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Protein-Protein Interactions (PPIs) involves in various biological processes, which
are of significant importance in cancer diagnosis and drug development.
Computational based PPI prediction methods are more preferred due to their
low cost and high accuracy. However, existing protein structure based methods
are insufficient in the extraction of protein structural information. Furthermore,
most methods are less interpretable, which hinder their practical application in
the biomedical field. In this paper, we propose MGPPI, which is a Multiscale graph
convolutional neural network model for PPI prediction. By incorporating
multiscale module into the Graph Neural Network (GNN) and constructing
multi convolutional layers, MGPPI can effectively capture both local and
global protein structure information. For model interpretability, we introduce a
novel visual explanationmethod namedGradient Weighted interaction Activation
Mapping (Grad-WAM), which can highlight key binding residue sites. We evaluate
the performance of MGPPI by comparing with state-of-the-arts methods on
various datasets. Results shows that MGPPI outperforms other methods
significantly and exhibits strong generalization capabilities on the multi-
species dataset. As a practical case study, we predicted the binding affinity
between the spike (S) protein of SARS-COV-2 and the human ACE2 receptor
protein, and successfully identified key binding sites with known binding
functions. Key binding sites mutation in PPIs can affect cancer patient survival
statues. Therefore, we further verified Grad-WAM highlighted residue sites in
separating patients survival groups in several different cancer type datasets.
According to our results, some of the highlighted residues can be used as
biomarkers in predicting patients survival probability. All these results together
demonstrate the high accuracy and practical application value of MGPPI. Our
method not only addresses the limitations of existing approaches but also can
assists researchers in identifying crucial drug targets and help guide personalized
cancer treatment.
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1 Introduction

PPIs are the basic components of protein complexes, which play
crucial roles in cellular components and biological processes (Chen
and Zacharias, 2023; Wu et al., 2023; Reed et al., 2024). Dysfunction
interactions can lead to various chronic diseases and even cancer.
Moreover, PPI contains a wealth of information, such as receptor
binding and immune response, and can providing key insights of
protein functionality and potential therapeutic targets for human
cancer (Kjer-Hansen andWeatheritt, 2023; Rodina et al., 2023). As a
results, numerous computational methods have been developed for
PPI prediction, which are more efficient and low cost in comparison
with traditional experimental based methods.

Early computational methods primarily use protein sequence as
input (Ding and Kihara, 2018; Wang et al., 2021; Boldridge et al.,
2023; Gainza et al., 2023; Shen et al., 2023). Such methods based on
the hypothesis that proteins with similar sequences tend to have
similar binding tendencies. With the increasing availability of
protein structure data, especially with the emergence of
Alphafold2 (Bryant et al., 2022), structure-based PPI prediction
algorithms (Dong et al., 2019; Tang et al., 2023) have been growing
year by year. In comparison with sequence-based methods,
structure-based methods can capture more detailed binding
structure information, therefore, the prediction accuracy are often
more higher. PPI prediction methods can be categorized into two
groups: machine learning and deep learning based methods. Among
them, Support Vector Machines (SVM) (Guo et al., 2008; Wong
et al., 2015; Bandyopadhyay and Mallick, 2016; Zhou et al., 2017)
based methods aim to find an optimal hyperplane using protein
sequence information (Chen and Jeong, 2009; Xia et al., 2010; Zahiri
et al., 2013; You et al., 2015), 3D structure (Li et al., 2012), and
domain information (Chen and Liu, 2005) to maximize the margin
between different proteins for classification. Decision tree-based
methods, on the other hand, utilize features such as protein 3D
structure, primary sequence, and domain composition for PPI
prediction. Compared to traditional machine learning-based
methods, deep learning has the ability to automatically learn
higher-level feature representations. Among them, DeepFE-PPI
(Yao et al., 2019) proposes a novel residue representation method
and deep learning network for protein-protein interaction
prediction. Deep-Trio (Hu et al., 2022) introduces a sequence-
based approach for PPI prediction, utilizing multiple parallel
convolutional neural networks. GNN-PPI (Jha et al., 2022)
leverages graph neural networks and language models (LM) to
extract high-quality features from proteins for predicting protein
interactions. HIGH-PPI (Gao et al., 2023) consists of bottom-level
protein graph neural network (BGNN) representation learning and
top-level PPI graph neural network (TGNN) representation
learning. The vector representations obtained from both
networks are concatenated to obtain the final prediction result.

