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Objectives: Investigate the predictive value of Vasculogenic mimicry (VM) related
genes for the survival and prognosis of Hepatocellular carcinoma (HCC) patients
and its role in the tumor microenvironment (TME).

Methods: VM-related genes were obtained from previous literature, the
expression profiles, single-cell data and clinical information of HCC patients
were downloaded from public databases. The HCC patients were divided into
different clusters by unsupervised clustering, the differences in prognosis and
immune characteristics of VM-related clusters were analyzed. A prognostic
model related to VM (VM Score) was constructed based on LASSO regression
and univariate and multivariate Cox regression, the correlation between this
model and chemotherapy drugs and immunotherapy was studied. Seurat
package was used to standardize single-cell data for single-cell level analysis.
The expression of risk factors in VM Score was verified by RT-qPCR.

Results: VM Score composed of SPP1, ADAMTS5 and ZBP1 was constructed and
validated. VM Score was an independent prognostic factor for HCC. Through the
analysis of single cell data further reveals the VM Score influence on TME. In
addition, VM Score could provide ideas for the selection of immunotherapy and
chemotherapy drugs. RT-qPCR showed that the expression of risk factors was
different in HCC cell lines.
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Conclusion: Our results suggest that VM Score may serve as a promising
prognostic biomarker for HCC and provide new ideas for immunotherapy in
HCC patients.
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1 Introduction

Liver cancer is one of the challenges threatening human health
globally, and the annual incidence of liver cancer is expected to
exceed one million cases by 2025, with hepatocellular carcinoma
(HCC) being the most common type of liver cancer, accounting for
about 90% of all liver cancer cases (Llovet et al., 2021). Meanwhile,
hepatocellular carcinoma is one of the top five causes of cancer
deaths in the Chinese population (Chen et al., 2016). Given the
increasing incidence and mortality of hepatocellular carcinoma
worldwide, the development of new biomarkers to better
facilitate therapeutic interventions has become a hot topic
of research.

It is now widely accepted that solid tumors require an adequate
blood supply for growth. When solid tumors grow to a certain
extent, new blood vessels need to be formed to maintain an adequate
blood supply to avoid tumor necrosis due to ischemia (Liu et al.,
2023).In 1999, Maniotis et al. first proposed the concept of
angiogenic mimicry (VM) (Maniotis et al., 1999), which is an
epithelium-independent mode of microcirculation of tumors that
degrades the basement membrane and extracellular matrix by
providing blood perfusion and promoting the secretion of
protein hydrolases by tumor cells (Wagenblast et al., 2015).VM is
considered a model for neovascularization in aggressive tumors
(Andonegui-Elguera et al., 2020). VM has been observed in a variety
of human malignancies and is strongly associated with tumor
proliferation, metastasis, and poor patient prognosis (Kirschmann
et al., 2012; Hendrix et al., 2016; Tang et al., 2016; Qu et al., 2017).

Tumor microenvironment (TME) refers to the internal and
external environments during tumorigenesis, growth and
metastasis. The tumor microenvironment consists of immune
cells, mesenchymal stromal cells, and various cytokines (Hanahan
and Coussens, 2012). The tumor microenvironment utilizes benign
and malignant cells to promote the harsh, immunosuppressive, and
nutrient-poor environment necessary for tumor cell growth,
proliferation, and phenotypic flexibility and variation, as well as
the composition of the TME significantly influences resistance to
malignant tumor therapy (Khalaf et al., 2021); for example, cancer-
associated fibroblasts (CAF), which are one of the most abundant
mesenchymal cells, one of the most abundant cells in the tumor
microenvironment, involved in drug resistance to cancer
therapeutics (Mao et al., 2021). Immune imbalance in the tumor
microenvironment is an important feature of cancer (Binnewies
et al., 2018), however, the TME of hepatocellular carcinoma in
the context of VM features remains unclear. Therefore, it is
essential to understand the correlation between VM and
hepatocellular carcinoma.

