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Background: Prior research has demonstrated that programmed cell death (PCD)
and mitochondria assume pivotal roles in controlling cellular metabolism and
maintaining bone cell equilibrium. Nonetheless, the comprehensive elucidation
of their mode of operation in osteoporosis (OP) warrants further investigation.
Therefore, this study aimed at analyzing the role of genes associated with PCD
(PCD-RGs) and mitochondria (mortality factor-related genes; MRGs) in OP.

Methods: Differentially expressed genes (DEGs) were identified by subjecting the
GSE56815 dataset obtained from the Gene Expression Omnibus database to
differential expression analysis and comparing OP patients with healthy
individuals. The genes of interest were ascertained through the intersection of
DEGs, MRGs, and PCD-RGs; these genes were filtered using machine learning
methodologies to discover potential biomarkers. The prospective biomarkers
displaying uniform patterns and statistically meaningful variances were identified
by evaluating their levels in the GSE56815 dataset and conducting quantitative
real-time polymerase chain reaction-based assessments. Moreover, the
functional mechanisms of these biomarkers were further delineated by
constructing a nomogram, which conducted gene set enrichment analysis,
explored immune infiltration, generated regulatory networks, predicted drug
responses, and performed molecular docking analyses.
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Results: Eighteen candidate genes were documented contingent upon the
intersection between 2,354 DEGs, 1,136 MRGs, and 1,548 PCD-RGs. The
biomarkers DAP3, BIK, and ACAA2 were upregulated in OP and were linked to
oxidative phosphorylation. Furthermore, the predictive ability of the nomogram
designed based on the OP biomarkers exhibited a certain degree of accuracy.
Correlation analysis revealed a strong positive correlation between CD56dim
natural killer cells and ACAA2 and a significant negative correlation between
central memory CD4+ T cells and DAP3. DAP3, BIK, and ACAA2 were regulated
by multiple factors; specifically, SETDB1 and ZNF281 modulated ACAA2 and DAP3,
whereas TP63 and TFAP2C governed DAP3 and BIK. Additionally, a stable binding
force was observed between the drugs (estradiol, valproic acid, and CGP52608)
and the biomarkers.

Conclusion: This investigation evidenced that the biomarkers DAP3, BIK, and
ACAA2 are associated with PCD and mitochondria in OP, potentially facilitate
the diagnosis of OP in clinical settings.
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1 Introduction

Osteoporosis (OP) is a persistent condition characterized by
reduced bone density, degradation of bone composition, and
fractures resulting from brittleness (Walker and Shane, 2023).
This condition can lead to a diminished quality of life, premature
mortality, disability, and an elevated economic burden (Reid and
Billington, 2022; Ensrud and Crandall, 2024). The current clinical
management of OP predominantly involves the administration of
medications such as bisphosphonates, estrogen therapies, and
calcitonin (van der Burgh et al., 2021). Nevertheless, adverse
reactions associated with these medications impede their ability
to effectively remediate OP. The etiology of OP is complex, with
disturbances in bone metabolism increasing the likelihood of
developing the disease. With advancements in research on
osteoimmunology and the molecular mechanisms related to OP,
there is growing acknowledgment of the significance of molecular
and osteoimmune interventions in treating OP (Adejuyigbe et al.,
2023). Consequently, this exerts an urgent requirement to develop
innovative therapies for the treatment of OP.

Programmed cell death (PCD) is an active process through
which cells die in response to specific signals or stimuli to maintain
the balance of the internal environment. PCD is involved in various
biochemical and morphological characteristics (Li Z. et al., 2023).
The different types of PCD include apoptosis, necrosis, autophagy,
lysosome-dependent cell death, ferroptosis, necroptosis, pyroptosis,
and immunogenic cell death (Bedoui et al., 2020; Awuti et al., 2022).
Under normal physiological conditions, PCD occurs in harmony to
sustain cell stability. However, in conditions such as OP, imbalances
in PCD types can arise and interact with each other, thereby
affecting the onset and progression of OP. Efficiently controlled
PCD plays a crucial role in maintaining osteoblast (OB) and bone
metabolism stability, whereas excessive PCD can result in OB
impairment, enhanced conversion of bone marrow mesenchymal
stem cells (BMSCs) into adipocytes, and the accumulation of
harmful substances, ultimately contributing to OP development
(Daponte et al., 2024). Regulation of bone metabolism is
significantly influenced by apoptosis, autophagy, ferroptosis,

pyroptosis, and necrosis, all of which play crucial roles in bone
cell activity (Zhang et al., 2023). Despite advancements in
identifying essential molecules and signaling pathways involved
in PCD, our understanding of how these pathways control the
onset and progression of OP remains limited.

