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Background: Clinical observations indicate that blood lipids may be risk factors
for lateral epicondylitis (LE) of the humerus, and lipid-lowering drugs are also
used for the prevention and treatment of tendon diseases, but these lack high-
quality clinical trial evidence and remain inconclusive. Mendelian randomization
(MR) analyses can overcome biases in traditional observational studies and offer
more accurate inference of causal relationships. Therefore, we employed this
approach to investigate whether blood lipids are risk factors for LE and if lipid-
lowering drugs can prevent it.

Methods: Genetic variations associated with lipid traits, including low-density
lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC),
were obtained from the UK Biobank and the Global Lipids Genetics Consortium
(GLGC). Data on genetic variation in LE were sourced from FinnGen, including
24,061 patients and 275,212 controls. Subsequently, MR analyses were
conducted to assess the potential correlation between lipid traits and LE.
Additionally, drug-target Mendelian randomization analyses were performed
on 10 drug targets relevant to LE. For those drug targets that yielded
significant results, further analysis was conducted using colocalization
techniques.

Results: No correlation was found between three blood lipid traits and LE.
Lipoprotein lipase (LPL) enhancement is significantly associated with a
decreased risk of LE (OR = 0.76, [95% CI, 0.65–0.90], p = 0.001). The
expression of LPL in the blood is associated with LE and shares a single causal
variant (12.07%), greatly exceeding the probability of different causal variations
(1.93%), with a colocalization probability of 86.2%.

Conclusion: The three lipid traits are not risk factors for lateral epicondylitis. LPL is
a potential drug target for the prevention and treatment of LE.
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1 Introduction

Lateral epicondylitis (LE) of the humerus, also known as “tennis
elbow,” is primarily linked to overuse of the elbow, particularly
affecting the extensor carpi radialis brevis muscle (Bisset and
Vicenzino, 2015; Herquelot et al., 2013; Sayampanathan et al.,
2020). Among adults, the incidence rate ranges from 1%–3%,
while tennis players exhibit a significantly higher incidence,
reaching 40%–50% (Sanders et al., 2015; Cutts et al., 2020;
Stegink-Jansen et al., 2021). Surgical intervention is reserved for
patients who resist conventional treatments (Knutsen et al., 2015;
Xu et al., 2023). Typically, patients undergo conservative treatment,
which includes rest, oral nonsteroidal anti-inflammatory drugs
(NSAIDs), and localized corticosteroid injections. Prolonged
NSAID usage may result in gastrointestinal complications (Wolf,
2023), whereas extended corticosteroid injections can lead to local
skin and muscle atrophy, and pigmentation changes, among other
concerns (Titchener et al., 2015; Branson et al., 2017; Kheiran et al.,
2021; Kim et al., 2021). Therefore, there is an urgent need to develop
new drugs to treat this disease.

Previous studies have shown a correlation between tendon
diseases and hyperlipidemia (Tilley et al., 2015; Lee et al., 2019).
The mechanism may involve lipid effects on tendon homeostasis,
tendon remodeling, and inflammation activation (Lee et al., 2019;
Steplewski et al., 2019; Chen et al., 2023). However, findings
regarding the association between LE and blood lipids vary, while
a meta-analysis indicates that high cholesterol levels are risk factors
for LE (Chen et al., 2023), other studies suggest no clear association
(Sayampanathan et al., 2020). Currently, research on the
relationship between hyperlipidemia and LE remains limited.
Observational studies, which dominate the available research, are
prone to limitations and confounding factors, underscoring the
incompleteness of our understanding of this relationship and the
need for further exploration.

Statins are commonly used for cardiovascular diseases. Recent
literature also suggests their potential in preventing tendon
disorders (Yang and Qu, 2018; Lee et al., 2023). A systematic
review and a cohort study with over 10 years of follow-up have
shown that statins can reduce the risk of tendon disorders in patients
with hyperlipidemia (Lin et al., 2015; Teichtahl et al., 2016).
However, the gold standard for determining drug efficacy is
randomized controlled trials (RCT), and currently, no relevant
RCT studies exist. Therefore, further exploration of the
relationship between lipid-lowering drugs and LE is necessary.