In this study, we constructed a scoring model (VM Score)
associated with VM, which included three risk factors, SPP1,

ADAMTS5, and ZBP1, revealing potential prognostic biomarkers
for hepatocellular carcinoma. The column line graphs created based
on the VM Score were clinically informative. The association
between the VM Score and immune checkpoint molecules and
chemotherapeutic agents may provide new ideas for the clinical
application of immunotherapy and chemotherapeutic agents. In
addition, the analysis of single-cell data allows for a deeper
exploration of the major cell types and cell communication roles
of VM-related genes affecting TME. In conclusion, the results of this
study will provide new insights into the effects of VM-related genes
on hepatocellular carcinoma and validate that the VM signature can
be used as a novel biomarker for hepatocellular carcinoma, which
will help to improve the efficacy of individualized treatment for
hepatocellular carcinoma patients.

2 Materials and methods

2.1 Data collection and preprocessing

The role of VM in cancer was explored based on literature
reports and the collected VM-related genes were intersected with
hepatocellular carcinoma transcriptome data to obtain a total of
18 genes for subsequent analysis (Luo et al., 2020).Hepatocellular
carcinoma datasets were obtained from The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and
the data were downloaded from UCSC Xena (http://xena.ucsc.
edu/).371 samples from TCGA-LIHC containing gene expression
and clinical information were used as a training set, and GTEx
(n = 110) was used to compare the tumor and normal samples
genetic changes between tumor and normal samples. In addition,
the GSE14520 and GSE149614 datasets from the Gene
Expression Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/geo/) were included in the study. GSE14520 (n = 488)
was an independent external validation set and GSE149614 (n =
18) was used for single-cell analysis. Data preprocessing was
performed using R software version 4.3.1 (https://www.r-project.
org/).

2.2 Analyzing VM subtypes based on
unsupervised clustering

To identify different molecular clusters based on the expression
of VM-related genes, unsupervised clustering analysis was
performed on each sample of the dataset using the
ConsensusClusterPlus package, the number of clusters was set to
two to six, and 1,000 repetitions were carried out to ensure the
stability of the classification, and the optimal clusters were calculated
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FIGURE 1
Molecular subtypes and heterogeneity related to vascular mimicry in hepatocellular carcinoma. (A) To ensure the stability of clustering, 1,000 times
unsupervised consensus clustering method was used to classify the patients in the TCGA-LIHC cohort, and principal component analysis was used to
reduce the scatter plot of the clustering (B) PCA analysis was performed on TCGA-LIHC data to distinguish between the three VM-related subgroups. (C)
Kaplan-Meier curves for OS of the three VM clusters (D)Mulkey shunt plots showing changes in VM clusters, age, sex, grade, stage, and TNM stage.
(E) heatmap of clinical features of differentially expressed genes in clusters (F)GOenrichment analysis of VM genes in TCGA cohort. (G) KEGG enrichment
analysis of VM genes in TCGA cohort (H) landscape of immune cell infiltration among the three VM clusters. (I) TMB scores among the three VM clusters
(J) epic scores among the three VM clusters. Statistical significance level ns ≥ 0.05, p< 0.05, p p p < 0.01, p p p < 0.001, p p p p < 0.0001.
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based on the consensus matrix and the consensus cumulative
distribution function (CDF). Principal Component Analysis
(PCA) dimensionality reduction was used to demonstrate the
distributional differences between different clusters. Kaplan-Meier

(KM) survival analysis and log-rank test were used to analyze the
prognostic value of subtypes. Relationships with other clinical
variables were visualized using the ggalluvial package, and p ≤
0.05 was considered statistically significant.

FIGURE 2
VM Score predict survival in HCC patients.(A) Ten-time cross-validation for tuning parameter selection in the LASSO model. (B) LASSO coefficient
profiles of sevenmRNAs. (C)Three differential genes used to construct the model. (D) Kaplan-Meier curves of OS for patients with high and low VM Score
in the TCGA cohort. (E) ROC curves for themodel training sets. (F) Kaplan-Meier curves of OS for patients with high and low VMScore in theGSE14520 (G)
ROC curves for the model validation sets.
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2.3 Functional enrichment analysis of
different isoforms

The limma package was used to adopt |logFC| > 0.5 and adj.
P.Val <0.05 as the thresholds for screening differential genes, the
clusterProfiler and enrichplot packages were used for KEGG (Kyoto
Encyclopedia of Genes and Genomes) and GO (Gene Ontology)
analysis, and the results were visualized using the ggplot2 package.