While existing methods have achieved promising results on
datasets from various species, most of them lack sufficient protein
feature extraction and interpretability. Sequence-based models
primarily focus on the one-dimensional sequence characteristics
of proteins, while neglecting the higher-order structural properties.
This can lead to incomplete accuracy in predicting PPIs since
structural information plays a crucial role. Even when some
models take into account the structural information of proteins,

they often fail to adequately address how to extract both global and
local structural information from proteins to contribute to PPI
prediction. Additionally, some models incorporating interpretable
modules solely rely on spatial biological arrangements of residues,
introducing uncertainties and challenges to scientific validity and
reliability. These limitations hinder their practical applications in
PPI prediction. To address the issue of insufficient protein feature
extraction, we choose to utilize graph convolutional layers to capture
as much global structural information of protein graphs as possible.
However, we need to find a suitable trade-off due to challenges such
as over smoothing and gradient vanishing, which may arise when
using multiple graph convolutional layers. Secondly, given the
uniqueness of proteins, GNN should preserve the local structural
information of proteins. Certain amino acid residues are crucial for
protein interactions, and even the presence of specific residues
determines protein functionality. Therefore, GNN should
effectively distinguish between important residues and less
relevant ones, enabling reasonable judgments in subsequent site
prediction experiments. Secondly, the current interpretability of PPI
models based on graph neural networks falls short in translating
interactions into an understanding of function and mechanism.
Moreover, explanations based solely on spatial biological
arrangement information of residues are insufficient. Sequence
information provides only static insights, disregarding the
importance of protein structure and dynamic characteristics in
determining the occurrence and stability of interactions.

To address the limitations in protein feature extraction and
interpretability, we propose a novel framework called MGPPI, our
main contributions are as follows.

• We represent both interacting proteins as amino acid level
graphs, with amino acids as nodes and various relationships
between them as edges, which allows MGPPI to capture the
internal structure of proteins and their interactions more
accurately.

• To address the issue of black-box features in existing deep
learning models, we propose a novel interpretability module
called Grad-WAM. Grad-WAM utilizes the gradient
magnitudes generated by the final Graph Convolutional
Network (GCN) layer of the model to calculate the
contributions of each amino acid position in the PPI
prediction. This information is then used to visualize the
crucial amino acid residues that play a key role in the
interaction between the two proteins.

• To address the issue of insufficient protein structure feature
extraction in existing models, we propose a Multiscale Graph
Convolutional Neural Networkk (MGCN) to learn both local
and global protein structural representations. These
representations are mapped into feature vectors for each
protein, and the are combined for PPI prediction.

2 Methods

2.1 Input representation

The workflow of MGPPI is shown in Figure 1. The input to the
model is paired protein structures, which are represented as amino
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acid level graphs G = (N, E). Where nodes (N) are amino acid
residues (i.e., amino acid-level graph representation) and the
relationships between amino acids as edges (E). Node attributes
including solvent-accessible surface area, ϕ angle,ψ angle, secondary
structure (alpha helix, isolated beta-bridge residue, strand,
3–10 helix, turn, bend), AAPHY7 and BLOSUM62 descriptors,
hydrogen bond acceptor and donor information. Edge attributes
including information about the existence of covalent bond,
hydrophobic contact, ionic bond, disulfide bond, hydrogen bond,
and aromatic bond relationships between amino acids as edge
attributes. The details are shown in Table 1 below.

2.2 Graph neural network

We extract protein features using Graph Neural Networks and
combine the feature vectors of two proteins to predict Protein-
Protein Interactions. We map the protein graph representation to
feature vectors through two stages: message passing and readout. In
the message passing stage, as shown in Eq. 1, corresponding to
Figure 2A, we update the feature vector of each node by
incorporating the feature information from its neighboring nodes.

x T( )
i � σ Φ1x

T−1( )
i +Φ2 ∑

j∈N i( )
x T−1( )
j

⎛⎝ ⎞⎠ (1)

FIGURE 1
The model takes protein structures as input and employs graph representation learning to feed them into MGCN for extracting multi-scale features
of proteins, resulting in the final protein representation vectors. The two protein representation vectors are then fused to obtain a combined
representation of the protein pair. Subsequently, the combined representation is fed into fully connected layers to output predicted interaction scores.
GradWAM utilizes the gradient information from the last graph convolutional layer of MGCN and the final predicted scores to analyze the
importance of each amino acid for protein-protein interactions.

TABLE 1 Protein graph representation at the amino acid level.

