin-2 or tansin-2, is a zinc-dependent endopeptidase
(Wozniak et al., 2021; Tan and Liu, 2012). Although MMP-10
expression is barely detectable in development or normal adult tissues,
it significantly increases after tissue injury (Zuo et al., 2021; McMahan
et al., 2016; Koller et al., 2012; Lv et al., 2019). These findings not only
provide new insights into the pathogenesis of kidney stones but also offer
potential biomarkers for subsequent diagnostic and therapeutic research.

Given the potential importance of KLK1 and MMP10 in kidney
stones, we further conducted gene set enrichment analysis (GSEA).
The results showed significant enrichment of the type I diabetes
pathway in both the high expression groups of KLK1 and MMP10,
suggesting their association with the progression of diabetic
nephropathy. Particularly in tubulointerstitial inflammation,
KLK1 acts by activating PAR-4, providing a potential target for
future diabetic nephropathy treatment (Yiu et al., 2014). The high
expression of MMP-10 in chronic kidney disease (CKD), diabetes,
and atherosclerosis also indicates its role as an important regulator
of inflammation in these diseases (Coll et al., 2010; Toni et al., 2013;
Mora-Gutiérrez et al., 2020). In the low expression groups of
KLK1 and MMP10, pathways related to adolescent-onset type
diabetes and linoleic acid metabolism were significantly enriched.

For a more precise evaluation of the diagnostic and predictive
efficacy of these two genes in kidney stones, ROC curve analysis was
performed. The results showed that the AUC (area under the curve)
values of KLK1 andMMP10 were 0.724 and 0.737, respectively, both
exceeding 0.7, indicating their high diagnostic value in evaluating
the progression of kidney stones. This finding not only provides new
insights into the pathogenesis of kidney stones but also offers
potential biomarkers for future diagnostic and therapeutic strategies.

We conducted enrichment analysis of 50 signature gene sets using
the ssGSEA algorithm, revealing significant differences in several
signature gene sets between the kidney stone group and the control
group, including downregulation of KRAS signaling transduction and

FIGURE 5
Venn diagram showing KLK1 and MMP10 as key feature genes
identified across seven machine learning algorithms.
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markers of spermatogenesis. Particularly, KLK1 and MMP10 exhibited
similar expression patterns in most signature gene sets, positively
correlated with interferon gamma and alpha response, and
associated with apical surface signature, pancreatic beta cell
signature, and allograft rejection signature, suggesting their
multifaceted roles in the pathogenesis of kidney stones.

The analysis highlighted several biases and limitations inherent in
the employed machine learning algorithms. LASSO may exclude
relevant features due to coefficient shrinkage and struggles with

correlated variables. SVM-RFE’s sensitivity to kernel and
regularization parameters, along with its computational demands,
complicates its use with large datasets. Random Forest can overfit
and shows bias towards features with more levels, while the Boruta
algorithmmay prioritize high-variance features, limiting its applicability
due to computational constraints.

Ensemblemethods like XGBOOST andGBMare prone to overfitting
without careful hyperparameter tuning, complicating interpretability and
making them sensitive to outliers. Decision Trees, although interpretable,

FIGURE 6
Evaluation of expression and diagnostic significance of optimal feature genes.
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are biased towards features with more levels and are prone to overfitting
and instability. Data imbalance poses a risk of biased predictions across
these models. The computational cost of ensemble methods impacts
scalability, emphasizing the need for addressing these biases to ensure
reliable and reproducible outcomes in future research.

The study’s findings have several clinical implications that could
inform therapeutic strategies. By identifying algorithmic biases and

limitations, clinicians and researchers can better select and fine-tune
models to enhance predictive accuracy and interpretability. For instance,
understanding LASSO’s tendency to exclude correlated features can guide
the integration of complementary models to ensure comprehensive
feature selection, crucial for personalized medicine approaches.

SVM-RFE and ensemble methods like Random Forest and
XGBOOST, despite their challenges, offer robust frameworks for

FIGURE 7
Functional identification of 2 feature genes.
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identifying key biomarkers, aiding in the development of targeted
therapies. By addressing overfitting and interpretability issues, these
models can be optimized for clinical decision-making, improving
treatment efficacy and patient outcomes.

Moreover, recognizing the impact of data imbalance allows for
the development of strategies to ensure fair and unbiased
predictions, crucial for equitable healthcare delivery. Overall, the
study underscores the importance of tailoring machine learning
applications to clinical contexts, ultimately enhancing therapeutic
interventions and advancing precision medicine.

In summary, our study not only provides new insights into the
pathogenesis of kidney stones but also lays a solid foundation for
future diagnostic and therapeutic research.

5 Limitations

First, limited sample size, the study’s findings are based on a
relatively small sample size of 33 normal tissues and 29 RP tissues.
This limitationmay impact the generalizability and robustness of the
results. In future research, we plan to incorporate a larger number of
samples to enhance the reliability of our conclusions. Second, risk of
Overfitting, due to the small dataset, there is a potential risk of
overfitting, which could affect the accuracy and applicability of our
findings. We aim to address this by employing more advanced
statistical methods and incorporating a larger sample size in
subsequent studies. Third, need for External Validation, our
current study lacks validation with external datasets, which is

FIGURE 8
Signature gene sets and immune cell infiltration.
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crucial for confirming the diagnostic value of the markers identified.
Future research will focus on validating our results using diverse
external datasets to ensure the findings are applicable across
different populations and settings.

6 Conclusion

Overall, our findings contribute to a better understanding of the
molecular mechanisms underlying kidney stone formation and
progression, laying a foundation for the development of novel
diagnostic and therapeutic strategies. Further research is warranted to
validate the clinical utility of identified biomarkers and explore their
potential applications in personalizedmedicine for kidney stone patients.
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