2.4 Immune score and TMB score

To explore the effect of this gene signature on TME in HCC
patients, the ssGSEA algorithm was used to calculate the degree
of infiltration of different VM clusters in 28 immune cells and the
epic score was used to assess differences in the tumor
microenvironment between different subgroups of patients.
Using somatic mutation information, TMB scores were
calculated for each sample excluding exon lengths (38 million)

and using median scores as cut-off values to categorize different
subtypes into high and low TMB groups.

2.5 Development and validation of
prognostic models

Genes associated with prognosis in VM subtypes were extracted
by univariate Cox regression analysis (p < 0.05) using the survival
package. Further screening was performed using the Least Absolute
Shrinkage and Selection Operator (LASSO) algorithm and
multivariate Cox regression analysis, and the expression of the
genes and their weights would be used in the construction of the
risk score model according to the following formula:

Risk Score = ∑
i
expi p βi (expi is the expression level of the

gene, βi is the coefficient of the selected gene in the multivariate
COX analysis).

The samples will be categorized into high and low-risk groups
based on the median risk score and the survival package will be used

FIGURE 3
Construction of a nomogram. (A) Forest plots of univariate and multivariate analyses including risk scores and clinical factors in TCGA cohort. (B)
Nomograms for predicting the 1–3-year survival probabilities of HCC patients in the TCGA dataset. (C)Calibration plot for predicting 1–3-year OS of HCC
patients in the TCGA cohort. The survival probability predicted by the nomogramwas plotted on the X-axis. Actual survival rates are plotted on the Y-axis.
(D) DCA curve to evaluate the clinical validity of the prediction model.
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FIGURE 4
Single cell analysis. (A) Identification of cell types by marker genes. (B–D) expression of three genes in eight cell types. (E) Expression of three genes
in malignant and non-malignant cells. (F–H) The expression of three genes during the development of liver malignant cells. (I–J) Pseudo-time series
analysis of different cell types during the development of hepaticmalignant cells (K) Expression of SPP1 at different time nodes during the development of
liver malignant cells. (L) The number of interactions in the intercellular communication network. (M) Different cellular interactions in the PARs
signaling pathway. (N) cell-cell communication interactions in the SPP1 signaling pathway. (O) The interaction between hepatocytes and endothelial cells
was significant in the FGF pathway.
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to compare the difference in prognosis between the high and low-
risk groups, and the timeROC package will be used to calculate the
area under the curve (AUC) to assess the accuracy of the
prognostic model.

The relationship between VM Score and clinical
characteristics was analyzed using multivariate Cox regression.
We calculated the risk ratios of risk scores to clinical traits using
the multivariate Cox algorithm, screened for independent risk
factors, and then created column-line plots using the nomogram
function of the rms package, which included risk scores and age.
We also plotted calibration curves and decision analysis curves

(DCA) to validate the difference between our model and actual
observed patient survival.

2.6 Single-cell sequencing data analysis

Single-cell analysis was performed using the GSE149614 dataset.
The raw data consisted of 31,286 cells from 18 patients. First, quality
control and batch correction were performed using Seurat and
Harmony packages. Cells with nCount_RNA < 4,000, nFeature_
RNA < 500, or mitochondrial genes more than 15% were filtered

FIGURE 5
VM score-related HCC immunotherapy and drug therapy. (A) Of the 39 drugs significantly associated with risk scores, seven had a sensitive
association with VM Score. (B) pathway analysis of drug targeting. (C) Waterfall plots showing the mutation distribution of the top 30 most frequently
mutated genes in the high risk groups. (D)Waterfall plots showing the mutation distribution of the top 30 most frequently mutated genes in the low risk
groups. (E) Correlation between Expression of immune checkpoint molecules PD-1 and VM Score. (F)IPS scores of high - and low-risk groups. (G)
TIDE scores of high - and low-risk groups.
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out, and the first 15 principal components after PCA analysis were
retained for tSNE downscaling, clustering and visualization. The cell
type of each cell cluster was then annotated using the SingleR
package. The degree of malignancy of the hepatocytes in the data
was assessed using the CytoTRACE algorithm and different cell
subgroups were scored, with higher scores being associated with a
higher degree of malignancy. Finally, the Monocle package was used
to analyze the differentiation trajectories of hepatocellular
carcinoma cells, and the CellChat package was used to analyze
cell-to-cell interactions and receptor-ligand pairs between various
cell types.

