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While it is important to find the key biomarkers and improve the accuracy of
disease models, it is equally important to understand their interaction
relationships. In this study, a transparent sparse graph pathway network
(TSGPN) is proposed based on the structure of graph neural networks. This
network simulates the action of genes in vivo, adds to prior knowledge, and
improves the model’s accuracy. First, the graph connection was constructed
according to protein–protein interaction networks and competing endogenous
RNA (ceRNA) networks, from which some noise or unimportant connections
were spontaneously removed based on the graph attention mechanism and hard
concrete estimation. This realized the reconstruction of the ceRNA network
representing the influence of other genes in the disease on mRNA. Next, the
gene-based interpretation was transformed into a pathway-based interpretation
based on the pathway database, and the hidden layer was added to realize the
high-dimensional analysis of the pathway. Finally, the experimental results
showed that the proposed TSGPN method is superior to other comparison
methods in F1 score and AUC, and more importantly, it can effectively display
the role of genes. Through data analysis applied to lung cancer prognosis, ten
pathways related to LUSC prognosis were found, as well as the key biomarkers
closely related to these pathways, such as HOXA10, hsa-mir-182, and
LINC02544. The relationship between them was also reconstructed to better
explain the internal mechanism of the disease.
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1 Introduction

Lung cancer is one of the most commonmalignant tumors in the world and is related to
high morbidity and mortality (Siegel et al., 2021). Approximately 85% of patients suffer
from non-small cell lung cancer (NSCLC), of which lung squamous cell carcinoma (LUSC)
and lung adenocarcinoma (LUAD) are the twomost common subtypes (Herbst et al., 2018).
In addition, because lung cancer has a complex molecular mechanism, it is a heterogeneous
disease which involves a complex interaction between genes and the environment.
Therefore, targeted therapy may not be effective for patients, and it leads to significant
differences in the prognosis of patients with the same type of cancer (Dagogo-Jack and
Alice, 2018). Therefore, it is necessary to develop a more accurate method based on the
internal mechanism of molecular features for the research and analysis of lung cancer and to
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mine effective biomarkers from it. This is very important for
individual treatment decisions and targeted treatment.

Because of the complexity of lung cancer, a multi-omics
methodology will be more beneficial for capturing the
potential molecular correlation and key genes in lung cancer.
Among these, the ceRNA network embodies this well, including
for mRNA, miRNA, and lncRNA. It not only contains a variety of
data with their interactions but also imitates the regulation
relationship between RNAs and makes the results more
biologically interpretable (Salmena et al., 2011). Using the
ceRNA network as prior knowledge or a premise, the
information obtained will be more accurate than using single
datum. For example, Li et al. (2021) annotated DE lncRNAs and
mRNAs through gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis, and obtained
ceRNA networks related to prognosis by using bioinformatics
analysis tools such as Kaplan–Meier (KM) survival analysis and
the LUAD database in the Cancer Genome Atlas (TCGA); they
finally identified potential biomarkers.

However, traditional statistical or bioinformatics analysis needs
to be adapted to different cancer types, and such methods still have
some limitations in high-dimensional analysis and screening
representative features. The application of graph neural networks
(GNNs) in the field of bioinformatics has been a popular in recent
years; it can effectively construct protein–drug or protein–protein
interaction (PPI) networks and has good explanatory power.
Therefore, it is feasible to obtain the interaction relationship
between genes through GNNs. For example, Bastian et al. (2022)
obtained an explainable GNN connection through the disease
subnetwork detection algorithm, which determines the
connection between genes using PPI combined with multi-omics
data such as gene expression data and methylation data. A
community with the highest score, or sub-network, is then
calculated by the community detection algorithm according to
the obtained edge weights. However, the choice of its community
still needs the help of existing connections, and it is impossible to
predict the possible relationship. Kang et al. (2022) proposed a GNN
based on link representation to predict molecular association, which
obtained gene embeddings through an encoder combined with a
biological network to reconstruct the network through a decoder
while the network is still a black box model and its explanation
is not good.

Therefore, in order to improve the biological interpretability of
the model, biological pathway data should be integrated into the
network. This can not only incorporate the existing biological
knowledge into the model but also can determine the internal
biological processes involving the pathways and the
corresponding genes and protein (Jin et al., 2014; Kim et al.,
2012). It can also explain the experimental results based on the
pathway, which has a more intuitive and comprehensive
understanding of the molecular mechanism related to function.
For example, Elmarakeby et al. (2021) developed a P-NET model to
discover key genes related to the prostate, constructing a progressive
network model using the existing biological knowledge and
combining multi-omics-related information to realize a network
with internal nodes giving complete transparency and knowledge.
However, its construction needs the help of biological knowledge
and experiments which may not be obtainable or possible.

