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Background: Previous studies have explored the role of plasma proteins on
osteonecrosis. This Mendelian randomization (MR) study further assessed plasma
proteins on osteonecrosis whether a causal relationship exists and provides some
evidence of causality.

Methods: Summary-level data of 4,907 circulating protein levels were extracted
from a large-scale protein quantitative trait loci study including 35,559 individuals
by the deCODE Genetics Consortium. The outcome data for osteonecrosis were
sourced from the FinnGen study, comprising 1,543 cases and 391,037 controls.
MR analysis was conducted to estimate the associations between protein and
osteonecrosis risk. Additionally, Phenome-wide MR analysis, and candidate drug
prediction were employed to identify potential causal circulating proteins and
novel drug targets.

Results:We totally assessed the effect of 1,676 plasma proteins on osteonecrosis
risk, of which 71 plasma proteins had a suggestive association with outcome risk
(P < 0.05). Notably, Heme-binding protein 1 (HEBP1) was significant positively
associated with osteonecrosis risk with convening evidence (OR, 1.40, 95% CI,
1.19 to 1.65, P= 3.96 × 10−5, P FDR = 0.044). This associationwas further confirmed
in other MR analysis methods and did not detect heterogeneity and pleiotropy (all
P > 0.05). To comprehensively explore the health effect of HEBP1, the phenome-
wide MR analysis found it was associated with 136 phenotypes excluding
osteonecrosis (P < 0.05). However, no significant association was observed
after the false discovery rate adjustment.

Conclusion: This comprehensive MR study identifies 71 plasma proteins
associated with osteonecrosis, with HEBP1, ITIH1, SMOC1, and
CREG1 showing potential as biomarkers of osteonecrosis. Nonetheless, further
studies are needed to validate this candidate plasma protein.
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Introduction

Osteonecrosis, often referred to as ischemic necrosis, aseptic
necrosis, or avascular necrosis, typically manifests as osteonecrosis of
the femoral head (ONFH) (Chang et al., 2020). Approximately
20,000 new cases of osteonecrosis are diagnosed in the United States
(Hungerford, 2002), with a cumulative patient count of ONFH ranging
from 300,000 to 600,000 (Petrigliano and Lieberman, 2007). In advanced
stages of ONFH, subchondral bone collapse and progressive hip joint
deterioration can occur, leading to a loss of work capacity for the patient
and substantial financial strain on the families. If left untreated,
osteonecrosis can lead to future disability (Malizos et al., 2007)
Current diagnosis primarily relies on X-ray and MRI, yet there are
no validated clinical biomarkers to identify osteonecrosis of activity,
turnover, and prognosis. Given the significant socioeconomic burden
and the scarcity of effective treatments, there is a pressing need to further
identify biomarkers with potentially possible diagnostic or prognostic
value for osteonecrosis.

Proteomics is crucial in clinical diagnostics and monitoring,
showing the ability to discover novel proteins in diseased tissues,
biological fluids, and serum. Previous studies indicate that certain
proteins may contribute to osteonecrosis development and offer
therapeutic benefits (Tan et al., 2006; Chen et al., 2015; An et al.,
2021). For instance, serum levels of tissue plasminogen activator (t-PA),
plasminogen activator inhibitor-1 (PAI-1), CrossLaps, and anti-p53
antibody have been identified as potential noninvasive diagnostic
biomarkers for ischemic osteonecrosis of the femoral head (IONFH)
(Tan et al., 2006). Another study observed significantly reduced serum
levels of complement component 3 (C3), C4, inter-α-trypsin inhibitor
heavy chain H4, and α-2-macroglobulin in steroid-induced ONFH
patients (Chen et al., 2015). In addition, animal studies have shown that
Nel-like protein-1 has pro-angiogenic and osteogenic effects (An et al.,
2021). However, these studies are primarily observational and
susceptible to confounding factors and reverse causation.
Additionally, with the development of genome-wide association
studies (GWAS) at the levels of circulating protein, sequence
determinants of protein levels (pQTLs), helped to identify causative
genes and elucidate disease pathways.

Mendelian randomization (MR) utilizes genetic variants as
instrumental variables, reducing susceptibility to confounders
since these variants are randomly assigned at conception,
independent of environmental and individual characterisrics. A
complete investigation into the causal effect of plasma proteins
on disease has been made possible by the large-scale integration of
the plasma proteome with genetics and disease in large samples
(Ferkingstad et al., 2021; Geyer et al., 2021). In this study, we utilized
MR analysis to investigate the causal effect of 1,167 plasma proteins
on osteonecrosis risk and identify potential therapeutic targets.
Additionally, we conducted a phenome-wide MR (PheWAS-MR)
analysis examine the side effects of the relevant proteins.

