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1 Introduction

Methanotrophic bacteria are a special group of bacteria that consume methane as their
energy and carbon source. They are roughly divided into aerobic gammaproteobacterial,
alphaproteobacterial and verrucomicrobial methanotrophs (that use O2 as their primary
electron acceptor), and anaerobic bacteria of genus Candidatus Methylomirabilis (that use
nitrite to oxidize methane) (Guerrero-Cruz et al., 2021). Methanotrophic bacteria play a
crucial role in reducing the methane emissions from natural methanogenic ecosystems, like
rivers, lakes and wetlands (Hanson and Hanson, 1996). They are also actively harnessed for
their biotechnological potential to mitigate methane emissions from anthropogenic
ecosystems (e.g., biofilters at landfills) and to convert methane in biogas and natural
gas into various value-added products (e.g., single-cell protein and bioplastics) (Strong
et al., 2015).

Comparative genomics of bacteria form the basis of the current bacterial taxonomy, like
that of methanotrophic bacteria (Orata et al., 2018). In addition to comparative analysis,
genome sequences of methanotroph isolates provide an important backbone database for
taxonomic and functional analysis of the vast and constantly increasing shotgun
metagenomic data, especially metagenome-assembled genomes (MAG) of putative
methanotrophs, collected from environment (Buck et al., 2021; Khanongnuch et al.,
2023). Furthermore, genomic data provide crucial insights into potentially novel and
testable metabolisms in methanotrophic bacteria, relevant both to the understanding of
environmental methane cycling and for biotechnological applications, such as
fermentation, i.e., conversion of methane to organic acids and H2 (Kalyuzhnaya et al.,
2013), denitrification (Kits et al., 2015), extracellular electron transfer (Zheng et al., 2020),
and oxidation of alternative electron donors (Gwak et al., 2022). Genetic engineering of
methanotrophs to enhance their methane consumption and bioconversion efficiencies, and
to increase the range of methane-derived products, also benefit greatly from the genomic
data (Henard and Guarnieri, 2018; Jeong et al., 2023).

Here, we report the genome sequence of a strainMethylomonas sp. AM2-LC, which was
isolated from the water column of a boreal, humic, O2-stratified lake, located in Southern
Finland. It represents a putatively novel species ofMethylomonas sp., a methanotroph genus
widely present in various methanogenic ecosystems (Bussmann et al., 2021; Danilova et al.,
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2013; Hoefman et al., 2014; Ogiso et al., 2012; Zhu et al., 2020), and
an attractive methane bioconversion candidate (Patel et al., 2018;
Patel et al., 2022; Tikhonova et al., 2023).

2 Value of the data

The genome of Methylomonas sp. AM2-LC can be used as a
valuable resource to conduct comparative functional and taxonomic
analyses among methanotroph isolates and environmental MAGs
representing methanotrophic bacteria, especially Methylomonas
sp. It will aid in refining the taxonomy of Methylomonas sp. and
in enhancing the understanding of the metabolic capabilities of
methanotrophs and their distribution in environment. More
specifically, the genome can be explored for putative novel
functions having biogeochemical and/or biotechnological interest,
and to design genetic engineering experiments.

3 Materials and methods

3.1 Strain isolation and DNA extraction

The strain AM2-LC was isolated from water samples collected at
4.5 m depth of Lake Alinen Mustajärvi, Southern Finland, on
27 September 2022. The temperature, pH and concentrations of O2,
NH4