In order to solve these issues, we here propose a transparent
sparse graph pathway network (TSGPN) model based on a GNN.
First, the network connection was initialized according to a
ceRNA network, PPI network, and multi-omics information,
and the final trend of the network was set as mRNA—the final
influence of other genes on mRNA. Second, the mRNA was
connected to its corresponding pathway to form a pathway
neural network according to the pathway database so that the
gene could be effectively explained by the corresponding
pathway. Finally, the hard concrete estimation algorithm was
used to continuously remove the interfering connections in the
initialized network to predict the connection during the iterative
process, leaving sparse and obvious key biomarkers as well as
their interactions.

2 Materials and methods

In this section, the detailed method descriptions are given and
the overall flowchart is shown in Figure 1, including the data
preprocessing stage, network construction, and iterative rules.

2.1 Feature selection

Bio-interpretability requires that the output of the algorithm is
sparse, which also shows that only a few genes play a key role in the
disease. Therefore, the feature selection of the input data should not
only be consistent with biological characteristics but also help
improve the accuracy and speed of the algorithm.

In this study, the improved non-negative matrix factorization
(NMF) algorithm was used to extract features from the input data;
this is an effective analysis method for processing large-scale data,
and it is also currently the mainstream decomposition algorithm in
biology, with good biological interpretability. Compared with
traditional algorithms, it has obvious advantages in simplicity,
decomposition form, and interpretability of decomposition results
(Paatero and Tapper, 1994).

In order to pay more attention to the correlation between data in
decomposition, the interaction matrix of the ceRNA network was
added as prior knowledge, including mRNA-miRNA and miRNA-
lncRNA, in which the up-/downregulation information of genes
obtained in the differential analysis stage was used to add weight to
these correlations. In particular, we used Equation 1 to calculate the
values in the interaction matrix; only the connected relationship
existing in the ceRNA network was calculated.

aij, bij � −e− r1i| |− r2j| || |, if r1i p r2j < 0,

e− r1i| |− r2j| || |, if r1i p r2j > 0

⎧⎨⎩ (1)

where aij represents the elements in interaction matrix A between
mRNA and miRNA, and bij represents the elements in interaction
matrix B between lncRNA and miRNA. They are in a competitive
relationship in the ceNRA network. mRNA and lncRNA will give
miRNA. r1i and r2j represent the logFC values calculated by DEseq2
(Love et al., 2014) on the ith and jth gene.

In addition, the kernel function method was used to map the
data into high-dimensional space so as to find some potential key
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genes. Based on the kernel joint non-negative matrix factorization
proposed by Salazar et al. (2021), each kind of data XI is mapped
into the high-dimensional space ∅(XI). The kernel function kIJ �
e−(

‖XI
i
−XJ

j
‖2

2σ ) is used to represent the distance between these two kinds
of data, in which I and J represent two different kinds of data, i and j
represent the column of matrix, and σ is used to set the control range
of the kernel function. The objective function is given in Equation 2
as follows:

τ Q1, Q2, Q3, H1, H2, H3( )

� min ∑3
I�1

Tr kI − kIQIHI −HT
I Q

T
I kI +HT

I Q
T
I kIQIHI( )(⎛⎝

+α HIH
T
I − II





 



2F( ))) − λ1Tr H2AH
T
1( ) − λ2Tr H2BH

T
3( )

+r1∑3
I�1

QI‖ ‖2F + r2∑3
I�1

HI‖ ‖1

+w QT
1 k1Q1 − QT

1 k12Q2 − QT
2 k21Q1 + QT

2 k2Q2( )
+w QT

1 k1Q1 − QT
1 k13Q3 − QT

3 k31Q1 + QT
3 k3Q3( )

+w QT
2 k2Q2 − QT

2 k23Q3 − QT
3 k32Q2 + QT

3 k3Q3( ), (2)

where kIJ � ∅(XI)∅(XJ), and kI is the abbreviation for kII.
The origin matrix kI is decomposed into kIQIHI, and w is used to
control the similarity between ∅(XI)QI matrices in which the
iterative formulas of QI and HI can be obtained according to the
Lagrange multiplier method and KKT conditions.

Next, the module with the highest correlation was selected by
disease enrichment analysis, and the module elements were selected
by the method proposed by Deng et al. (2021). The Z-score
transformation was used for the method expressed as
Zij � (hij − μi)/σ i, where hij is the element value in each module,
μi is the mean value of each module, and σ i is the standard deviation
of each module. For each element hij, if its Z-score value is greater
than the threshold T, this element is considered a prominent feature
in this module.

Finally, using the K value of 42, module 5 was selected as the
feature selection module, and 88 mRNA, 19 miRNA, and
208 lncRNA in this module were obtained. They were spliced
into a large matrix X which was used as the input of the
subsequent algorithm.