Mendelian randomization is a method that utilizes genetic
variations as instrumental variables (IVs). The distribution of
these variations in human populations is random, akin to the
ideal conditions of an RCT. This randomness helps in
investigating the causal relationship between exposure and
disease, reducing confounding biases inherent in traditional
observational studies, and thereby enhancing the accuracy of
causal inference (Larsson et al., 2023). Drug target Mendelian
randomization studies represent a straightforward application of
this method. In these studies, genetic variants encoding protein
targets have the potential to affect the expression of target genes.
Furthermore, certain drugs can act on these targets, thereby
influencing gene expression (Schmidt et al., 2020). In this study,
we apply MR analysis to investigate the causal relationship between

blood lipids and LE. We also examine the impact of lipid-lowering
drugs on LE, aiming to discover new medications for the treatment
of this condition.

2 Materials and methods

Our study is structured as follows: 1) We perform a two-sample
MR analysis to investigate the potential causal relationship between
three lipid traits and LE; 2) We undertake a drug-target MR analysis
involving 10 genes associated with blood lipids and LE, aiming to
explore the potential link between these target genes and the
condition; 3) For genes identified as significant in the drug-target
analysis, we proceed with further colocalization analysis. Our
comprehensive research approach is illustrated in Figure 1. The
foundation of MR lies in three critical assumptions. Firstly,
Relevance: The genetic variants chosen must be strongly
associated with the exposure factor, serving effectively as proxies
for exposure. Secondly, Independence: These genetic variations
should not be linked to other confounding factors that may
influence the outcome, thus ensuring the accuracy of the results.
Lastly, Exclusion Restriction: The influence of genetic variations on
the outcome should occur exclusively through the exposure factor,
eliminating any other direct influence pathways. These essential
principles are detailed in Figure 2.

We obtained the genome-wide association study (GWAS) data
for lipid traits from the IEU Open GWAS database (https://gwas.
mrcieu.ac.uk/), which includes data from the UK Biobank and the
Global Lipids Genetics Consortium (GLGC). The sample sizes for
LDL-C, TG, and TC were 440,546, 441,016, and 187,365,
respectively. For our analysis, instrumental variables were
carefully chosen based on stringent criteria: a linkage
disequilibrium (LD) clumping threshold of r2 < 0.001, a p-value
less than 5 × 10−8, and a physical distance threshold not exceeding
10,000 kb. We then utilized the PhenoScanner database (http://
www.phenoscanner.medschl.cam.ac.uk/) to identify and exclude
SNPs that could be associated with potential confounding factors,
such as overuse and diabetes (Ranger et al., 2016; Cannata et al.,
2021; Park et al., 2021). Ultimately, for our two-sample MR analysis,
we included 127, 223, and 74 SNPs for LDL-C, TG, and TC,
respectively. Outcome data on LE were obtained from the
FinnGen(R9), which included 4,278 patients and 275,212 healthy
controls. Detailed information on the GWAS data is provided in
Supplementary Table S1, and the SNPs for each of the three lipid
traits are listed in Supplementary Tables S2–S4.

We retrieved lipid-lowering drugs and their associated coding
genes from the DrugBank database (https://go.drugbank.com/).
From this database, we identified 10 relevant genes, including six
genes associated with lowering LDL-C and four genes involved in
reducing TG levels. Our methodology for selecting genetic variants
was in line with established research practices. Within a 100 kb
range surrounding these target genes, we identified single-nucleotide
polymorphisms (SNPs) linked to LDL-C, TG, and TC levels. These
SNPs demonstrated genome-wide significant associations in a
GWAS meta-analysis conducted by the GLGC (p < 5 × 10−8). To
further refine our selection, we clumped these SNPs at a linkage
disequilibrium (LD) threshold of r2 < 0.20 and a physical distance
threshold of 250 kb, effectively choosing them as proxies for the
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targets of lipid-lowering drugs. Following these steps, we conducted
drug-target MR studies, adhering to similar principles. We selected
coronary heart disease as a positive control in these studies to validate
the effectiveness of the genetic instrumental variables we identified.