2.7 Risk score and treatment sensitivity

Chemotherapeutic drug and drug pathway information files were
obtained from the Genomics of Drug Sensitivity in Cancer (GDSC;
https://www.cancerrxgene.org/) database. Oncopredict was used to
predict the degree of response of chemotherapeutic drugs to high
and low-risk groups. The correlation between Risk Score
and 198 chemotherapeutic drugs was analyzed using FDR <0.01 and
| Rs | > 0.3 as thresholds, and the targeted pathways of action of these
drugs were analyzed. The Immunophenotype Score (IPS) and Tumor
Immune Dysfunction and Rejection (TIDE), expression of the immune
checkpoint PD-1, and Tumor Mutational Burden (TMB) were used to
assess patient response to immunotherapy by analyzing these
algorithms to assess whether the Risk score could be used for
immunotherapy prognostic assessment.

2.8 Cell culture and RT-qPCR assays

Human normal liver cell L-O2 and human hepatocellular
carcinoma cell Huh7 were awarded by the research group of
Wulin Yang, Translational Medicine Center, Institute of Health
and Medical Technology, Hefei Institute of Physical Science,
Chinese Academy of Sciences. In this study, cells were cultured

in 1,640 and DMEM medium (corning, USA) supplemented with
10% fetal bovine serum (FBS, EXCELL) and 5% streptomycin/
penicillin (Hyclone). The culture environment was humid at a
constant temperature of 37° C and 5% CO2. Total RNA was
extracted using the RNA Easy Fast Tissue/Cell Kit
(DP451,TIANGEN). First-Strand cDNA was synthesized using
TransScript First-Strand cDNA Synthesis SuperMix (AE301-03,
TransGen Biotech). Real-time PCR was performed using ChamQ
Universal SYBR RT-qPCR Master Mix (Q711-02, Vazyme) in a
X960 Automatic medical PCR analysis system (Lixin Instruments
(Shanghai) Co., LTD.). Relative mRNA expression levels were
calculated from threshold cycle (Ct) values for each PCR product
and normalized by β-actin using the comparative 2-△△Ct
method.Primers are listed in Supplementary Table S1.

2.9 Statistical analysis

All analyses and data visualization were performed using R
(http://www.r-project.org, version 4.3.1) or GraphPad Prism
software (GraphPad Software, Inc., version 9.0). Survival
differences were compared using the log-rank test, the
Kruskal–Wallis test was used to test the relationship of
continuous variables between the three groups, and the
Wilcoxon rank-sum test was used to compare the relationship
between variables in the two groups. Correlations between
variables were analyzed using Spearman or Pearson statistics,
and p values < 0.05 were considered statistically significant.

3 Result

3.1 Determination of VM-related
molecular subtypes

Based on the expression levels of 18 VM-related genes, the
optimal K value of three was determined based on the results of

FIGURE 6
Gene expression validation in HCC cell lines. Histograms of different transcript levels of SPP1 (A), ZBP1 (B) and ADAMTS5 (C) in Huh7 and LO2.
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clustering consensus value and cumulative distribution function,
and the TCGA-LIHC data were classified into three subtypes,
namely, Cluster1 (n = 156), Cluster2 (n = 165), and Cluster3
(n = 14). The t-distribution random neighborhood embedding
(t-SNE) algorithm showed that the three subtypes could be
clearly distinguished (Figures 1A, B). Kaplan-Meier (K-M)
survival analysis showed that the overall survival of Cluster two
was significantly better than the other two groups (Figure 1C).
Triage maps revealed significant differences in clinical features
among the three subtypes (Figure 1D). The heat map reflected
the expression of the three subtypes in pathological features, and the
results revealed significant differences in tumor stage and
pathological grade among the three subtypes (Figure 1E). The
above results indicated that the subtypes were highly
heterogeneous based on genes associated with angiogenesis. GO
and KEGG enrichment analyses could determine whether the genes
associated with VM have a unique transcriptome that promotes the
growth of hepatocellular carcinoma (HCC) cells. GO and KEGG
enrichment analysis identified 4,045 differentially expressed genes,
which were shown to be significantly associated with cell
proliferation pathways. Molecular function (MF) analysis showed
that antigen binding and growth factor binding were associated with
angiogenic genes (Figure 1F) and that these genes were enriched in
the PI3K-Akt pathway (Figure 1G). This suggests that differential
genes in VM subtypes play an important role in the proliferation of
hepatocellular carcinoma.