Mitochondria assume a crucial role in energy production, iron
balance, and the synthesis of different compounds. Studies have
shown that mitochondria are vital for regulating the equilibrium
between osteoclast and OB functions, thereby affecting bone health
(Wang et al., 2021). Furthermore, mitochondria govern cell growth,
specialization, energy generation, signaling, and cell death. Any
malfunction in mitochondrial function can lead to conditions
such as OP and reduced OB activity, which are common in
orthopedic ailments. Senile OP is linked to abnormal
mitochondrial function, which hinders bone formation, increases
osteoclast activity, and accelerates bone deterioration (Zheng et al.,
2020). Mitochondria also participate in cell death, and irregular
mitochondrial operations activate diverse forms of PCD (Flowers
et al., 2023). The buildup of faulty mitochondria leads to the
excessive production of reactive oxygen species (ROS), hastening
cell death (Wang et al., 2012). Mitochondrial glycolysis and
oxidative phosphorylation pathways, in conjunction with ROS
generation, are essential for meeting the energy needs of bone-
forming cell proliferation and differentiation (Qin et al., 2019). The
intricate interplay between mitochondrial function and
programmed cell death (PCD) plays a pivotal role in the
pathogenesis of osteoporosis (OP). However, there is a dearth of
bioinformatics research dedicated to elucidating and validating
genes that are co-expressed with PCD and mitochondria during
the progression of OP.

Therefore, this study aimed to elucidate and validate genes that
exhibit co-expression with PCD and mitochondria during the
progression of OP. Specifically, we employed a two-step
approach: ① Identification and validation of markers using data
from the Gene Expression Omnibus (GEO) database combined with
quantitative real-time polymerase chain reaction (qRT-PCR)
analysis on serum samples obtained from clinical subjects; ②

Exploration of underlying mechanisms and prognostic potential
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through enrichment analyses, immune infiltration assessments,
establishment of regulatory networks, and prediction of potential
therapeutic drugs. In order to address the future clinical demands of
osteoporosis treatment, it is imperative to enhance targeted
regulation of mitochondrial function and programmed cell death,
thereby fostering fundamental research and facilitating drug
development in bone metabolism.

2 Materials and methods

2.1 Data extraction

Data pertaining to OP was acquired from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/). The GSE56815 dataset
(platform: GPL96) served as the training set and comprised
40 blood samples (circulating monocytes), each derived from
healthy individuals with high hip bone mineral density (BMD)
and OP patients with low BMD. Each group of participants
included 20 premenopausal and 20 postmenopausal women. A
total of 1,548 PCD-related genes (PCD-RGs) and 1,136 genes
associated with mitochondria (mortality factor-related genes;
MRGs) were procured from extant literature (Supplementary
Table S1) (Qin et al., 2023) and the MitoCarta 3.0 database
(https://www.broadinstitute.org/mitocarta/mitocarta30-inventory
-mammalian-mitochondrial-proteins-and-pathways), respectively.

2.2 Differential expression analysis

To identify differentially expressed genes (DEGs), the OP and
control specimens within the GSE56815 dataset were subjected to
differential expression analysis-based comparison using the limma
package (v 3.57.11; significance threshold of p < 0.05) (Ritchie et al.,
2015). Subsequently, the DEGs were visualized by generating
volcano plots and heat maps using the ggplot2 (v. 3.4.2)
(Gustavsson et al., 2022) and the ComplexHeatmap packages (v
2.17.0) (Gu et al., 2016), respectively.

2.3 Recognition and functional analysis of
candidate genes

To distinguish the DEGs related to both PCD andmitochondria,
the DEGs were overlapped with the MRGs and PCD-RGs using the
ggVennDiagram package (v 1.2.3) (Gao et al., 2021). The resulting
genes were denoted as potential candidate biomarker genes. Next,
the aforementioned genes were annotated via Gene Ontology (GO)
and pathway analyses using the clusterProfiler package (v 4.9.4) (Wu
et al., 2021) with an adjusted p-value cutoff of <0.05. GO analysis
encompassed biological processes (BPs), cellular components (CCs),
and molecular functions (MFs). This was followed by an enrichment
analysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. Additionally, the potential interactions
between the selected genes were investigated by formulating a
protein-protein interaction (PPI) network for the candidate genes
using the STRING online database (https://string-db.org/) with an

interaction score threshold of 0.4. The generated PPI network was
displayed using Cytoscape version 3.7.1 (Shannon et al., 2003).