Materials and methods

Study design

We performed a proteome-wide MR study to explore the causal
association between 4,907 unique proteins (cis-pQTL) and

osteonecrosis risk. This investigation was guided by three key
principles: (1) the relevance criterion, ensuring that the
instrumental variables (IVs) exhibit significant associations with
the exposure variables (Davies et al., 2018); (2) the independence
criterion, affirming that the IVs remain unaffected by any potential
confounders, whether known or unknown (Davies et al., 2018) (3)
the exclusion restriction criterion asserts that IVs affect the outcome
exclusively through the exposure entities (Davies et al., 2018).
Figure 1 illustrates the comprehensive framework of our
analytical methodology. In short, we leveraged pQTL data from
an extensive proteomic investigation and investigated their
associations with osteonecrosis using MR analysis. Additionally,
PheWAS-MR analyses were conducted to assess the druggability of
identified protein biomarkers and prioritize therapeutic targets. This
study utilized anonymized and publicly available datasets, informed
consent or ethical review from an institutional board was
not required.

Data source

The plasma proteome data originated from a comprehensive
GWAS by the deCODE Genetics Consortium (Ferkingstad et al.,
2021). This study involved measuring 4,907 plasma protein levels in
35,559 Icelandic individuals using the SomaScan multiplex aptamer
assay (Ferkingstad et al., 2021). Adjustments were made for age and
sex and data were standardized by rank-inverse normal
transformation (Ferkingstad et al., 2021). Specifically, the analysis
employed the SomaScan version four assay (SomaLogic) to explore
associations between 5,284 aptamers measuring 4,907 proteins and
27.2 million genetic variations, identifying significant links between
28,191 pQTLs and 4,631 proteins (Supplementary Table S1)
(Ferkingstad et al., 2021). The protein-associated SNP
associations with osteonecrosis were derived from the FinnGen
study, a large-scale genomics initiative analyzing genetics and
health data from over 500,000 Finnish biobank samples to
elucidate disease mechanisms and genetic predispositions (Kurki
et al., 2023). Utilizing the latest released data from the FinnGen
study R10, which encompassed osteonecrosis-related diseases and
included 1,543 cases and 391,037 controls (Supplementary Table S1)
(Kurki et al., 2023).

Selection of instrumental variables

For our analysis, we acquired data on 4,907 plasma proteins
from the deCODE Genetics Consortium and applied three MR
hypotheses to select instrumental variables (IVs). Initially, SNPs
were identified with a significance level of p < 5 × 10−8. Notably, to
account for the complex linkage disequilibrium (LD) patterns in the
human major histocompatibility complex (MHC) region, SNPs in
this area on chromosome 6 (spanning from 28477,897 to 33448,354)
were excluded (Sun et al., 2023; Yuan et al., 2023). Cis-SNPs,
considered to have a more direct and specific impact on protein
function, were used as IVs in MR analyses, defined as those within
1 Mb of the gene encoding the respective protein (Sun et al., 2023;
Yuan et al., 2023). The LD threshold parameter (r2) was set to
0.001 and the genetic distance was set to 10,000 kb to mitigate the
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impact of LD on independent SNPs. Subsequently, following the
data harmonization between pQTLs and osteonecrosis, we omitted
SNPs with p < 5 × 10−8 for osteonecrosis (Sun et al., 2023; Yuan et al.,
2023). This exclusion was necessary to avoid strong correlations
between these SNPs and osteonecrosis that could potentially
compromise the accuracy of our results.

MR analysis

The major method for determining causation was inverse-
variance weighting (IVW) regression using a multiplicative
random effects framework (Sun et al., 2023). The IVW approach
gives high-power findings assuming that all IVs are authentic
(Burgess et al., 2013). After extracting the association estimates
linking the instruments and outcomes, and aligning the directional
orientation of these estimates with the effect alleles, we utilized the
Wald estimator to compute MR estimates for each instrument
(Burgess et al., 2013). This approach enabled us to derive
estimates of the causal effect. The findings from IVW method
are considered reliable if each SNP adheres to the MR
assumptions and is free from horizontal pleiotropy (Burgess
et al., 2013). Cochran’s Q test was employed to evaluate
heterogeneity among estimates from individual SNP. In the
absence of heterogeneity, a fixed-effects model was applied,
whereas the presence of heterogeneity necessitated the use of a
random-effects model to provide more robust and reliable
estimations (Greco et al., 2015). If heterogeneity was no
significant (p < 0.05), a fixed-effects model was used; otherwise, a