Name Size

Node features

BLOSUM62 descriptors 23

AAPHY7 descriptors 7

One-hot encoded belonging to secondary structure 6

Solvent-accessible surface area 1

ϕ angle (divided by 180) 1

ψ angle (divided by 180) 1

Hydrogen bond acceptor 1

Hydrogen bond donor 1

Edge features

Covalent bond 1

Hydrophobic contact 1

Hydrogen bond 1

Aromatic bond 1

Ionic bond 1

Disulfide bond 1
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x(T)
i represents the feature vector of the ith node at a time step T;

Φ1,Φ2 symbolize learnable weight matrices shared by all nodes,
initialized with small random values pre-training, and continuously
optimized during training; σ encompasses two operations: node-
level batch normalization (Li et al., 2021) and the ReLU activation
function;N(i) refers to the set of neighboring nodes for the ith node.
By utilizing Eq. 1, nodes can gradually capture more global
information from the protein graph representation.

yG � 1
|M| ∑

i∈M
xi

T( ) (2)

M represents the set of all amino acids in the protein. During
the readout stage, as shown in Eq. 2, corresponding to Figure 2B, we
obtain the representation vector, denoted as yG, for the entire
protein graph G.

2.3 Multiscale graph convolutional neural
network for protein encoding

Graph neural network extract features of target proteins through
a layer-wise sampling approach. The layer-wise sampling approach
allows the model to extract the node features after each
convolutional layer, enabling the model to capture as much of
the protein’s global and local features as possible. A small
receptive field allows nodes to observe only local protein
structures, failing to capture global structural features. As a
result, nodes fail to establish connections with the overall protein
structure. On the contrary, when the receptive field is too large,
nodes may absorb more irrelevant features that are unrelated to
protein interactions. Additionally, it can lead to the homogenization
of node features within a particular region, giving rise to the problem
of oversmoothing. To effectively learn and integrate features from

protein graph data at different receptive fields and granularities, we
propose a Multiscale graph convolutional neural network (MGCN).
MGCN consists of three multiscale blocks and three transition
layers, the multiscale blocks as shown in Figure 3, the transition
layer transfers the multiscale information of nodes to the next stage.
At time step n + 1, the transition layer as shown in Eq. 3.

x n+1( )
i � σ Φ1 x 0( )

i ‖x 1( )
i ‖/‖x n( )

i( )(
+Φ2 ∑

j∈N i( )
x 0( )
j ‖x 1( )

j ‖/‖x n( )
j( )) (3)

The purpose of the transition layers is to connect adjacent
multiscale blocks, facilitating an increase in the depth of MGCN.
The multiscale blocks allow gradients to propagate through skip
connections, alleviating the issue of gradient vanishing.
Additionally, MGCN enhances the representation capability of
nodes by concatenating combinations of features from different
receptive fields. After passing through the final transition layer, the
feature vectors of amino acids are propagated to the readout stage. In
the information readout stage, the feature vectors of all amino acids in
a protein are integrated and transformed into a single feature vector
representing that protein. This protein feature vector is then utilized
for subsequent stages of protein-protein interaction prediction.

2.4 MGPPI network architecture

After obtaining the vector representations of proteins, we
concatenate the vector representations of both proteins and feed
them into fully connected layers to predict interaction scores. Since
the predicted interaction scores fall within the range of 0–1, we need
to set a threshold for classification. As we are going to predict key
sites of protein interaction later, we need to minimize the false
positive rate as much as possible to enhance the credibility of

FIGURE 2
Protein graph representation learning. (A) message passing phase, (B) message readout phase.
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prediction results, and hence, we have set the classification threshold
to 0.7. If the score is greater than this threshold, it is assigned a value
of 1, indicating that the two proteins are likely to interact with each
other. Conversely, if the score is below the threshold, it is assigned a
value of 0, suggesting that the two proteins are less likely to interact
or are unable to interact. Each fully connected layer is followed by a
ReLU activation function and a dropout layer with a dropout rate of
0.1, consistent with previous studies. There are a total of three fully
connected layers. Our loss function uses cross-entropy loss (Yang
et al., 2021), defined as follows Eq. 4:

Cross Entropy Loss � −∑n
i�1

Yi logPi (4)

Pi represents the predicted interaction score for the ith protein
pair, Yi represents the correct interaction score for the ith protein
pair, and n represents the total number of protein pairs.

2.5 Gradient weighted interaction
activation mapping

To enhance the interpretability of the model, we propose an
interpretable module called Gradient weighted interaction
activation mapping (Grad-WAM) and visualize the results. Grad-
WAM improves the identification of key interacting amino acid
residues and explains the mechanism of protein-protein
interactions, effectively addressing the issue of lack of
interpretability in neural network predictions. Grad-WAM
utilizes the gradient magnitudes generated by the last layer of
graph convolutions and the final predicted scores to calculate the
contributions of different amino acid positions in the protein
structure to protein-protein interaction predictions.