2.4 Biomarker identification and validation

The LASSO regression analysis was employed in conjunction with
support vector machine recursive feature elimination (SVM-RFE)
algorithms to define specific candidate genes; the LASSO regression
analysis and the SVM-RFE algorithm were performed using the
glmnet package (v 4.1-8) (Sasikumar et al., 2022) with binomial
family parameters and the e1071 package (v 1.7-13) (Yang et al.,
2022), respectively. Candidate biomarkers were identified by merging
the genes discerned using the aforementionedmethods. Subsequently,
the expression of the candidate biomarkers was analyzed using the
GSE56815 dataset, and their validity was confirmed using quantitative
real-time polymerase chain reaction (qRT-PCR).

Blood samples belonging to 10 patients diagnosed with OP and
10 individuals lacking the condition were obtained from the Biobank
of the 900th Hospital of the Joint Logistics Support Force and
subjected to qRT-PCR analysis using the 2xUniversal Blue SYBR
Green qPCRMaster Mix (Servicebio, Wuhan, China). This study was
approved by the Biomedical Ethics Committee of the 900th Hospital
of the Joint Logistics Support Force (Ethics Review No. 2023-72), and
all study participants provided informed consent. RNA was extracted
from all 20 samples using TRIzol (Ambion, Austin, TX, United States)
per manufacturer guidelines And subsequently converted into cDNA
using the SureScript First Strand cDNA Synthesis Kit (Servicebio).
The PCR primer sequences have been listed in Supplementary Table
S2, with GAPDH serving as the internal reference gene. The
expression of the candidate biomarkers was determined using the
2−ΔΔCT method (Livak and Schmittgen, 2001). Biomarkers that
displayed consistent trends in both the dataset and qRT-PCR
results, as well as considerable differences between the OP and
control groups, were identified and documented as potential
biomarkers. The mRNALocator database (http://bio-bigdata.cn/
mRNALocater/) was used to predict the subcellular positioning of
these biomarkers, and the RCircos tool (v. 1.2.0) (Zhang et al., 2013)
was used to examine their chromosomal dispersal.

2.5 Engineering and evaluation
of nomogram

The rms software (version 6.7-1) was applied to biomarkers reported
in a prior study (Xu et al., 2023) to construct a nomogram using the
GSE56815 dataset and evaluate the combined potency of the candidate
biomarkers to prognosticate OP. The predictive accuracy of the
nomogram was evaluated using calibration, decision, and ROC curves.

2.6 Gene set enrichment analysis (GSEA)

Two background gene sets—c2.cp.kegg.v7.5.1. entrez.gmt for the
KEGG signaling pathway and c5.go.bp.v2023.2—were initially
considered to explore the roles and pathways linked to the
biomarkers in OP progression. Hs.symbols.gmt was used for GO
functional enrichment from the Molecular Signatures Database
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(https://www.gsea-msigdb.org/gsea/msigdb). The correlation
coefficients between biomarkers and other genes within the
GSE56815 dataset were determined, and subsequently, the genes
were organized according to their correlation coefficients to establish
a gene set for enrichment analysis. The identified biomarkers were then
subjected to GSEA using the clusterProfiler package.

2.7 Immune infiltration analysis

To assess variations in immune status among OP patients,
28 immune cell infiltration scores between OP and control
groups from the GSE56815 dataset were initially calculated using
the ssGSEA algorithm of the GSVA package (v. 1.49.8)
(Hänzelmann et al., 2013). The Wilcoxon test was used to
compare discrepancies in the immune infiltration levels of these
28 immune cells between the OP and control groups. Subsequently,
Spearman’s correlation analysis was performed to investigate the
relationship between the biomarkers and diverse immune cells.