Colocalization analysis was a key component in verifying the
validity of instrumental variable assumptions. This analysis was
crucial for confirming that the observed associations between
exposure and outcome were not confounded by different genetic
variants in linkage disequilibrium. Out of the five hypotheses
generated by this method, two warrant special attention: H3,
which posits that the two traits, although correlated, are
influenced by distinct causal variations; and H4, which suggests
that these traits are not only correlated but also share a common

causal variation. We estimated the colocalization probability by
calculating the ratio H4/(H3 + H4). A ratio exceeding 80% was
interpreted as a positive result (Zuber et al., 2022; Bi et al., 2023).

2.1 Statistical analysis

In our MR study, we utilize five methods to calculate
associations. The core methods include Inverse Variance
Weighted (IVW), MR Egger, and Weighted Median, which serve
as the primary reference methods for our analysis. We assess
heterogeneity using Weighted Cochran’s Q and MR Egger.
Additionally, the egger-intercept parameter is employed to detect

FIGURE 1
Flowchart of full-text.
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the presence of pleiotropy. The MR-PRESSO method plays a crucial
role in identifying outliers, and it allows us to provide a causal
estimate after excluding these outliers (Verbanck et al., 2018). To
ensure statistical rigor, we apply the Bonferroni correction to adjust
significance levels. For the analysis of three lipid traits, a p-value of
less than 0.016 (0.05/3) is considered statistically significant. In the
case of the ten lipid target genes, a p-value of less than 0.005 (0.05/
10) is indicative of statistical significance. “Two-Sample MR,” and
“coloc” in R (version 4.2.2) were used for all statistical analyses.

3 Results

3.1 The relationship between lipid traits
and LE

Among the lipid traits studied, LDL-C, TG, and TC were
associated with 127, 223, and 74 independent SNPs, respectively,
all exhibiting F-statistics values greater than 10 (ranging from 26 to
3,279), thus confirming their statistical validity. In our MR study

FIGURE 2
Three assumptions of Mendelian randomization.

FIGURE 3
Forest plot of the MR results for the lipids-LE.
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investigating the relationship between these three lipid traits and LE,
all applied analytical methods yielded p-values greater than 0.05.
This suggests no evidence of a causal association between the lipid
traits and LE. Moreover, the absence of heterogeneity as indicated by
the Cochran Q test and the MR-Egger heterogeneity test, along with
the MR-Egger intercept not showing signs of horizontal pleiotropy,
further substantiates the robustness of our findings. The results of
the MR analysis are detailed in Supplementary Table S5, while the
assessments for heterogeneity and pleiotropy are documented in
Supplementary Table S6. Additionally, the Forest plot illustrating
the MR results is presented in Figure 3.

3.2 The relationship between lipid-lowering
drug targets and LE

This study identified ten target genes—HMGCR, PCSK9,
ABCG5, APOB, NPC1L1, LDLR, ANGPTL3, LPL, APOC3, and
PPARA—associated with LE. Post-screening, all SNPs related to
these genes demonstrated F-values greater than 10, ranging from
34 to 138,055, ensuring robust statistical significance. We
employed coronary heart disease (CHD) as a positive control in
our MR analysis. The results indicated that eight of the drug targets
were significantly correlated with a decreased risk of CHD, thereby
validating the instrumental variables used in the study. While the
associations between NPC1L1, ANGPTL3, and coronary heart
disease did not reach statistical significance, an overall
protective trend against CHD was observed. Notably, the MR-
Egger heterogeneity test revealed heterogeneity in the
NPC1L1 target (p = 0.02). In contrast, LPL showed a significant
association with a reduced risk of LE (OR = 0.76, [95% CI,
0.65–0.90], p = 0.001). However, no significant associations
were found between LE and the other nine drug targets. The
Cochran Q test and MR-Egger heterogeneity test for all drug
targets yielded p-values greater than 0.05, suggesting a lack of

heterogeneity across the study. The MR-Egger intercept test
identified pleiotropy in the PCSK9 target (p = 0.02), but
PCSK9 was not deemed a positive drug target. Detailed data on
the ten target genes are presented in Supplementary Tables S7, S8.
Supplementary Tables S9, S10 contain the MR results for drug
targets, including tests for heterogeneity and pleiotropy.
Supplementary Tables S11, S12 display the MR results for the
positive control, along with checks for heterogeneity and
pleiotropy. The IVW method’s drug-targeted results are shown
in Figure 4. Figure 5 illustrates the MR results for the positive
control using the IVW method. Figure 6 shows the visual graph of
the drug target MR results for LPL-LE. (A) Scatter plot. (B) Funnel
plot. (C) Forest plot. (D) Leave-one-out sensitivity analysis.