Further comparing the heterogeneity of the tumor immune
microenvironment among subtypes, ssGSEA results showed that
in terms of the infiltration amount of “activated B-cells”, “type
17 helper T-cells” and “eosinophils” infiltration amount, there was a
significant difference between the three groups (Figure 1H). In
addition, the TMB score results showed that the TMB score of
Cluster two was significantly higher than that of the other two
groups (Figure 1I). The mutation types of the three groups were
relatively consistent (Supplementary Figure S1), while the EPIC
score showed that the overall proportion of immune cells was higher
in Cluster2 than in the other two groups, whereas Cluster1 and
Cluster3 had higher proportions of cancer-associated fibroblasts
(CAF) (Figure 1J). Overall, the tumor purity of Cluster1 and
Cluster3 was higher than that of Cluster2, and there was a
significant difference in the degree of immune cell infiltration
between the subtypes, which may be one of the reasons for the
prognostic differences between the subtypes. The VM subtypes are a
good indicator for evaluating the clinical prognosis of the patients
and the heterogeneity of the TME.

3.2 Construction and validation of risk
models associated with angiogenesis

Survival analysis was used to screen 173 genes associated with
survival from 4,045 differentially expressed genes in VM subtypes,
and seven genes were further screened using the LASSO algorithm
(Figures 2A, B), and the risk ratios (HR) of these genes were analyzed
using multifactorial Cox regression. SPP1, ZBP1 and
ADAMTS5 were finally selected for model construction
(Figure 2C). Survival curves showed the association of these three
genes with survival prognosis (Supplementary Figure S2). The risk

score for each HCC patient could be calculated using the
following formula:

VM Score = SPP1 * (0.07782104) + ZBP1 *
(−0.15394666) + ADAMTS5 * (0.25495905).

To further assess the predictive ability of the prognostic model,
we categorized patients into high-risk and low-risk groups based on
the median risk score. Patients with low-risk scores in the training
set showed significant survival benefits and tended to have a higher
probability of survival than patients with high-risk score
(Figure 2D). Predictive efficacy was assessed by the area under
the ROC curve (AUC), which was 0.7442, 0.7309, and 0.7307 for 1, 2,
and 3 years, respectively (Figure 2E). The robustness of this
prognostic risk model was further validated on the
GSE14520 dataset. Conistent with the training set, the survival
curves similarly showed that the survival rate of the high-risk
group was significantly lower than that of the low-risk group
(Figure 2F), with AUC of 0.6838, 0.7357, and 0.6972 at 1, 2, and
3 years, respectively (Figure 2G). The above results demonstrated
the good performance of VM Score in predicting the
prognosis of HCC.

3.3 Construction and evaluation of
nomogram models

To verify whether VM Score was an independent prognostic
factor for HCC patients, we further performed a multivariate Cox
regression analysis of clinical characteristics and VM Score in the
TCGA-LIHC patient dataset. The results showed that the risk ratio
(HR) for high VM Score was 2.78, demonstrating that VM Score was
an independent prognostic factor for HCC patients (Figure 3A).
Combining clinical information and VM Score, we developed a
Nomogram model that can be used clinically to predict the survival
of HCC patients from 1 to 3 years (Figure 3B). By summing the
scores for each prognostic parameter, a total score can be obtained
for each patient, with higher total scores indicating poorer patient
survival. The calibration curve showed that the predicted survival
probability was in good agreement with the actual survival
probability, validating the reliability of the Nomogram model
(Figure 3C). Decision curve analysis (DCA) showed that the
prognostic values of the column-line graph were better than
those of the individual variables (Figure 3D). In conclusion, VM
Score can be used as a reliable method to predict the survival of HCC
patients in clinical practice.