2.8 Construction of regulatory networks

To establish regulatory networks, the NetworkAnalyst database
(https://www.networkanalyst.ca/) was used to predict the transcription
factors (TFs) involved in the regulation of the recognized biomarkers;
the predicted TFs were then intersected with the DEGs to identify the
crucial TFs. Moreover, we utilized both the miRWalk (http://mirwalk.
umm.uni-heidelberg.de/) and microT (https://dianalab.e-ce.uth.gr/
microt_webserver/) databases to predict biomarker-targeting
microRNAs (miRNAs). Subsequently, the results from these two
databases were combined to determine the key miRNAs. Finally, the
Cytoscape software was used to fashion networks representing mRNA-
TF and mRNA-miRNA interactions.

2.9 Drug prediction and molecular
docking analysis

The potential therapeutic capabilities of the candidate biomarkers
were examined using the Comparative Toxicogenomics Database
(http://ctdbase.org/) to identify prospective drugs targeting
biomarkers with a screening criteria of reference count ≥1. Crystal
structures of receptor proteins for the recognized biomarkers were
obtained from UniProt (https://www.uniprot.org/) and the Protein
Data Bank (PDB) database (https://www.rcsb.org/) in the PDB
format. The 3D structures of the targeted drugs were downloaded
as ligands from PubChem (https://pubchem.ncbi.nlm.nih.gov/),
energy minimized using the OpenBabel software (v. 2.4.1) (Mehta
et al., 2014) and saved in the mol2 format. PyMOL software (v 3.3.0)
(Seeliger and de Groot, 2010) was used to dehydrate, de-ligandize,
and hydrogenate the receptor proteins prior to saving them. The
processed receptor proteins and target drug structures were then
imported into the AutoDock Tools software (v 1.5.7) (Morris et al.,
2009) and converted into the pdbqt format. Finally, molecular
docking was performed using the AutoDock Vina software (v 1.2.
2) (Trott and Olson, 2010), and the results were visualized using
PyMOL software.

2.10 Statistical analysis

R software (4.2.2 version) was used for data processing and
analysis. The Wilcoxon test was used to compare variances among
diverse groups. A significance level of p < 0.05 was deemed
statistically noteworthy.

3 Results

3.1 Eighteen candidate genes were
associated with mitochondrial-related
signaling pathways

Based on differential expression analysis, 2,354 DEGs were identified
between the OP and control groups. Of these, 1,597 DEGs were
upregulated in OP, whereas 757 were downregulated (Figures 1A, B).
Based on the intersection of 2,354 DEGs, 1,136 MRGs, and 1,548 PCD-
RGs, 18 candidate genes were identified (Figure 1C). Enrichment
analyses were performed for the candidate genes to preliminarily
explore the biological functions in which they were implicated. The
results demonstrated significant enrichment of these candidate genes in
95 GO entries, comprising 74 BPs, 17 CCs, and 4MFs. In addition, these
genes were associated with 17 KEGG pathways. Specifically, the enriched
GO entries encompassed crucial biological functions such as “regulation
of apoptotic signaling pathway,” “regulation of mitochondrion
organization,” and “negative regulation of the apoptotic signaling
pathway” (Figure 1D). Furthermore, the enriched KEGG pathways
included “pathways of neurodegeneration-multiple diseases,”
“apoptosis,” “cGMP-PKG signaling pathway,” and others (Figure 1E).
A PPI network was constructed based on the candidate genes containing
15 nodes and 22 edges. In particular, there were more interactions
between VDAC2, BCL2L1, and MCL1 and other genes (Figure 1F).

3.2 Genes encoding death-associated
protein 3 (DAP3), Bcl-2-interacting killer
(BIK), and acetyl-CoA-acyltransferase 2
(ACAA2) were identified as biomarkers

Screening of candidate genes by LASSO regression analysis
(Figure 2A) and the SVM-RFE algorithm (Figure 2B) yielded
12 and 10 characterized genes, respectively. By crossing these two
parts of the characterized genes, eight candidate biomarkers were
identified:DAP3, POLB, BLOC1S1,MCL1, BIK, PMAIP1, TRAP1, and
ACAA2 (Figure 2C). TheWilcoxon test showed that in the OP group,
ACAA2, BIK, DAP3, POLB, and TRAP1 were markedly upregulated,
whereas BLOC1S1, MCL1, and PMAIP1 were visibly downregulated
compared to the control group (Figure 2D). The qRT-PCR analysis
indicated that DAP3, BIK, and ACAA2 exhibited expression patterns
consistent with the dataset and were significantly elevated in the OP
group (Figure 2E). Consequently, DAP3, BIK, and ACAA2 were
identified as potential biomarkers. Subcellular and chromosomal
localization analyses were performed to investigate the distribution
of biomarkers. The results demonstrated that BIK and DAP3 were
mainly expressed in the cytoplasm, whereas ACAA2 was mainly
localized in the nucleus (Figure 2F). BIK, DAP3, and ACAA2 are
located on chromosomes 22, 1, and 18, respectively (Figure 2G).
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3.3 The nomogram displayed remarkable
potency in prognosticating OP