+-N, NO3
− + NO2

−-N and PO4
3--P at the time of sampling were

5.3°C, 5.54, 0.41 mg/L, 335 μg/L, <5 μg/L and 4 μg/L. When the lake
water arrived at the laboratory, pre-enrichment was conducted by
transferring 100 mL of the lake water to 500 mL sterile glass bottles
sealed with septum and screw cap, and the headspace was replaced with
20% CH4. After ~30 days, the pre-enriched lake water was used as an
inoculum to further enrich methanotrophs. This was done by diluting
the pre-enriched lake water 1:10 in the modified ammonium mineral
salts (AMS) medium. The latter consists of (g/L): NH4Cl (0.03),
MgSO4·7H2O (1), CaCl2·2H2O (0.2), phosphate buffer containing
K2HPO4 (0.28), KH2PO4 (0.33), pH 6.6, iron (III)-EDTA (0.004),
Na2MoO4·2H2O (0.00023), 0.1% (v/v) of trace element containing
(g/L): CuSO4·5H2O (1), FeSO4·7H2O (0.5), ZnSO4·7H2O (0.4),
H3BO3 (0.015), CoCl2·6H2O (0.05), EDTA-Na2 (0.25), MnCl·4H2O
(0.02), NiCl2·6H2O (0.01), and 0.5% (v/v) vitamin solution containing
(mg/L), pyridoxine hydrochloride (10), thiamine-HCl (5), riboflavin
(5), nicotinic acid (5), thioctic acid (5), folic acid (2). Additionally, 1 µM
La2O3 and CeCl3·7H2O were supplemented to the modified AMS
medium. To inhibit fungal growth, 2.5 μg/mL of amphotericin B
solution (Sigma-Aldrich Ltd.) was added to the modified AMS
medium. The enrichment was conducted in serum bottles filled with
~8% (v/v) of the modified AMS medium, and CH4, sterilized with
0.22 µm sterile syringe filter, was added to the headspace to obtain a 20:
80 ratio CH4 and air. When the turbidity was observed, the enriched
culture was transferred into a new bottle with fresh medium and
headspace gas replenishment. The serial dilutions of 1:106 was
performed until a pure culture was obtained. The culture purity was
verified by streaking onto nutrient-rich agar (5 g/L tryptone, 2.5 g/L
yeast extract, 1 g/L glucose, and 20 g/L agar) showing no growth and
observing by a light microscope. So far, the strain AM2-LC could grow
at pH 6.0, 6.6, and 6.8 in a cold room (5°C ± 1.5 °C) and room
temperature (20°C ± 2 °C). The growth was not observed in a liquid

medium when ammonium was replaced with nitrate as a nitrogen
source. The isolate morphology was observed by microscopy as rod
shape (0.9–2.5 µm in length and 0.8–1.3 µm in width) (Supplementary
Figure S1 in Supplementary Material S1). Furthermore, the strain was
able to growwith 2%CH4 in the headspace (Supplementary Figure S2C
in SupplementaryMaterial S1). The culture is available at the laboratory
at Tampere University, Finland. To preserve it, the cell pellets were
resuspended in 1XPBS (pH 7.4) containing 7% DMSO and
stored at −80 °C.

Genomic DNA was extracted using GeneJET Genomic DNA
Purification Kit and quantified using a Qubit 3.0 Fluorometer and a
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA,
United States).

3.2 16S rRNA gene sequencing and
phylogenetic analysis

Using the identification service offered by Macrogen
(Amsterdam, Netherlands), the 16S rRNA genes of the strain
AM2-LC were amplified from the genomic DNA (gDNA) using
primers 27F (AGAGTTTGATCMTGGCTCAG) and 1492R
(TACGGYTACCTTGTTACGACTT) and sequenced using
primer pairs 785F (GGATTAGATACCCTGGTA) and 907R

TABLE 1 Statistics of de novo genome assembly, genome characteristics
and taxonomically closest reference strain of Methylomonas sp. AM2-LC.

Feature Strain AM2-LC

Total sequence length (bp) 5394081

Number of contigs 3 (1 chromosome +2 plasmids)

Chromosome length (bp) 4971665

plasmid 1 length (bp) 288757

plasmid 2 length (bp) 133659

N50 (bp) 4971665

G + C - content (%) 42.7%

Number of coding sequences (CDS) 4,933

Repetitive sequence length (bp) 6,780 (0.13%)

Number of 5S, 16S and 23S rRNA genes 3 (5S), 3 (16S), 3 (23S)

Number of tRNA genes 48

Number of CRISPR 14

Number of genomic islands 24

Number of prophages 10

Number of biosynthetic gene clusters 6

Genome completeness (%) 99.2

Genome contamination (%) 2.0

Closest reference: Methylomonas paludis with

16S rRNA gene identity - % 98.3% (HE801216.1)

ANI - % 77.9% (GCA_018734325.1)

dDDH - % 21.3% (GCA_018734325.1)
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(CCGTCAATTCMTTTRAGTTT). The 16S rRNA gene sequence
alignment with reference sequences (SINA aligner v.1.2.12) and the
phylogenetic tree analysis (FastTree v. 2.1.11, ML model:
Generalized Time-Reversible) was performed using the Silva
Alignment, Classification and Tree Service (Pruesse et al., 2012).