random-effects model was employed to provide a more reliable
estimate (Greco et al., 2015). To enhance the validity of our results,
we employed three MR methods. We also performed a sensitivity
analysis to investigate horizontal pleiotropy using the MR-Egger
regression intercept (Bowden et al., 2015). Regardless of the
reliability of IVs, the MR-Egger technique gives a dependable
approximation by computing causal effects using Egger
regression’s slope coefficient (Bowden et al., 2015). Additionally,
the weighted median method is recognized for its ability to control
bias and minimize the risk of type I errors, providing consistent
results even under less stringent IV assumptions (Bowden et al.,
2016). For addressing horizontal pleiotropy, the MR-PRESSO global
test and MR-Egger regression were primarily used, with a
significance (Verbanck et al., 2018).

All statistical analyses were conducted using the
“TwoSampleMR” packages in R version 4.1.2 (Hemani et al.,
2018). Considering repetitive calculations, we took steps to
reduce the possibility of incorrect findings in all MR
investigations by employing the false discovery rate (FDR)
method for p-value correction. A P FDR value below 0.05 was
considered statistically significant.

Phenome-wide MR analysis

Phenome-wide association studies play a crucial role in drug
development, aiding in the elucidation of mechanisms of action,
identification of alternative indications, and prediction of adverse
drug events (ADEs) (Yagensky et al., 2019). To further assess

FIGURE 1
Overview of the study design in this study.
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potential drug targets and potential ADEs, PheWAS-MR analysis
was conducted on significant proteins associated with osteonecrosis,
incorporating a wide array of disease phenotypes. To avoid
redundancy in the data, we utilized the FinnGen R10 cohort
(https://r10.finngen.fi/), comprising 412,181 participants. Disease
outcomes were categorized using “PheCodes” to facilitate systematic
genetic analysis of disease traits (Lee et al., 2019). Conditions with
fewer than 50 cases were excluded, yielding 2,406 diseases for
PheWAS-MR analyses. The PheWAS-MR results provide on the
protective or risk factors associated with each standard deviation
increase in plasma protein levels.

Results

Proteome-wide Mendelian
randomization analysis

We assessed the association between the risk of osteonecrosis
and 1,676 plasma proteins with 5,517 genetic variants from the
deCODE dataset. The F-value for these variants range from
31.49 to 15901.72, which is greater than 10, indicating that the
instrument is not weak (Supplementary Table S2). We identified
a total of 71 plasma proteins that are causally associated with
osteonecrosis risk (Figure 2, p < 0.05). To avoid the potential type
I error, we further conducted the FDR method to adjust the
p-value and found that Heme-binding protein 1 (HEBP1) was
positively associated with osteonecrosis risk (OR = 1.40, 95% CI,

1.19 to 1.65, p = 3.96 × 10−5, P FDR = 0.044) (Figure 3). There was
no heterogeneity among these IVs linked to HEBP1 (p = 0.950).
Meanwhile, more evidence demonstrating the effect of HEBP1 on
osteonecrosis risk was obtained using MR-Egger, weighted
median, and weighted mode (Table 1). No pleiotropy of this
association was observed in the MR-Egger (p = 0.993). Besides,
we also found the positive association between Aldehyde
dehydrogenase 3A1 (ALDH3A1) and osteonecrosis risk
(Supplementary Table S3).

Additionally, we also found a suggestive association of inter-
alpha trypsin inhibitor heavy chain 1 (ITIH1), secreted modular
calcium-binding protein 1 (SMOC1), and cellular repressor of E1A-
stimulated genes 1 (CREG1) proteins with osteonecrosis risk. These
three plasma proteins had a negative effect on osteonecrosis risk
with 0.73 (95% CI, 0.60–0.89), 0.50 (95% CI, 0.32–0.78), and 0.51
(95% CI, 0.32–0.79), respectively. More details are shown in
Supplementary Tables S3-5.