3.3 Colocalization analysis

In the study of the LPL target, we extended our analysis to
include colocalization. This analysis revealed that the likelihood of a
shared causal relationship between LPL expression in the blood and
LE stands at 12.07% (H4). Conversely, the probability of there being
different causal variants was found to be 1.93% (H3). The overall
probability of colocalization, calculated as 86.2% (H4/H3+H4),
suggests a strong likelihood of shared causality. Detailed results
of this colocalization analysis are presented in
Supplementary Table S13.

4 Discussion

The findings of this MR study suggest that blood lipids are not
causally linked to LE. Furthermore, LPL emerges as a promising
drug target for treating LE. Intriguingly, the protective role of LPL in
LE seems independent of its lipid-lowering properties, indicating a
potential alternative mechanism of action.

FIGURE 4
Forest plot of the drug-targeted MR using the IVW method.
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Current research findings have not established LDL-C, TG, and
TC as risk factors for LE, aligning with conclusions from earlier
studies (Scott et al., 2015; Sayampanathan et al., 2020; Park et al.,
2021). Furthermore, recent MR studies indicate that TG is not a risk
factor for conditions such as rotator cuff syndrome and achilles
tendinopathy (He et al., 2022; Cao et al., 2023). Given that LE is
categorized as a type of tendinopathy, these findings imply a lack of
causal link between TG and LE. Our MR study specifically addresses
this research gap, providing valuable insights into the relationship
between these factors and LE.

The LPL gene is located on human chromosome 8p22, encoding
448 amino acids and comprising 10 exons (spanning 30 kb)
interspersed with nine introns (spanning 6 kb) (He et al., 2018).
LPL is ubiquitously expressed in the capillary endothelium of all
tissues, where its primary function is to hydrolyze TG into glycerol
and free fatty acids (FFA), which are then absorbed by tissues
(Geldenhuys et al., 2017b). The gene is most abundantly expressed
and active in adipose tissue, skeletal muscle, and the heart, while its
expression is comparatively lower in other tissues (Chang, 2019). LPL
exhibits tissue-specific physiological roles: in skeletal muscle, it
facilitates the breakdown of plasma lipoproteins, reducing plasma
TG and providing FFA for oxidative energy production, whereas in
adipose tissue, the FFA generated is preferentially directed toward lipid
storage (Li et al., 2014). Environmental factors such as fasting/feeding,
exercise, and cold exposure can modulate LPL protein levels and
activity, thereby channeling fatty acids to specific cells according to
their energy requirements (Wu et al., 2021). Furthermore, LPL
expression is tightly regulated at both the transcriptional and
translational levels through multiple complex mechanisms (Kersten,
2014; Geldenhuys et al., 2017b).

In our study, we discovered that LPL is linked to a lower risk of
LE. This contrasts with ANGPTL3 and APOC3, which, despite also
lowering TG, do not show a similar association. This leads us to
hypothesize that the protective effect of LPL against LE might not be
related to its lipid-lowering properties but rather to its role in

reducing inflammation. Recent research over the past decade has
emphasized the significant involvement of inflammatory cells and
mediators in the progression of tendinopathy (Dakin et al., 2014;
Millar et al., 2017). The literature describes the initial phase of LE as
an acute inflammatory response, which precedes changes in tissue
structure, such as angiogenesis and disordered collagen fiber
alignment (Ackermann and Renström, 2012; Ahmad et al., 2013).
Confirming this, a color Doppler ultrasound study on LE identified
the presence of inflammation (Torp-Pedersen et al., 2008). Cells
associated with inflammation, including macrophages, mast cells, B
lymphocytes, and T lymphocytes, heavily infiltrate the affected area,
releasing inflammatory factors like Interleukin-1 (IL-1), Interleukin-
6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Tumor
Necrosis Factor-beta (TNF-β). This leads to increased activity in
the Nuclear Factor-kappa B (NF-κB) pathway, triggering an
inflammatory cascade (Han et al., 2012; Millar et al., 2021).
Beyond its triglyceride-lowering function, LPL has been reported
to suppress the release of inflammatory factors such as TNF-α, IL-6,
and Cyclooxygenase-2 (COX-2) by inhibiting NF-κB activation,
thereby mitigating inflammation (Kota et al., 2005; Takasu et al.,
2012). This inhibition of inflammation may be a key mechanism
through which LPL treats tendinopathies.