Specifically, Grad-WAM uses a weighted combination of the
positive partial derivatives of the feature maps with respect to the

interaction values to generate the corresponding visual explanations.
Since the contributions of each element are not equal, an additional
weight is introduced to weight the gradient values. The calculation
formula is as follows:

ω � ∑
i

αi · ReLU ∂P

∂Ti
( ), ∀ i | iϵT{ } (5)

Where ω represents the weight, and positive gradient values
indicate a positive influence on the predicted values, ensuring that ω
is a weighted average rather than a global average. αi corresponds to
the gradient weight of the ith node. ReLU() denotes the ReLU
activation function. Ti is the feature value of the ith node in the
feature map T of the last graph convolutional layer. P represents the
predicted protein-protein interaction value, and the calculation
formula is as follows:

P � ∑
i

αi · ReLU ∂P

∂Ti
( ) · Ti (6)

The derivative of Eq. 6 with respect to the variable yields the
following Eq. 7:

∂P

∂Ti
� αi · ∂P∂Ti

+ Ti · αi · ∂2P

∂Ti( )2 (7)

Rearranging the terms in Eq. 7 yields the following Eq. 8:

αi �
∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

(8)

Substituting the weight αi from Eq. 8 into Eq. 5, yields the final
weight as shown in Eq. 9:

ω � ∑
i

∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ · ReLU
∂P

∂Ti
( ), ∀ i | iϵT{ } (9)

FIGURE 3
The upper part of the figure illustrates the workflow of MGCN, which consists of three multi-scale blocks and three transition layers. The lower part
of the figure provides a detailed description of the multiscale blocks.
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The contribution of different amino acids at various positions in
the protein structure to the prediction of protein-protein
interactions can be calculated using Eq. 9. A key amino acid that
plays a crucial role in protein-protein interactions is annotated and
displayed in the protein structure. The color gradient from blue to
green to red represents the contribution values of the amino acids,
with higher contribution values indicated by a redder color,
indicating their significant role in protein interactions. This
method enhances the interpretability of the model. Grad-WAM
calculates the contribution of different amino acid positions in
protein-protein interaction prediction within protein structures
by utilizing the gradient magnitude generated by the final graph
convolutional layer and the predicted values propagated through
backpropagation. Due to the local connectivity and weight sharing
structure employed by the graph convolutional layer, it preserves
spatial information lost in the fully connected layers. The last graph
convolutional layer strikes a balance between high-order semantics
and detailed spatial information (Selvaraju et al., 2017), considering
both global and local features. Finally, the minimum-maximum
normalization method is used to map the impact probabilities of
each amino acid on protein interactions, ranging from 0 to 1.

2.6 Data

The datasets used in this study include the Human Protein
Reference Database (HPRD) (Peri et al., 2003), the Online
Predicted Human Interaction Database (OPHID) (Brown and
Jurisica, 2005), the H. sapiens dataset from the Biological
General Repository for Interaction Datasets (BioGRID)
(Oughtred et al., 2019), and the STRING database (Szklarczyk
et al., 2019). Additionally, the negative samples in the HPRD
dataset are sourced from curated negative protein-protein
interaction datasets. The negative protein-protein interaction
datasets collected data on human protein pairs that did not
exhibit interactions in large-scale yeast two-hybrid screening.
The quantities of positive and negative samples after processing
for each dataset are shown in Table 2.

For the aforementioned datasets, protein names were converted
to UniProt (Bateman, 2019) ID, and the corresponding PDB
(Berman et al., 2000) files were collected for training, testing, and
validation purposes. We randomly sampled 25,000 positive
examples and 25,000 negative examples from each human
protein dataset, resulting in a final training set of
200,000 samples. The training set is independent of the
subsequent test set.

2.7 Experimental environment configuration

The experimental environment consisted of Ubuntu 20.04.6LTS,
an Intel (R) Core (TM) i5-10400 CPU, and an NVIDIA Corporation
GP102G (Tesla P40) GPU. A batch size of 512 was set, and the Adam
optimizer with a learning rate of 0.0005 was used to update the
model parameters. The MGCN architecture comprised 15 graph
convolutional layers, including three multiscale blocks. Each
multiscale block consisted of N (N = 4) graph convolutional
layers and three transition layers.