Phenome-wide MR analysis

To comprehensively explore the health effect of HEBP1, which
was found to be associated with osteonecrosis risk, we conducted a
PheWAS-MR association analysis, screening 2,406 traits from the
Finnish GWAS (version 10). Our findings revealed that HEBP1 was
associated with 136 phenotypes excluding osteonecrosis (p < 0.05;
Figure 4). For instance, HEBP1 was associated with decreased risk of
other secondary gout (OR, 0.34, 95% CI, 0.18 to 0.61, p = 4.08 × 10−4)

FIGURE 2
Volcano plot of MR results: Causal relationship between HEBP1 and osteonecrosis.
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and hallux rigidus (OR, 0.88, 95% CI, 0.81 to 0.95, p = 2.16 × 10−3).
Particularly noteworthy was the risk effect of HEBP1 on clinical
traits such as tooth eruption problems, emotionally unstable
personality disorder, and encephalopathy (Supplementary Table
S6). However, these associations did not reach a significant level
after the FDR adjustment, indicating that the plausibility is
suggestive.

Discussion

This study based on large-scale GWAS data is the first to utilize
comprehensive MR analysis, and PheWAS-MR analysis to explore
the potential causal relationships between plasma proteins and
osteonecrosis risk. Our findings reveal that genetically predicted
levels of 30 plasma proteins exhibit a significant positive association

TABLE 1 The causal association between HEBP1 and osteonecrosis risk.

Method Number of SNP OR LCI UCI p-Value P For heterogeneity P For pleiotropy

IVW 5 1.40 1.19 1.65 3.96E-05 0.871

MR Egger 5 1.40 1.12 1.76 6.25E-02 0.993

Weighted median 5 1.41 1.18 1.67 1.23E-04

Weighted mode 5 1.41 1.17 1.71 2.28E-02

FIGURE 3
Association of genetically predicted Plasma Proteins with risk of Osteonecrosis.
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with osteonecrosis, while 41 plasma proteins show a significant
negative association. These findings suggest that the identified
plasma proteins could be valuable for the early diagnosis,
treatment, and prevention of osteonecrosis.

In this study, we identified 30 plasma proteins positively
associated with osteonecrosis, and in particular,
HEBP1 significantly increased the risk of osteonecrosis and
ALDH3A1 suggestive increased the risk of osteonecrosis.
HEBP1 is an intracellular tetrapyrrole-binding protein
potentially involved in biosynthesis of heme or porphyrin
(Taketani et al., 1998). Heme plays a key role in oxygen-
binding and transport molecules such as hemoglobin and
myoglobin (Immenschuh et al., 2017). Recent studies have
shown the importance of HEBP1 in the central nervous
system, particularly in neurodegenerative diseases (Yagensky
et al., 2019; Chua, 2023). However, our study identifies a
positive association between HEBP1 and osteonecrosis risk.
This is consistent with a case-control study that found the
HEBP1 gene in bisphosphonate-induced osteonecrosis of jaw
patients (Lee et al., 2019). This gene encodes HBP1, and heme
is a complex of iron and tetrapyrrole protoporphyrin IX, which is
the prosthetic group in hemoproteins. Hemoproteins play a key
role in oxygen binding and the transportation of compounds
such as hemoglobin and myoglobin. Another study also found
that HEBP1 expression levels significantly affected the
development of bone metastasis from breast cancer (Park
et al., 2018). ALDH3A1, part of aldehyde dehydrogenase

family, plays a role in various cellular processes such as lipid
metabolism, drug metabolism, and oxidative stress response
(Pappa et al., 2003; Muzio et al., 2012; Voulgaridou et al.,
2020). Oxidative stress may deteriorate osteoarthritis of the
temporomandibular joint function, leading to the degradation
of collagen polysaccharides and the activation of enzymes that
contribute to cartilage breakdown (Roberts et al., 1989; Kawai
et al., 2008). Despite the lack of pharmacological information on
HEBP1 and ALDH3A1, it remains a promising prognostic
biomarker and therapeutic marker for osteonecrosis. Future
studies further validate the association by examining whether
anti-HEBP1/ALDH3A1 therapeutic antibodies have a role in
osteonecrosis.

We also noticed 41 plasma proteins suggestive negatively
associated with osteonecrosis. We have specifically focused on the
roles of ITIH1, SMOC1, and CREG1 proteins. These proteins offer
valuable insights into the protective mechanisms that could
counteract the development of osteonecrosis. ITIH1, a
glycoprotein from the inter-α-trypsin inhibitor (IαI) family,
covalently attaches to hyaluronic acid molecules through its
heavy chains (Chen et al., 1994). Although limited research exists
on the association between ITIH1 and osteonecrosis, previous
studies have linked ITIH1 with osteoarthritis (Chen et al., 2015;
Lourido et al., 2017; Lourido et al., 2021). Proteomic analysis
revealed significantly higher levels of ITIH1 in knee osteoarthritis
patients than in healthy controls (Lourido et al., 2017). Another
study indicates that ITIH1 may enhance the ability to predict the

FIGURE 4
Manhattan plot of result of PheWAS analysis of associations between HEBP1 and osteonecrosis.
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incidence of knee osteoarthritis in clinical practice (Lourido et al.,
2021). In addition, Chen et al. found a significant reduction in
ITIH4 in steroid-induced ONFH in adults (Chen et al., 2015).

