AUTHOR=Weston Matthew , Hu Haiyan , Li Xiaoman TITLE=PSPI: A deep learning approach for prokaryotic small protein identification JOURNAL=Frontiers in Genetics VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1439423 DOI=10.3389/fgene.2024.1439423 ISSN=1664-8021 ABSTRACT=
Small Proteins (SPs) are pivotal in various cellular functions such as immunity, defense, and communication. Despite their significance, identifying them is still in its infancy. Existing computational tools are tailored to specific eukaryotic species, leaving only a few options for SP identification in prokaryotes. In addition, these existing tools still have suboptimal performance in SP identification. To fill this gap, we introduce PSPI, a deep learning-based approach designed specifically for predicting prokaryotic SPs. We showed that PSPI had a high accuracy in predicting generalized sets of prokaryotic SPs and sets specific to the human metagenome. Compared with three existing tools, PSPI was faster and showed greater precision, sensitivity, and specificity not only for prokaryotic SPs but also for eukaryotic ones. We also observed that the incorporation of (