3.3 Genome sequencing and analysis

The gDNA sequencing, including library preparation and
sequencing of both long (PacBio SMRT, CCS sequencing mode,
PacBio Revio) and short reads [Illumina NovaSeq X (PE150)] was
performed as a service provided by Biomarker Technologies (BMK)
GmbH. The sequencing facility also provided bioinformatic services
such as filtering of long (reads with length <2 kb removed) and short
reads [fastp v0.23.2, (Chen et al., 2018), to remove adapter and low
quality reads], genome assembly [Hifiasm v. 0.14, (Cheng et al.,
2021; Cheng et al., 2022)], genome assembly improvement [Pilon v
1.22, (Walker et al., 2014)], and genome cyclizing [circlator v. 1.5.5,

(Hunt et al., 2015)]. The genome completeness and contamination
was assessed using checkM (v1.2.2, Methylococcales. ms marker set)
(Parks et al., 2015).

The protein sequences, repetitive sequences, tRNAs, rRNAs,
CRISPR regions, genomic islands, prophages, and biosynthetic
gene clusters (BGC) were predicted using Prodigal (v. 2.6) (Hyatt
et al., 2010), RepeatMasker (v4.0.5) (Tarailo-Graovac and Chen,
2009), tRNAscan-SE (v2.0) (Chan and Lowe, 2019), Infernal
(v1.1.3) (Nawrocki and Eddy, 2013), CRT (v1.2) (Bland et al.,
2007), IslandPath-DIMOB (v0.2) (Bertelli and Brinkman, 2018),
PhiSpy (v2.3) (Akhter et al., 2012), and antiSMASH (v5.0.0) (Blin
et al., 2019), respectively. The genome-wide phylogenetic tree was
built from protein alignments generated in PhyloPhlAn (v. 3.0.67;
PhyloPhlAn database including 400 universal marker genes and
“-diversity low” - argument) (Segata et al., 2013; Asnicar et al.,
2020) using the maximum-likelihood algorithm (PROTCATLG −
model) with 100 bootstrap replicates in RAxML (v. 8.2.12)
(Stamatakis, 2014). Average nucleotide identities (ANI) with
reference genomes were calculated using ANI calculator (http://

FIGURE 1
The predicted pathways indicating the genetic potential of AM2-LC for CH4 conversion into CH4-derived compounds (e.g., methanol and organic
acids) and nitrogen fixation, contributing to the ecosystem function and bioconversion of CH4. Additionally, the strain shows genetic potential for
tolerating toxic compounds commonly found in biogas, including genes for converting hydrogen sulfide, mercaptan, and NH3. The genes present in the
pathway are based on KofamKOALA (KEGG Orthology and Function Annotation by KEGG Orthology And Links Annotation) (Supplementary
Material S3).
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enve-omics.ce.gatech.edu/ani/, accessed on April 2024) (Goris et al.,
2007). Digital DNA-DNA hybridization (dDDH) comparisons with
reference genomes were done using the Type Strain Genome Server
(TYGS) online service (https://tygs.dsmz.de/, accessed on April 2024)
(Meier-Kolthoff and Göker, 2019). The functional annotation was
performed via BLAST search against NCBI´s Nr, eggNOG (Powell
et al., 2014), GO (Ashburner et al., 2000), Pfam (Finn et al., 2014),
SwissProt and TrEMBL databases (Bairoch and Apweiler, 1996).
KofamKOALA (https://www.genome.jp/tools/kofamkoala/, accessed
on April 2024) was used to search the predicted genes against the
KEGG database (Kanehisa et al., 2004; Aramaki et al., 2020).