Based on the identified biomarkers DAP3, BIK, and ACAA2,
a nomogram was constructed to assess the ability of the

biomarkers to predict OP (Figure 3A). We also evaluated its
predictive ability. Specifically, the calibration curve
demonstrated a close-to-unity slope for the nomogram
(Figure 3B), whereas decision curve analysis indicated that
patients with OP could benefit from the constructed

FIGURE 1
Preliminary identification and analysis of candidate genes. (A) Differential volcano plot analysis of the GSE56815 dataset. (B) Differential heat map
analysis of the GSE56815 dataset. (C) Analysis of differential genes with Mito-RGs and PCD-RGs (D) GO enrichment analysis. (E) KEGG enrichment
analysis. (F) Reconstruction of the PPI network.
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FIGURE 2
DAP3, BIK, and ACAA2were identified as biomarkers. (A) LASSO regression analysis. (B) SVM-RFE algorithm regression analysis. (C) Convergence of
the LASSO and SVM-RFE algorithms. (D) Expression of key genes in the training data set. White represents disease samples, gray portrays normal samples.
The statistical method used is the Wilcox test. “*” indicates p < 0.05, “**” symbolizes p < 0.01, “***” signifies p < 0.001, “****” depicts p < 0.0001, and “ns”
denotes no significant difference. (E) Expression of key genes in qPCR. The expression of DAP3, BIK, and ACAA2 exhibited significant disparities (p <
0.05). (F) Subcellular localization prediction of biomarkers. (G) Chromosomal localization of biomarkers.
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diagnostic model (Figure 3C). Additionally, the ROC curve
exhibited an area under the curve value of 0.807 (Figure 3D).
Collectively, these findings substantiate that the predictive
ability of the nomogram constructed based on biomarkers for
OP exhibited a certain degree of accuracy.

3.4 Biomarkers were linked to oxidative
phosphorylation

GSEA was used to probe the signaling pathways involving
DAP3, BIK, and ACAA2. Based on the GO functional enrichment
gene set, DAP3 and BIK were co-enriched for “Cytoplasmic

Translation” (Figure 4A). Based on the KEGG functional
enrichment gene set, DAP3, BIK, and ACAA2 were co-
enriched in “oxidative phosphorylation,” “proteasome,” and
“spliceosome” (Figure 4B).

3.5 Central memory CD4+ T cells exhibited
substantial negative correlation with DAP3

The distribution of the 28 immune cell infiltration scores
between the OP and control groups in the GSE56815 dataset
has been illustrated in Figure 5A. Significant differences were
observed between the control and OP groups in terms of

FIGURE 3
The nomogram exhibited excellent predictive potential for OP. (A) Nomogram construction. Evaluation of the diagnostic model of nomogram: (B)
Calibration curve and (C) Decision curve. (D) ROC curve.
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CD56dim natural killer cells and central memory CD4+ T cells at
a significance level of p < 0.05. Specifically, compared to the
control group, the infiltration scores of CD56dim natural
killer cells were significantly higher in the OP group,
whereas central memory CD4+ T cells exhibited an inverse
relationship (Figure 5B). Furthermore, correlation analysis
revealed a highly significant positive correlation between
CD56dim natural killer cells and ACAA2 (cor = 0.291, p =
0.009), whereas a highly significant negative correlation
was observed between central memory CD4+ T cells
and DAP3 (cor = −0.381, p = 0.0004; Figure 5C;
Supplementary Table S3).