3.4 VM Score risk factor analysis in single-
cell data

Single-cell sequencing enables analysis of tumor heterogeneity
and reveals properties of the tumor microenvironment at single-cell
resolution. We first performed integration analysis on the
GSE149614 dataset and removed sample batch differences based
on the mean and dispersion of SPP1, ZBP1 and ADAMTS5. Then,
after performing PCA downscaling, the first 20 dimensions were
retained, and the clustering results showed that 31,286 cells were
annotated into nine different cell types for subsequent analysis
(Figure 4A). To further characterize the proportion of angiogenic
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VM score in tumor cells, we analyzed the expression of these three
genes in different cells (Figures 4B–D). SPP1 was increased in
hepatic malignant cells, while CD8+ T cells were also increased,
suggesting that SPP1 may play an important role during HCC
invasion and metastasis. We analyzed the expression of genes in
VM Score in malignant cells, and the results showed that
SPP1 expression was significantly elevated in hepatic malignant
cells (Figure 4E).

To elucidate the degree of malignancy of the cells in the HCC
single-cell sequencing data, we found that different subpopulations
of hepatocytes with higher differentiation potential could be
transformed into hepatic malignant cells by CytoTRACE scoring.
In addition, SPP1 was highly expressed in hepatic malignant cells,
which may indicate that SPP1 expression is positively correlated
with hepatic malignant cells (Figure 4F), whereas ZBP1 and
ADAMTS5 were not significantly correlated with hepatic
malignant cells (Figures 4G, H). To characterize the temporal
status of vascular endothelial cells during HCC development, we
used Monocle to rearrange individual cells into a pseudo-timeline,
and the results demonstrated the homogeneous progression of
endothelial cells to hepatic malignant cells (Figures 4I, J), and
showed the SPP1 expression at different developmental nodes of
hepatocytes (Figure 4K). Understanding the interactions between
tumor cells and immune cells helps to further understand the
potential causes of cancer progression and metastasis, so we
explored the intercellular communication network by calculating
the interaction probabilities, and the results showed stronger
interactions between tumor cells and other immune cells
(Figure 4L). In addition, cellular communication networks were
hypothesized based on specific signaling pathways and ligand-
receptor interactions, and malignant and endothelial cells were
found to be closely associated with the communication networks
of PARs, SPP1, and FGF signaling pathways (Figures 4M–O). These
pathways may create conditions for the malignant proliferation of
tumor cells in HCC, further revealing the role of VM Score in the
tumor microenvironment.

3.5 Potential therapeutic effects of VM score

Previous results suggest that VM Score has clinical applications.
To further evaluate whether VM Score can be used as a biomarker
for clinical treatment, we analyzed the association between VM
Score and the response of HCC patients to chemotherapeutic agents
and immunotherapy. First, we evaluated the IC50 values of VM
Score for different chemotherapeutic agents, and the drug sensitivity
results showed that the sensitivities of seven drugs, including a small
molecule inhibitor targeting PLK1 (BI-2536–1,086) and a selective
inhibitor of CDK1 (RO-3306–1,052), were positively correlated with
VM Score (Figure 5A). Next, we explored the signaling pathways
targeted by the drugs, and we found that the drugs whose
sensitivities were positively correlated with the VM Score were
mainly targeted in the cell cycle pathway (Figure 5B). Taken
together, VM Score may be a potential biomarker for developing
appropriate drug treatment strategies.

Immunotherapy is a promising clinical treatment for tumors,
and it is particularly important to find a biomarker that can predict
the prognosis of immunotherapy; we analyzed the correlation

between immunotherapy prognostic markers and VM Score. The
waterfall plot demonstrated the mutation differences in the first
30 genes between high and low VM Score, with a DNA mutation
frequency of 91.03% in the high-risk group (Figure 5C) and 92.17%
in the low-risk group (Figure 5D). The mutation frequency was
higher in the low-risk group. Correlation analysis based on the
expression of immune checkpoint molecules showed a stronger
clinical response in the low-risk group (Figure 5E). The results of
the IPS score suggested that HCC patients in the low-risk group
might benefit from immunotherapy (Figure 5F). To assess the
responsiveness of patients in different risk groups to
immunotherapy, the TIDE score was used for prediction, which
was significantly lower in the low-risk group (Figure 5G). In
conclusion, the VM Score provides new ideas for immunotherapy
regimens and chemotherapeutic drug application in HCC, and
patients in the low-risk group may have a higher response rate to
immunotherapy.