3.4 Preliminary data analysis

The statistics of de novo assembly and genome characteristics are
reported in Table 1. The genome, with full length of 5394081 bp and G
+ C content of 42.7%, consisted of three contigs of which one was the
chromosome (4971665 bp) and two were plasmids (288757 bp and
133659 bp) (Supplementary Figure S3 in Supplementary Material S1).
The genome was of very high quality as judged by the high
completeness and low contamination estimates (Table 1) (Bowers
et al., 2017). Furthermore, the genome contained 4,933 coding
sequences, 9 rRNA and 48 tRNA genes, 14 CRISPR regions,
24 genomic island regions, 10 prophages, 6 biosynthetic gene
clusters, and had 6,780 bp of repetitive sequences (Table 1). See
further results on the analysis of these genome characteristics
(including predicted protein sequences) in SupplementaryMaterial S2.

The strain AM2-LC was most closely related with M. paludis
(Danilova et al., 2013; Rissanen et al., 2021) with 98.3% similarity in
the 16S rRNA gene comparisons and with 77.9% ANI and 21.3%
dDDH in the genome-level comparisons (Table 1). It also positioned
closest toM. paludis in phylogenetic and phylogenomic tree analyses
(Supplementary Figure S4 in Supplementary Material S1). The
respective similarities with representatives of Methylomonas
sp. generally varied (min-max) 94.3%–98.3% (16S rRNA genes),
76.3%–77.9% (ANI) and 18.6%–21.3% (dDDH). Given these being
below the widely used thresholds to delineate unique species, 98.65%,
95%, and 70%, for 16S rRNA genes, ANI, and dDDH, respectively
(Goris et al., 2007; Auch et al., 2010; Meier-Kolthoff et al., 2013; Kim
et al., 2014; Chun et al., 2018; Orata et al., 2018), the strain AM2-LC
very likely represents a novel species of genus Methylomonas.

According to the preliminary annotation analysis (Figure 1), the
strain AM2-LC’s genome contained particulate methane
monooxygenases (pmoCAB) for methane conversion into methanol,
while soluble methane monooxygenases (mmoXYBZDC) were absent.
In addition, the strain encoded the pxm operon (pxmABC), i.e., a
copper membrane monooxygenase of unknown function (Tavormina
et al., 2011). The genome contained both calcium- (mxaLKCAIGJFD)
and lanthanide-dependent (xoxF) methanol dehydrogenases for
converting methanol to formaldehyde. Genes involved in
tetrahydromethanopterin (H4MPT)-mediated pathway, catalyzing
the conversion of formaldehyde into formate, were also present in
the genome. The genome also contained genes encoding the RuMP
pathway [for carbon (formaldehyde) assimilation], the oxidative TCA
cycle, and Entner-Doudoroff and Embden-Meyerhof-Parnas pathways
for energy conservation (Figure 1). Similar to the closely related strain
M. paludis S2AM, the strain AM2-LC can potentially convert methane

into industrially important organic acids, i.e., formic acid, lactic acid,
acetic acid, and succinic acid (Figure 1) (Khanongnuch et al., 2023;
Strong et al., 2015). Furthermore, the genome included genes encoding
N2 fixation (nitrogenase, nifKDH), assimilation of nitrate (nitrate
reductase, nasA and nitrite reductase, nirDB), oxidation of
hydroxylamine into nitrite (hydroxylamine dehydrogenase, hao).
Interestingly, the strain contains the genetic potential to oxidize
other toxic compounds commonly found in biogas, including the
conversion of hydrogen sulfide to sulfur (sulfide dehydrogenase,
fccBA; sulfide-quinone oxidoreductase, sqr) and conversion of
methylmercaptan into formaldehyde and hydrogen sulfide
(methylmercaptan (MM)-oxidase) (Figure 1). The strain is likely
incapable of carotenoid biosynthesis as lacking the relevant
functional genes. See the detailed results on the functional
annotation analyses in Supplementary Material S3. The results of
COG annotation analysis are also visualized in Supplementary
Figure S3 in Supplementary Material S1.
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