Discovered in the early 1990s, NO – 1886 (Ibrolipim) is an
established LPL activator. It effectively increases LPL mRNA levels
in tissues, boosts the concentration of LPL protein in plasma
following heparin administration, and enhances LPL activity. In
addition, NO – 1886 has been shown to lower plasma triglyceride
levels in animals with lipid disorders (Yin et al., 2004; Geldenhuys
et al., 2017a). Animal studies further reveal that this compound
significantly reduces 29 types of cellular inflammatory factors,
including IL-1, IL-6, and TNF-β, among others. It also
suppresses the expression of most pro-inflammatory cytokines in
adipose tissue, leading to reduced tissue inflammation (Cai et al.,
2006). Evidence suggests that NO – 1886 primarily targets LPL in
skeletal muscle (Kusunoki et al., 2005), indicating its potential to

FIGURE 5
Forest plot of the MR results for the positive control using the IVW method.
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mitigate tendon inflammation. Our study findings also demonstrate
that ANGPTL3 inhibitors display a protective trend against LE, with
an odds ratio of 0.54 ([95% CI, 0.35–0.84], p = 0.006). Moreover, the
literature indicates that ANGPTL inhibitors enhance LPL activity,
urging further exploration of the link between ANGPTL3 and LE.
The newly reported drug molecule C10d exhibits at least double the
LPL activation efficiency of N0-1886 and can reverse the inhibitory
effect of ANGPTL on LPL, increasing its investigative potential
(Geldenhuys et al., 2014; 2017b). In conclusion, drugs that activate
LPL may prevent LE by inhibiting the release of inflammatory
factors. However, further cellular and molecular-level studies are
needed to explain this result, and high-quality clinical research is
also crucial.

It is important to note that drug-target MR results suggest an
association between PCSK9 inhibition and an increased risk of LE
(OR = 1.36, [95%CI, 1.06–1.75], p = 0.014), a finding that may appear
counterintuitive. However, this result demonstrates pleiotropy (p =
0.02, Supplementary Table S10), implying the presence of
confounding factors that invalidate the conclusion. The
relationship between PCSK9 inhibition and inflammation remains
a subject of debate. Seidah et al. reported that PCSK9 inhibition

suppresses TLR4/NF-κB signaling, leading to the inhibition of
inflammatory mediators (Seidah and Prat, 2021). Similarly, Ding
et al. found that PCSK9 inhibition reduces the inflammatory
response by suppressing toll-like receptors (TLRs), the
NLRP3 inflammasome, and the NF-κB pathway (Ding et al.,
2022). Conversely, Pradhan et al. observed that in a cohort of
9,738 patients treated with PCSK9 inhibitors for 14 weeks, 47.2%
exhibited residual inflammatory risk, with high-sensitivity C-reactive
protein (hs-CRP) levels ≥2 mg/L during treatment (Pradhan et al.,
2018). Given the inconclusive relationship between PCSK9 inhibition
and inflammation, coupled with the lack of a positive drug target MR
result in this study, further research is needed to clarify the connection
between PCSK9 inhibition and LE.

This study possesses several limitations. Primarily, our reliance
on data from FinnGen as the exclusive outcome may lead to certain
biases. Additionally, the absence of RCTs focusing on the risk factors
for lateral epicondylitis limits the breadth of our analysis. In
excluding confounding SNPs, we specifically targeted those
associated with overuse and diabetes, which could introduce bias
stemming from subjective selection. Finally, as our study population
was predominantly European, it is important to consider that the

FIGURE 6
The visual graph of the drug target MR results for LPL-LE. (A) Scatter plot. (B) Funnel plot. (C) Forest plot. (D) Leave-one-out sensitivity analysis.
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findings might not be universally applicable across different
ethnic groups.

5 Conclusion

Low-density lipoprotein cholesterol, triglycerides, and total
cholesterol are not risk factors for lateral epicondylitis. Moreover, we
identified lipoprotein lipase (LPL) as a potential therapeutic target,
suggesting its importance in preventing and treating this condition.
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