3 Result and discussion

3.1 Compare on human proteins datasets

We selected the HPRD as the benchmark dataset and compared
MGPPI with several state-of-the-art PPI prediction methods for
analysis. These methods include High-PPI, a hierarchical graph
neural network-based PPI prediction method; GNN-PPI, a method
that utilizes graph neural networks to learn PPI network topological
structures; Deep-Trio, a deep learning framework based on a
masked multiscale CNN architecture that learns multiscale
contextual information from protein sequences; PIPR (Chen
et al., 2019), an end-to-end framework based on recursive neural
networks (RNNs) that incorporates pre-trained residue embeddings
for protein representation; and DeepFE-PPI, a method that employs
residue representation using the Res2vec [based on Word2vec
(Mikolov et al., 2013)] approach. In Figure 4A, the precision-
recall curves are provided, while Figure 4B presents the ROC
curves. Across both evaluation metrics, MGPPI consistently
achieved the best performance among all the compared methods,
this also highlights the significance of protein structural information
in PPI prediction. Furthermore, we conducted testing on the
BioGRID dataset for MGPPI and five other methods, resulting in
the confusion matrix shown in Figure 4C. The conclusions remain
consistent with the previous findings.

To further validate the predictive capability of MGPPI for
protein-protein interactions, we conducted performance
comparisons between MGPPI and the five different PPI
prediction methods on three other human protein datasets. The
results as shown in Figure 5.

From Figure 4 and Figure 5, it can be observed that our proposed
method, MGPPI, demonstrates favorable performance across
various commonly used evaluation metrics. MGPPI aims to
comprehensively consider the impact of oversmoothing and
gradient vanishing while extracting as much global information
as possible from protein graph structures. It simultaneously takes
into account the preservation of local information within protein
graph structures to enhance the prediction performance of PPI. On
the other hand, High-PPI effectively utilizes a layered modeling
approach. In this approach, the inner layer of the protein view
consists of residues as nodes, with their physical adjacency forming
the edges. The outer layer of the protein view considers proteins and
their interactions as nodes and edges, respectively, in the PPI
network structure. High-PPI, ranking second, highlights the
significance of protein structural information in PPI prediction.
In comparison to other sequence-based prediction methods such as

TABLE 2 The quantity of positive and negative samples in each dataset.

Dataset Positive Negative

HPRD 35944 763115

OPHID 39412 63932

BioGRID 72367 82731

STRING 11810480 167224

Multi-species 25640 30332
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DeepFE-PPI, PIPR, and Deep-Trio, MGPPI exhibits significant
advantages, further highlighting the importance of protein
structure information in PPI prediction.

3.2 Compare on multi-species
proteins datasets

The multi-species dataset consists of three species:
Caenorhabditis elegans (Celegan), Drosophila melanogaster
(Drosophila), and Escherichia coli (Ecoli). The utilization of
multi-species datasets enables further exploration of the practical
and generalization capabilities of MGPPI. Experimental evaluations
conducted on these datasets assess the model’s ability to generalize,
as all previous models were trained and tested solely on human
datasets. For MGPPI, protein network construction necessitates
corresponding PDB files, obviating the necessity to establish
distinct thresholds based on sequence similarity for data
categorization. We standardized the dataset into a comprehensive
multi-species dataset to assess the performance of each model
effectively. The results as shown in Table 3.

Based on Table 3, it can be observed that MGPPI exhibits
remarkable generalization ability. This can be attributed to its
capability of performing graph representation learning on
proteins from different species. MGPPI effectively extracts
valuable structural information, enabling accurate prediction of
protein-protein interactions. On one hand, sequence-based
methods can accurately predict some PPI by identifying
similarities between amino acid sequences of non-human species
and those of human proteins, inferring similar functionalities and
interaction tendencies. However, it should be noted that not all
proteins from other species can be matched with similar sequences
to human proteins. On the other hand, GNN-PPI might not have
encountered multi-species data and thus struggles to accurately
construct the PPI network structure, this leads to a performance
deviation of the model from the anticipated expectations.

3.3 Ablation study

As the depth of GNN models increases, we have observed the
issue of over-smoothing in certain cases. Over-smoothing refers to a

FIGURE 4
Here are the precision-recall curves (A), ROC curves (B), and AUC for the six methods on the HPRD dataset.(C) represents the 20% test set selected
from the BioGRID dataset for evaluatingMGPPI and five othermethods. The confusionmatrix was obtained by applying a threshold of 0.7 to the predicted
values (as the predictions are continuous values between 0 and 1).