3.6 RT-qPCR to verify the expression of
angiogenesis-related genes

Finally, to understand the expression of the three genes in VM
Score, the expression levels of these three genes in HCC cells and
human normal liver epithelial cells were verified by quantitative real-
time PCR (RT-qPCR). The results showed that the SPP1 mRNA
level in HCC cells Huh7 was significantly higher than that in human
normal liver epithelial cells LO2 (Figure 6A), whereas the expression
of ZBP1 and ADAMTS5 was lower than that of LO2 in Huh7
(Figures 6B, C), with a significant difference of p-value < 0.05.

4 Discussion

Liver cancer is one of the most common malignant tumors in
humans, with hepatocellular carcinoma (HCC) being the most
common type of liver cancer. The incidence of HCC is increasing
due to the current epidemics of viral hepatitis, alcoholism, and
nonalcoholic steatohepatitis, and HCC has attracted widespread
attention worldwide (Huang et al., 2021; Sung et al., 2021; Ilagan-
Ying et al., 2024). Currently, the main therapeutic approaches for
HCC include hepatectomy, liver transplantation, monoclonal
antibodies, and molecularly targeted therapy with small molecule
compounds (Rinaldi et al., 2021). HCC is a highly immunogenic
malignant tumor surrounded by a large number of immune cells.
TME significantly influences the development and progression of
HCC, and the research on TME-based immunotherapeutic response
has progressed and gained recognition by hepatocellular carcinoma
patients worldwide (Liu et al., 2019). Despite some advances in HCC
treatment, the rapid progression and metastasis of advanced HCC
leads to poorer prognosis and higher mortality (Llovet et al., 2021),
which requires the development of reliable prognostic biomarkers to
improve the survival of patients with advanced HCC. VM has been
identified as a microcirculatory pattern that promotes tumor
angiogenesis and may be a target for antitumor therapy (Zhao
et al., 2015). To better apply this feature of VM to the clinical
evaluation of HCC patients, we typed the samples by VM and
constructed a prognostic model of HCC consisting of ZBP1, SPP1,
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and ADAMTS5 by using the characteristic genes of the subtypes,
which achieved good predictive efficacy and provided a new idea for
drug therapy and immunotherapy.

ZBP1 (Z-DNA-binding protein 1) is a protein that can be
induced by IFN (Yang et al., 2021). ZBP1 acts as a necroptotic
apoptotic signaling pathway that activates inflammatory cell death.
Previous studies have shown that ADAR1 inhibits ZBP1-mediated
apoptosis in inflammatory cells, thereby promoting tumorigenesis
(Yang et al., 2020). Yang et al. showed that restoration of
ZBP1 expression in the human colon cancer cell line HT-29
promotes the inhibitory effect of chemotherapy on tumor growth
(Yang et al., 2023). These results suggest that ZBP1 plays an
important role in tumor development. In this study, we found
that ZBP1 expression was associated with a better prognosis, and
experiments showed that the expression of ZBP1 was significantly
higher in normal cells than in tumor cells.

Secreted phosphoprotein 1 (SPP1, also known as osteoblast
protein, OPN) is an extracellular matrix protein, and previous
studies demonstrated the prognostic value of SPP1 and the
potential role of HCC-secreted SPP1 in TME of HCC patients
(Liu et al., 2022). In our study, we demonstrated the high
expression of SPP1 in HCC cells, the higher percentage of
SPP1 in malignant cells, and a poorer prognosis.

The ADAMTS (integrin and metalloproteinase containing
platelet adhesion structural domains) family includes 19 secreted
zinc metalloproteinases that have been found to play a role in a
variety of biological and pathological processes (Kelwick et al.,
2015). In this study, ADAMTS5 was significantly downregulated
in HCC cell lines. However, our bioinformatics analysis showed that
high expression of ADAMTS5 was associated with poorer prognosis
in HCC patients, which needs to be further verified in more samples.

In hepatocellular carcinoma, the interactions among SPP1,
ADAMTS5 and ZBP1 are complex and may synergize in
multiple mechanisms.ADAMTS5 and SPP1 may interact in
regulating immune cell infiltration in the tumor
microenvironment, and ADAMTS5, by degrading the ECM
(Mead and Apte, 2018), may enhance the role of SPP1 in the
tumor microenvironment.ZBP1, by inducing necrotic apoptosis,
may promote local inflammatory responses within tumors
(Zheng and Kanneganti, 2020), which together with SPP1 and
ADAMTS5 drive tumor progression.