3.6 DAP3, BIK, and ACAA2were regulated by
multiple factors

Using the NetworkAnalyst database, 24, 15, and 27 TFs were
predicted to regulate the expression of DAP3, BIK, and ACAA2. After
deduplication and merging, 49 TFs were identified. Eight key TFs were
identified by overlapping 49 TFs and 2,354 DEGs (Figure 6A).
Based on the key TFs and biomarkers identified, an mRNA-TF
network containing 11 nodes and 12 edges was constructed. In this
regulatory network, SETDB1 and ZNF281 regulate both ACAA2 and
DAP3, whereas TP63 and TFAP2C regulate both DAP3 and BIK
(Figure 6B). Additionally, 11 key miRNAs were identified by

FIGURE 4
GSEA enrichment analysis. GSEA enrichment analysis based on (A) KEGG and (B) GO.
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analyzing the intersection of the predicted miRNAs from the two
databases. Specifically, there were one, four, and six miRNAs
targeting BIK, DAP3, and ACAA2, respectively (Figure 6C). ACAA2
is regulated by several miRNAs, including hsa-miR-371b-5P, hsa-miR-
548w, and hsa-miR-4733-5p.

3.7 A stable binding force was observed
between the drugs and biomarkers

Based on the screening criteria of reference count ≥1, we predicted
3, 10, and 7 drugs targeting DAP3, BIK, and ACAA2, respectively.
Subsequently, a drug-biomarker network containing 18 nodes and
20 edges was constructed. Aflatoxin B1 simultaneously targeted
DAP3, BIK, and ACAA2 (Figure 7A; Supplementary Table S4).
Based on the reference count, estradiol, valproic acid,

and CGP52608 were selected for molecular docking
analysis using BIK, ACAA2, and DAP3. The results
revealed the formation of covalent bonds between BIK and amino
acid residues ARG-102, ILE-04, and TRP-84 of estradiol (binding
energy = −5.9 kcal/mol). ACAA2 was found to form covalent bonds
with amino acid residues SER-251 and ALA-322 of valproic acid
(binding energy = −5.0 kcal/mol), while DAP3 formed covalent
bonds with amino acid residues ASN-292 and ASP-238 of
CGP52608 (binding energy = −5.2 kcal/mol; Figure 7B; Table 1).

4 Discussion

OP is the primary cause of morbidity and mortality among the
elderly worldwide. Several studies have shown that apoptosis is a key
factor in OP (Yu and Wang, 2000; Zhang et al., 2019). Mitochondria

FIGURE 5
Immunoinfiltration analysis. (A) Immune score heat map of immune cell types in different samples obtained by using ssGSEA algorithm. (B) Box plot of
immune scores acquired by using ssGSEA algorithm for immune cell types in different samples betweenOP patients and normal controls. The statistical method
was Wilcox.test; ns indicates no significant difference, “*” symbolizes p < 0.05, “**” depicts p < 0.01. (C) Differential immune cell and biomarker correlation heat
map. Correlation analysis revealed a highly significant positive correlation between CD56dim natural killer cells and ACAA2 (cor = 0.291, p = 0.009), while a
highly significant negative correlation was observed between central memory CD4+ T cells and DAP3 (cor = −0.381, p = 0.0004).
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play a vital role in preserving cellular functions, such as redox balance,
calcium equilibrium, energy generation, metabolic processes, and cell
demise (Spinelli and Haigis, 2018; Ventura-Clapier et al., 2019). Studies
have suggested that irregularities in mitochondrial mass, marked by
abnormal oxidative stress, dynamics, and autophagy, have a significant
impact on the management of apoptosis linked to bone metabolism
(Indo et al., 2017; Cai et al., 2019; Jin et al., 2020; Xu et al., 2021; Li W.
et al., 2023). This implies that targeting mitochondrial function and
apoptosis may be crucial therapeutic strategies for the treatment of OP.

4.1 Enrichment pathways of candidate genes

This study identified 18 candidate genes that are
differentially expressed and involved in mitochondria and
PCD. The functions of these genes were analyzed through
KEGG and GO enrichment pathways, including apoptosis-
related pathways, mitochondrial function-related pathways,
and the cGMP-PKG signaling pathway. Apoptosis, a type of
PCD, is a controlled cellular demise process triggered by the
organism to maintain balance and includes death receptors such
as TNFR and Fas in the extrinsic pathway of apoptosis and the
intrinsically regulated apoptotic pathway mediated by
mitochondria (Maiuri et al., 2007; Fischer and Haffner-
Luntzer, 2022). Signaling pathways like PI3K/Akt, ERK5,
JNK, Wnt/β-catenin, NF-κB, and P38 are involved in