Frontiers in Genetics frontiersin.org07

Zhao et al. 10.3389/fgene.2024.1440448

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1440448


situation where nodes incorporate an increasing amount of
information from their neighboring nodes, causing the
representation vectors of some nodes to converge towards the
same value. When most or all nodes have representation vectors
that converge to the same or a few values, it hinders the normal
learning process of themodel and renders the neural network’s output
insensitive to the input information. Therefore, in this paper, we
propose MGCN to address this problem by integrating representation
vectors from different temporal nodes, preserving a combination of
receptive fields at different scales. This approach enhances themodel’s
ability to represent nodes and alleviates the issue of over-smoothing.

In MGPPI, we alleviate the issues of over-smoothing and
gradient vanishing by leveraging a multiscale module and batch
normalization techniques to improve model performance. To
demonstrate the individual contributions of the multiscale
module and batch normalization, We conducted ablation study
on the HPRD dataset. The study consisted of three
experimental scenarios:

(1) The first scenario involved removing batch normalization
while retaining the multi-scale module.

(2) The second scenario involved removing the multiscale
module and utilizing the four graph convolution
layers without it.

(3) The third scenario retained both the multiscale module and
batch normalization for experimental analysis.

The results presented in Table 4 indicate that both the multi-
scale module and batch normalization are essential components
of MGCN. Furthermore, experiments conducted on the HPRD
dataset aimed to investigate the impact of receptive field on the
model’s performance. Specifically, we progressively increased
the number of graph convolutional layers (i.e., 2, 3, 4, 5, 6)
within the multi-scale module to enlarge the network’s
receptive field.

From the results shown in Table 5, it can be observed that,
overall, increasing the number of convolutional layers improves
the overall performance of the model. However, when using six
convolutional layers, some metrics are not as good as those
achieved with four or five layers. This discrepancy may arise due
to the inclusion of noise information from residues that do not
participate in protein-protein interactions when increasing the
number of convolutional layers. Considering that each
additional convolutional layer introduces more
computational operations, which could result in longer
training and inference times, we aimed to strike a balance
between the model’s overall performance and its time
complexity. Furthermore, we aimed to mitigate the impact of
over-smoothing issues and gradient vanishing issues. Therefore,
after comprehensive consideration, we opted for a compromise
solution, retaining four convolutional layers for subsequent
experiments.

FIGURE 5
The overall performance of MGPPI compared to five other PPI predictionmethods was evaluated on theOPHID dataset, theH. sapiens dataset from
BioGRID, and STRING.

TABLE 3 Comparison of MGPPI with other methods on a multi-species
dataset (%).

Method Accuracy Precision Recall F1

DeepFE-PPI 68.70 63.97 66.53 65.22

PIPR 73.92 65.98 73.15 68.69

Deep-Trio 71.29 69.57 70.67 68.54

GNN-PPI 67.15 61.53 64.82 62.10

High-PPI 75.18 73.26 75.21 73.52

MGPPI 82.53 81.77 83.68 82.17
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TABLE 4 Investigating the individual contributions of the multiscale module and batch normalization (%).

Model Loss Accuracy Precision Recall F1 MCC

Without multiscale module 1.50 98.16 99.31 95.86 97.53 95.07

Without batch normalization 1.34 98.28 99.29 95.61 97.45 95.15

MGPPI 1.16 98.74 99.52 96.11 97.78 95.41

TABLE 5 Investigating the impact of different numbers of convolutional layers within the multiscale module on the model (%).

Convolutional layer Loss Accuracy Precision Recall F1 MCC

2 1.97 97.87 98.86 95.33 96.86 94.78

3 1.54 98.04 99.14 95.72 97.18 95.09

4 1.16 98.74 99.52 96.11 97.78 95.41

5 1.12 98.63 99.56 96.11 97.64 95.35

6 1.29 98.40 99.39 95.93 97.43 95.46

FIGURE 6
The key binding sites and amino acid contributions of the Spike protein and the human receptor ACE2. (A) represents the visualization results and
predicted binding sites for the human receptor protein ACE2. (B) Represents the visualization results and predicted binding sites for the Spike protein. (C)
Displays the contribution values of all amino acids in ACE2, represented by a single amino acid chain. (D) Displays the contribution values of all amino
acids in the Spike protein, which consists of three amino acid chains: (A, B, and C). Furthermore, the receptor binding domains on chains A and C are
oriented downward, while the receptor binding domain on chain B is oriented upward. In the visualization, the region to the left of position 1,500 with
higher scores corresponds precisely to the amino acids 435Ala, 436Trp, 512Val, and 465Glu in the B chain. Since the calculated contribution values are
relatively small, we have proportionally magnified them for better color distinction during the visualization stage.
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3.4 Predict and validate binding sites