In a previous study, LOXL2, a gene that promotes VM
development and is involved in the regulation of TME, has been
validated as a potential diagnostic and prognostic biomarker as well
as a therapeutic target for HCC, suggesting that VM-associated
genes have the potential to provide new targets and strategies for the
treatment of hepatocellular carcinoma (Zhao et al., 2023).

The emergence of VM is often accompanied by the
accumulation of immunosuppressive cells, such as myeloid-
derived suppressor cells (MDSCs), in the tumor
microenvironment (Li et al., 2021). These immunosuppressive
cells weaken the immune system’s recognition and clearance of
tumors by inhibiting the function of effector immune cells.
Therefore, the immunosuppressive microenvironment established
in hepatocellular carcinoma through VM may lead to resistance to
immunotherapy. The formation of VM is often accompanied by
localized hypoxia within the tumor, and this hypoxic environment
has a significant impact on chemotherapeutic agents, thereby

reducing their effectiveness (Haiaty et al., 2020). By correlation
analysis with chemotherapeutic and immunotherapeutic drugs, VM
Score may serve as an effective HCC biomarker for predicting
patient response to chemotherapeutic drugs and immunotherapy.

Tumor mutational load (TMB) has been proposed as a
predictive biomarker of immune response to tumors, and the
accumulation of somatic mutations is one of the major causes of
tumorigenesis (Gubin et al., 2015). We further analyzed TMB in the
high and low-risk groups and found that the mutation frequency
was higher in the low VM Score group, which is consistent with our
previous results in the immune checkpoint molecular expression
analysis. Interestingly, TTN, TP53, and CTNNB1 were the genes
with the highest mutation frequencies in both the high- and low-risk
groups, but the mutation frequencies of these three genes were
higher in the high-risk group than in the low-risk
group.TP53 mutation is one of the most common mutations in
HCC and affects the progression and prognosis of HCC (Long et al.,
2019), and TTN and TP53 mutations often occur in HCC samples
simultaneously and also mediate the prognosis of HCC patients
(Gao et al., 2021).CTNNB1 mutation is associated with ALDOA
phosphorylation and was verified to promote glycolysis and cell
proliferation (Gao et al., 2019), which may explain the higher purity
and rapid proliferation of malignancies in the high-risk group.

Our further analysis of single-cell data revealed that VM
influences the tumor microenvironment in HCC that
SPP1 positively correlates with the degree of hepatocellular
malignancy during hepatocellular malignant transformation, and
that endothelial cells, as a part of the tumor microenvironment, are
involved in angiogenic signaling along with pro-angiogenic factors
secreted by tumor cells (De Visser and Joyce, 2023). CellChat
analysis showed that hepatic malignant cells have strong
interactions with endothelial cells in PARs, FGF, and
SPP1 signaling pathways; the receptor-ligand model of hepatic
malignant cells and endothelial cells provides a rationale for new
immunotherapeutic targets.

In HCC patients, VM is closely associated with TME, and
targeting VM can modulate immune cell infiltration and
function, providing a new strategy for immunotherapy. Although
the implementation of VM as a target for immunotherapy is full of
potential, it still faces many challenges in clinical practice. Firstly,
tumors have immune escape mechanisms, and targeting VM alone
may not be sufficient to overcome all immune escape mechanisms,
resulting in limited therapeutic efficacy, which may require us to
combine immune checkpoint inhibitors. Secondly, there is limited
data in clinical trials and more preclinical validation is needed
subsequently.

This study aimed to classify HCC samples based on VM
characteristics, construct a survival-related prognostic model, and
provide personalized therapeutic recommendations for HCC
patients. Although these studies revealed some associations
between VM and HCC, there are some limitations of this study.
First, all bioinformatics data were obtained from public databases,
and some samples lacked detailed clinical information. The data
were derived from retrospective studies, and the sample size was
insufficient to fully cover the characteristics of the entire HCC
patient population. Second, although our RT-qPCR validation
confirmed the mRNA expression of genes in HCC cell lines, the
results of the immune infiltration and other analyses were derived
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from bioinformatic analyses and lacked basic experimental
validation, which may lack reliability.

5 Conclusion

In any case, our study shows that VM related genes play a role in
promoting tumor cell proliferation in HCC by affecting TME. The
VM Score constructed by VM related genes has prognostic
characteristics and is closely related to tumor immunotherapy
and chemotherapy.
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