The association between SMOC1 and osteonecrosis risk has not
been investigated. However, there is some indirect evidence
suggesting SMOC1 is associated with bone formation (Choi
et al., 2010; Takahata et al., 2021). For example, experimental
evidence from mice indicates that SMOC1 and SMOC2 are novel
targets of Runx2, and they are pivotal in both intramembranous and
endochondral bone formation processes (Takahata et al., 2021).
Runx2 is a crucial transcription factor that regulates bone formation
(Lin et al., 2011; Xu et al., 2020). Another experimental study
showed SMOC1 is an important extracellular matrix protein in
osteoblast differentiation (Choi et al., 2010). Moreover, an in vitro
study validated the secretion of angiogenic proteins by human
pluripotent mesenchymal stromal cells, which may improve the
efficiency of surgical interventions for osteonecrosis (Müller et al.,
2008). These experimental and population studies imply that
SMOC1 may be a potential target for osteonecrosis therapy.

Previous studies have identified CREG1 as a protein involved in
cellular differentiation and homeostasis, with expressed across
various tissues, including the spleen, liver, kidney, lung, heart, fat
tissue, and skeletal muscle. Our study found that CREG1 reduces the
risk of developing osteonecrosis, which is consistent with other
findings. A study of CREG1 knockdown by adeno-associated virus
impeded myogenic differentiation and skeletal muscle regeneration
after injury in vivo, whereas CREG1 overexpression in muscle
satellite cells accelerated the process of CTX-induced skeletal
muscle regeneration (Song et al., 2024). CREG1 improves the
capacity of the skeletal muscle response to exercise endurance via
modulation of mitophagy (Song et al., 2021). These studies show
that CREG1 positively regulates skeletal muscle regeneration,
indicating its potential as a therapeutic target for enhancing
muscle regeneration.

This comprehensive MR study identified 71 genetically
predicted plasma proteins significantly associated with
osteonecrosis risk. Among these, 41 proteins were downregulated,
and 30 proteins were upregulated, indicating their involvement in
the development of osteonecrosis. The pathogenesis of osteonecrosis
has not been fully elucidated, however, the majority of these proteins
are associated with current models of osteonecrosis etiology based
on three main pillars (Malizos et al., 2007; Chang et al., 2020; Kalita
et al., 2023; Meng et al., 2023): 1) inhibition of the remodeling and
resorption of osteoclastic bone. 2) angiogenesis supperssion, and 3)
inflammation and infection. Although many plasma proteins were
not discussed in this study, it does not imply that they are
unimportant in the development of osteonecrosis. Further studies
are required to validate their role in the future.

The strengths of this study are that it explores the causal
associations between several plasma proteins and osteonecrosis
at the gene level, identifies plasma proteins significantly
associated with osteonecrosis, and highlighting the public
health importance of this finding for future diagnosis and
treatment of osteonecrosis. Secondly, this study was based on
large-scale GWAS data with a large sample sizes and high
statistical power. Multiple MR analyses were also used,
combining Q-test and Egger regression to assess the likelihood
of heterogeneity and directional selection. The results of these

analyses indicated that our findings were robust and not affected
by horizontal pleiotropy or confounding factors. However, our
study has limitations. Firstly, this study is based on a European
database and may not apply to other ethnic groups. Secondly, this
study lacks plasma protein level data in other tissues, which
hinders the association between plasma protein levels in other
tissues and osteonecrosis risk. Additionally, a more
comprehensive GWAS database and advanced analytical
methods or experimental validation are needed to clarify the
associations between individual plasma proteins and
osteonecrosis and their mechanisms. Lastly, the practical
application value of candidate plasma proteins needs
validation through comprehensive clinical trials. Future
studies could investigate targeted therapy mechanisms for
osteonecrosis.

Conclusion

In conclusion, this study demonstrated a causal link between
multiple plasma proteins and osteonecrosis through a
comprehensive MR analysis, especially HEBP1, which provides a
new pathway for the biological mechanism of osteonecrosis and
helps to explore early intervention and treatment. Nonetheless,
further studies are needed to validate this candidate plasma protein.
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