To validate the interpretability and binding site prediction
capability of MGPPI, we conducted an experiment using the
interaction between the spike protein of SARS-COV-2 and the
human ACE2 receptor protein as a case study. After feature
extraction, graph convolution operations, and visualization, we
discovered a high interaction score between the two proteins,
indicating their ability to interact, which aligns with existing
research findings. Additionally, using Grad-WAM visualization,
we identified key amino acid residues that play a crucial role in
their binding, elucidating the specific binding sites between Spike
protein and Ace2. As show in Figure 6. We uniformly amplified the
contribution values of all amino acids by a factor of 100 to facilitate
color differentiation of the amino acids during the visualization
process, ultimately resulting in the contribution value plots shown in
Figures 6C,D.

As shown in Figure 6B, the residues 435Ala, 436Trp, 512Val,
and 465Glu located in the receptor binding domain of the Spike
protein’s B chain exhibit the highest contribution values,
indicating their significant impact in the interaction with the
human receptor protein ACE2 (Chi et al., 2020). Have revealed
that the receptor binding domains of the other two chains in the
Spike protein are oriented downward, while the receptor binding
domain on the B chain is oriented upward. This orientation
suggests that the receptor binding domain on the B chain,
which is typically the first to come into contact with the human
receptor protein, further supports the reliability of the predicted
binding sites. To further validate our findings, we mapped these
predicted binding sites to functional domains and identified their
corresponding functional annotations. The identified sites are
located within the IPR018548 and IPR042578 functional
domains, and the respective functional annotations of these
domains are as follows:

The IPR018548 domain functions as the spike protein
S1 subunit, receptor binding domain, and β-coronavirus. The
IPR042578 domain functions as the spike protein S1, S2, and S2′,
where S1 is responsible for binding to host cells and initiating

infection, S2 is involved in cell membrane fusion, and S2’
facilitates viral fusion.

The GO annotation (GO:0039654) indicates involvement in the
fusion of viral membrane with the host endosomal membrane. The
GO annotation (GO:0019064) suggests involvement in the fusion of
viral membrane with the host ER membrane. The GO annotation
(GO:0016020) indicates participation in the entry of the virus into
host cells through endocytosis.

The functional domain and Gene Ontology annotations
associated with these predicted binding sites provide additional
evidence to substantiate the reliability and scientific validity of
our predictions. These functional domains, such as
IPR018548 and IPR042578, along with the corresponding GO
annotations, further support the significance of the predicted
binding sites in terms of their functional relevance and their
involvement in critical viral-host interactions.

As shown in Figure 6A, The predicted binding sites, 28Phe,
29Leu, 84Pro, and 88Ile, are located on the edges of ACE2 and are
prone to interact with other proteins. These sites can be mapped to
specific functional domains, with corresponding Gene Ontology
(GO) annotations. However, upon reviewing published literature,
the actual binding sites are on the frontward-facing region of the
protein, specifically the residues 28Phe, 29Leu, 84Pro, and 88Ile,
with the following corresponding Gene Ontology (GO) annotations:

GO:0006508 (Protein catabolic process by peptide bond
hydrolysis): This annotation suggests that these binding sites may
be involved in the hydrolysis of peptide bonds, leading to the
breakdown of larger polypeptides into smaller ones or amino
acids. GO:0008237 (Metalloendopeptidase activity): This
annotation indicates that the binding sites may possess the
enzymatic activity of a metalloendopeptidase, which involves the
cleavage of peptide bonds within a protein. GO:0008241 (Peptidyl-
dipeptidase activity): This annotation suggests that these sites may
catalyze the release of C-terminal dipeptides from peptide chains.
GO:0016020 (Membrane and protein complex-associated within
lipid bilayer): This annotation implies that the proteins containing
these binding sites are embedded within the lipid bilayer and
associated with protein complexes.

FIGURE 7
The patients with the three types of cancer were divided into two groups each, based on the occurrence of mutations in the key sites (mutated
group) or the absence of mutations (non-mutated group). Survival probability differences over time were analyzed for the two patient groups of each
cancer type, as depicted in the figures. The shaded regions around the curves represent the confidence intervals. The p-valueswere found to be 1.57e-03,
5.19e-04, and 8.27e-03, indicating statistically significant differences in survival probabilities between the two patient groups for all three types of
cancer. This suggests that the presence of mutations has an impact on patient survival. In the case of breast cancer, the non-mutated group exhibited
higher survival probabilities over time compared to the mutated group. Conversely, for the other two types of cancer, the mutated group showed higher
survival probabilities as time progressed.
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The functional domain allocation andGO annotation of predicted
binding sites provide scientific evidence for the potential roles of these
sites in the interaction between ACE2 and spike protein. This further
strengthens the reliability of the predicted binding sites. Additionally,
the use of Grad-WAM allows for intuitive visualization of the
prediction results, enabling researchers to perform more targeted
experimental validations based on the obtained amino acid
contribution values. Furthermore, through MGPPI and Grad-
WAM, we elucidated the roles of the two protein interactions in
cellular processes and the functional significance of the predicted sites
in the interaction process, thus enhancing the practicality and
scientific rigor of MGPPI.