mitochondrial pathway apoptosis during OP formation,
regulating caspase, Bcl-2 family proteins, and other key
targets to affect OB apoptosis (Liu et al., 2024). Studies have
shown that the PI3K pathway promotes OB proliferation and
differentiation while inhibiting apoptosis in the mitochondrial
pathway, ultimately promoting bone formation and increasing
bone mass at the tissue level (Meng et al., 2023). JNK is not only
involved in inducing apoptosis through the endoplasmic
reticulum pathway but also plays a crucial role in inducing
apoptosis through the mitochondrial pathway (Guo et al., 2016).
The inhibition of the JNK pathway can effectively suppress OB
apoptosis, which is beneficial for the treatment of OP. Recent
studies have indicated that targeting the NO-cGMP-PKG
pathway is pivotal in regulating bone homeostasis and has
the potential as an approach for OP treatment (Pal et al.,
2020; Friebe et al., 2023). Although nitrates initially garnered
attention due to their side effects, soluble guanosine receptor
agonists are now FDA-approved for the treatment of pulmonary
hypertension and erectile dysfunction (Kim et al., 2021).

4.2 Functional analysis of biomarkers

Our OP-related datasets were acquired from the GEO database,
whereas the literature was referenced to obtain PCD-RGs and mito-
RGs. Bioinformatic analysis and machine learning techniques were

FIGURE 6
TF-biomarker regulatory network construction. (A) Relevant acquisition of TFs. (B) Construction of TF-biomarker network map. (C) Construction of
miRNA-biomarker network map.
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used to identify the OP biomarkers ACAA2,DAP3, and BIK.ACAA2
assumes a pivotal role in fatty acid oxidation. The enzyme encoded
by ACAA2 catalyzes the final step of the fatty acid β-oxidation
pathway, contributing to the elongation and degradation of
mitochondrial fatty acids. Acetyl-CoA, the final result of lipid β-
oxidation, is also important in the creation of ketone bodies. ACAA2
contains an unremovable amino-terminal signal for targeting and is
associated with a range of biological functions. For instance, it
influences preadipocyte differentiation in sheep, affecting body
fat deposition and the lean meat rate (Han et al., 2021).
Excessive accumulation of body fat is associated with obesity,
diabetes, fatty liver disease, gallbladder disease, hypertension, and
endocrine disorders. Although the direct association between
ACAA2 and bone metabolism remains unclear, its role in fatty
acid oxidation suggests potential connections with metabolic
diseases, such as obesity and diabetes. These conditions may
indirectly influence bone metabolism (Villuendas et al., 2006).
Research indicates that ACAA2 expression levels are correlated
with the rate of glycolysis and are significant in type 2 diabetes
progression (Zhao et al., 2023). DAP3 is a serine/threonine protein
kinase known for its pro-apoptotic activity and is primarily
associated with cell death. In vitro experiments have

demonstrated its capability to induce apoptosis, steer recipient
cells toward programmed death, and impede cell growth and
proliferation (Wazir et al., 2015). Moreover, the cell cycle can be
controlled by DAP3 through the inhibition of cell proliferation-
associated genes such as cyclin D1 and CDK2, which in turn inhibits
the progression of the normal cell cycle and result in cell cycle arrest
at either the G0/G1 or G2/M phase, ultimately suppressing
abnormal cell growth (Song et al., 2023). However, direct
evidence linking DAP3 to bone metabolism is lacking. Bone
metabolism is a multifaceted biological process that involves
various cells, hormones, and molecules. Although some proteins
related to apoptosis and cell cycle control may indirectly affect bone
metabolism, extensive investigation is required to clarify the precise
function of DAP3 in this mechanism. BIK constitutes part of the
BH3-only protein group of the BCL2 homology domain 3 and
assumes a role in the mitochondrial apoptotic pathway (Kale et al.,
2018). The protein encoded by BIK affects cell viability or apoptosis
by interacting with other members of the BCL2 family (Hatok and
Racay, 2016). A burgeoning number of studies have confirmed the
significance of apoptosis within the mitochondrial pathway in the
regulation of bone metabolism (Fortner et al., 2017; Wang et al., 2018;
Gao et al., 2022). Therefore, we postulate that targeting consistent

FIGURE 7
Drug prediction and molecular docking. (A) Drug-biomarker network map. (B) Visualization of drug molecular docking results.

TABLE 1 Docking molecules and genes.