2.2 Sparse graph neural network with ceRNA
and PPI

Although key genes can be obtained by feature selection, the
relationship between them and the mechanism of their mutual
operation are not very clear. In the previous method, the
relationship was expressed by calculating the Spearman
correlation between genes. In this study, a fully connected
network of mRNA–miRNA and miRNA–lncRNA will be
established in the initial state by constructing a GNN, and the
redundant links will be removed through gradual iteration so as to

FIGURE 1
Overall flowchart of the transparent sparse graph pathway network, the end of each step corresponding to the beginning of the next. In A, the key
biomarkers are obtained from the original data through theNMF algorithm, element selection, andmodule selection operations as the input of themodel.
In B, all the key biomarkers will be fully connected, the interaction between each gene can be obtained through side screening, and the affected mRNA
can be obtained through simulated propagation. In C, the mRNA is trained by a pathway neural network, and the result is output.
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rebuild the ceRNA network. Based on the method proposed by Ye
and Ji (2023), we added the ceRNA and PPI networks to improve
and consider their characteristics. The network was then spread
twice to conform to the mechanism of ceRNA.

In order to realize the edge removal operation, a binary
parameter was attached to each edge to determine whether to
reserve this edge for neighbor aggregation, these removed edges
being noise data or unimportant edges.

_E � E ⊙ Z,Z ∈ 0, 1{ }M, (3)
where E represents all edges in graph G, including the PPI, ceRNA,
and gene full connection networks, and M is the number of edges
in graph G.

Based on the principle of a graph convolution network (GCN)
(Kipf and Welling, 2017) and following the neighbor clustering
mechanism, the low-level features of nodes and their neighbors was
aggregated, generating a new high-level feature representation to
realize feature extraction. Its encoder function is expressed in
Equation 4 as follows:

f X,E,W( ) � σ ÊXW( ), (4)

where σ is the activation function and W is the weight of the GCN
network. Ê � D̂

−1/2
ÊD̂

−1/2
, and D̂ii � ∑

j

Êij. It can also be expressed
in Equation 5 as

h l+1( )
i � σ ∑

j∈Ni

Êijh
l( )
j W l( )⎛⎝ ⎞⎠, (5)

where l represents the number of layers. h(l+1)i represents the hidden
value of node i at layer l + 1, and h(0) � X. Ni denotes all the
neighbors of node i not including itself.

Because the association strength between different genes differs,
a graph attention network (GAN) (Velikovi et al., 2017) was added
to the algorithm to find the most influential connection; this has
achieved good results in many neural network tasks (Xu et al., 2015;
Bahdanau et al.). The attention mechanism can give different
weights to the edges so that the algorithm can pay more
attention to the edges with larger weights and extract more
significant features.

Therefore, it is necessary to define a value for each edge. Because
the relationship between genes is determined by genes, the value of
an edge can be determined by the two vertices connected by this
edge. The value of each edge is defined as the sum of the values of its
two vertices as shown in Equation 6.

Eij � XNi +XNj, (6)

whereXNi represents the feature value when the node is i. In order to
control the value of the edge between 0 and 1, each edge is
normalized in Equation 7 as follows:

eij � normalize Eij, Zij( ) � EijZij

EkjZkj.
(7)

The edge value is only calculated at the beginning of each
training, and the subsequent convolution operation only uses the
edge value at the first calculation. Therefore, after passing through
the GNN layer and secondary convolution, the final value is
obtained by Equation 8

h 3( ) � h 0( ) + h 1( ) + h 2( ), (8)
where h(3) is used in the following pathway neural network (PNN),
in which only the involved mRNA will be preserved.

2.3 Gradient estimation of discrete value Z

Because Z is a binary mask, its value is not differentiable, so it is
necessary to use an approximate algorithm to solve this problem.
The hard concrete gradient estimator is an algorithm with good
effect and relatively simple implementation. It uses a
reparameterization trick to approximate Equation 3 by a close
surrogate function in Equation 9:

_E � Eu~U 0,1( ) E ⊙ g(( σ log u − log 1 − u( ) + log α( )/β( ) ζ − γ( ) + γ))
g ·( ) � min max 0, ·( ), 1( )

log α � attn lNi ·XNi + attn_rNj ·XNj, (9)

where attn l and attn r are the learning parameters, and
β � 2/3, γ � −0.1, ζ � 1.1. These are the typical parameter values
of the hard concrete distribution, more details of which can be found
in Louizos et al. (2018).U(0, 1) is a uniform distribution in the range
of [0,1]. σ is the activation function σ(x) � 1

1+e−x. In the testing stage,
the above formula changes Equation 10 as follows:

_E � E ⊙ σ log α/β( ) ζ − γ( ) + γ( ). (10)

Due to the hard concrete gradient estimator, the binary
parameter Z changes to a continuous value from 0 to 1, and
most of the edges will be deleted to form a sparse network
through iteration. In addition, the loss of the GNN in Equation
11 needs to be calculated for optimization as follows:

lossGNN � λ1 ∑
i,j( )ϵN

σ log αij − β log
−γ
ζ

( ), (11)

where λ1 is a regularization hyperparameter that controls the degree
of edge sparseness.