3.5 The impact of the predicted mutation
site on cancer patients

To further validate the scientific significance of MGPPI, we
collected three cancer patient datasets (breast cancer, bladder cancer,
and colorectal cancer) and analyzed them individually. We selected
protein-protein interaction samples related to cancer from the
HPRD dataset based on proteins present in the patients’ bodies.
We successfully predicted the critical binding sites of these proteins
using the MGPPI model. Subsequently, based on the incidence of
mutations at these protein binding sites within the cancer patient
dataset, we categorized each individual into one of two groups:
patients with mutated binding sites and patients with non-mutated
binding sites. We then analyzed the impact of these mutation sites
on the survival time of patients in each cancer group. Finally,
Kaplan-Meier curves were generated by analyzing the survival
time and status of patients with each type of cancer,
incorporating patient grouping information. As show in Figure 7:

From Figure 7, it is evident that there are significant differences
in survival probabilities between the two patient groups for each type
of disease, indicating the importance of these key sites for human
survival. For example, in breast cancer patients, the occurrence of
specific mutations at critical amino acid residues of certain proteins
may suggest the presence of abnormalities or functional alterations
in their bodies. As a result, their resistance against cancer could be
weakened, rendering themmore vulnerable to its effects and leading
to a rapid decline in survival rates over time. Conversely, non-
mutated patients at key sites demonstrate higher survival
probabilities, indicating a potential survival advantage associated
with those specific protein sites. However, in the case of bladder
cancer and colorectal cancer patients, the Kaplan-Meier curve
results are opposite to those of breast cancer patients, with the
mutated groups showing higher survival probabilities over time.
This indicates that mutations at certain amino acid residues may not
necessarily be harmful to patients, and in some cases, they can even
have a positive impact on the treatment of certain cancers, thereby
increasing patients’ survival probabilities.

In conclusion, MGPPI accurately predicts crucial amino acid
sites in cancer patients that play a significant role in disease
resistance, further validating the reliability and scientific
soundness of the MGPPI model.

3.6 Limitations and future direction

Although MGPPI has demonstrated advantages in protein-
protein interaction prediction and binding site prediction, there
are still limitations in this study. Firstly, the output of the MGPPI
model is a probability value that requires setting a threshold to
convert probabilities into classifications. Choosing an
inappropriate threshold may result in the model missing some
true positive samples, leading to lower evaluation metrics than the
actual values.

In future work, we will incorporate the 3D coordinate
information of amino acids to predict binding sites during
protein-protein interactions. In real-world scenarios, proteins
exhibit diverse shapes, and certain amino acids may be located
inside the protein due to protein folding or distortion. The
likelihood of these amino acids interacting with other proteins is
low. Therefore, when discussing PPI and predicting binding sites, it
is essential to consider the actual coordinate information of
amino acids.

4 Conclusion

This paper presents a novel PPI prediction framework called
MGPPI based on chemical intuition. MGPPI utilizes MGCN,
which consists of 15 graph convolutional layers, to capture the
multiscale structure of proteins. It also employs Grad-WAM for
visual interpretation. Extensive experiments validate the
superiority of this method, demonstrating significant
improvements over existing approaches on four human
protein datasets and one multi-species dataset. The ability of
MGPPI to represent proteins from various species as graph data
greatly enhances the model’s generalization capability.
Furthermore, MGPPI successfully predicts the interaction
between the spike protein of SARS-COV-2 and the human
ACE2 receptor protein. By utilizing Grad-WAM, the
importance of amino acids is visualized as labels, and the
rationality of predicted binding sites is validated based on
functional domain and Gene Ontology annotation. Finally, we
screened for relevant proteins from samples of three cancer
patients and used the MGPPI model to predict the binding
sites of these proteins. Based on whether these sites undergo
mutations, we divided each type of cancer patient into two groups
and investigated the impact of these sites on the survival status of
patients with the three types of diseases. The research results
indicate that MGPPI enhances the overall generalization and
interpretability of PPI prediction models, making it a highly
practical tool.
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