Chemical name Gene symbol PDBID Reference count Affinity (kcal/mol) Residue

Estradiol BIK 7QTW Bedoui et al. (2020) −5.9 ARG-102, ILE-04, TRP-84

Valproic acid ACAA2 predicted Walker and Shane (2023) −5.0 SER-251, ALA-322

CGP52608 DAP3 predicted Walker and Shane (2023) −5.2 ASN-292, ASP-238
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apoptosis through enhancement of mitochondrial status represents a
pivotal therapeutic strategy for addressing osteoporosis.

4.3 GSEA enrichment analysis and
mechanism of action

GSEA enrichment analysis revealed that the three common genes
were closely associated with oxidative phosphorylation pathway
signaling. The cellular energy metabolism pathways consists of
glycolysis, which is dominated by anaerobic respiration, and
oxidative phosphorylation, which is dominated by aerobic
respiration. The oxidative phosphorylation pathway is particularly
relevant to osteogenic and osteoclastic differentiation. Shares et al.
(2018) observed a significant increase in endogenous ATP and oxygen
consumption during osteogenic differentiation of MSCs, indicating a
reliance on mitochondrial oxidative phosphorylation for energy.
Snoeck (2017) also found that the energy for osteogenic and OB
differentiation of MSCs is mainly provided through the oxidative
phosphorylation pathway. Furthermore, Kim et al., 2021; Ledesma-
Colunga et al., 2023 demonstrated that inhibition of the
mitochondrial oxidative phosphorylation energy supply pathway
hindered osteoclast differentiation, underscoring the crucial role of
this pathway in osteoclast function. In conclusion, targeting the
oxidative fatty acid metabolic pathway is imperative for enhancing
energy supply during the osteoblastic process, thereby offering a
promising therapeutic approach for managing osteoporosis.

4.4 Immune infiltration and drug
prediction analysis

The bone marrow contains hematopoietic stem cells and various
mature immune cells that influence OBs and osteoclasts, which are
crucial for bone structural integrity and repair. This interaction between
cells leads to bone remodeling, a dynamic process of formation and
resorption (Brylka and Schinke, 2019; Saxena et al., 2021). Our research
uncovered noteworthy differences in CD56dim natural killer cells and
central memory CD4+ T cells between the control and OP cohorts.
Natural killer cells are part of the innate immune system and are
associated with cellular senescence, whereas CD4+ T cells contribute to
bone loss through the osteoimmune system (Antonangeli et al., 2019).
The discovery that activated CD4+ T cells regulate osteoclast bone
resorption is one of the driving forces for the development of bone
immunology (Okamoto and Takayanagi, 2023). Through further
elucidation of the interplay between bone and the immune system,
insights into the intricate relationship between osteogenesis and
inflammation in the realm of bone immunology are unveiled.
Consequently, as investigations into helper T cell subsets and rare
lymphoid cells progress within the field of immunology, it is
increasingly evident that diverse types of T cells exert multifaceted
effects on bone metabolism contingent upon the immune milieu.
Comprehending the distinct impacts of T cells on bone is pivotal
for unraveling bone immunomodulatory networks across various
biological contexts.

The drug prediction results suggested stable binding between the
drugs and biomarkers, with estrogen demonstrating a protective
effect on human bone OBs by exhibiting an anti-apoptotic effect.

Estrogen inhibits OB apoptosis and promotes bone formation (Lu
and Tian, 2023). Additionally, studies have shown that valproate
prevents glucocorticoid-induced femoral head necrosis in rats (Zhou
et al., 2018). Additionally, prior research has verified the anti-
osteoporotic potential of most drug predictions, indicating the
clinical significance of predicted biomarkers.

4.5 Limitations and prospects

There are certain limitations associated with this study. The
relatively small number of clinical samples may introduce bias into
the outcomes. Additionally, there is a lack of support for further
validation through animal experiments. To address these
deficiencies, we intend to conduct animal studies to enhance the
reliability of the biomarkers and will continue monitoring the
progress of ACAA2, DAP3, and BIK in relation to osteoporosis.

5 Conclusion

This study used bioinformatics and qRT-PCR analyses to
identify three biomarkers associated with PCD and mitochondria
in OP, namely, ACAA2, DAP3, and BIK. Enrichment and
immune infiltration analyses, regulatory network construction,
drug prediction, and additional assessments were performed to
investigate the potential mechanisms of action of these
biomarkers.
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