2.4 Pathway neural network

Similar to a GNN, a PNN is also a simulation of a biological
process, providing the biological interpretability of a neural network.
It consists of an input layer (representing genes), a biological
pathway layer associated with genes, a hidden layer of the
relationship between biological pathways, and an output layer of
final results.

The mRNA with pathways in h(3) was used as the data of the
input layer, where each input node represents an mRNA gene. Each
node in the pathway layer represents an independent biological
pathway, and its connection with genes (that is, the upper layer) is
obtained through the biological pathway database. There are only
one or more genes on each pathway. Therefore, the subsequent
analysis can also explain the model from the perspective of the
pathway based on the pathway layer. However, the biological
pathways do not play a role by themselves; biological systems
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include multiple interacting biological pathways so that the
interaction between different paths can be expressed by
connecting to the same node in the hidden layer, where the
hidden layer represents the biological nonlinear association
between paths. Finally, the posterior probability is calculated at
the output layer. The output layer contains two nodes representing
different results of the model. Through the continuous improvement
of the accuracy of the model, the continuous changes in the network
can be revealed. The following Equation 12 is the forward
propagation formula of the PNN.

h l+1( ) � a W l( ) p P l( )( )h l( ) + b l( )( ), (12)

where a is the activation function, being RELU when l � 3, 4 and
SOFTMAX when l � 5. P is a mask matrix which only works when
l � 3. It is expressed as the connection between mRNA and pathway,
which is predefined and will not change with the iteration of the
neural network. * represents element-wise multiplication. W and b
are the weight matrix and bias vector of the PNN, respectively.

For the imbalance of data, it is necessary to improve the cost
function and use focal loss (Lin et al., 2020) in Equation 13 to solve
this problem.

F � 1
K
∑K
i�1
μi 1 − pti( )τc yi, ỹi( )

lossPNN � F + 1
2
λ2 W‖ ‖2, (13)

where c(·) represents the cross-entropy loss function, yi represents
the label value of sample i, and ỹi represents the predict value of
sample i; pti represents the difficulty of sample i. If the predicted
value is close to the real value, pti is close to 1, which means that this
sample is easy to predict and the weight is smaller, so the algorithm
can pay more attention to the samples that are difficult to predict. τ
is used to control the degree of pti action, and μi is used to balance
the data. K represents the number of samples, ‖W‖2 represents a
L2 − norm of W, and λ2 is a regularization hyperparameter.

Therefore, according to the loss function formulas of the GNN
and PNN, the final backpropagation formula is given as in Equation
14 follows.

W l( ) ← 1 − ηλ2( )W l( ) − η
∂F

∂W l( ) − η
∂lossGNN

∂W l( )

b l( ) ← b l( ) − η
∂F
∂b l( ) − η

∂lossGNN

∂b l( ) , (14)

where η is a learning rate.

3 Results

3.1 Data source and preprocessing

Six diverse kinds of data were used in this study. The clinical
prognosis data of LUSC was used as a predictive label to analyze the
genetic relationship within lung cancer and its influence on
prognosis. Multimodal data are involved in which X1 stands for
mRNA, X2 stands for miRNA, and X3 stands for lncRNA in the
experiment. A total of 551 transcript data and 523 miRNA
sequencing data were downloaded from the TCGA databases

(https://portal.gdc.cancer.gov/), containing both health sample
data and LUSC patient data. In order to maintain the
consistency of data dimensions in the calculation process,
411 cases co-existing in the three kinds of data were selected. In
addition, the downloaded data also include survival time and status.
Patients who survived for more than 24 months were regarded as
good prognosis samples (GP), and patients who died within
24 months were regarded as poor prognosis samples (PP),
regardless of whether they survived later. Patients whose survival
time was less than 24 months and who were still alive were excluded
from the experimental data and were regarded as censored data.
Finally, a total of 188 GP and 100 PP samples were obtained, of
which PP patients accounted for about 35% of the samples, making
this data unbalanced.

All human biological pathway data were extracted from the
biological pathway data of the Molecular Signatures Database
(MSigDB) (Liberzon et al., 2015). Only the data of biological
pathways containing at least ten genes were kept because large
pathways usually include small pathways. These genes are mRNA
data after feature selection, and if there was biological pathway data,
this gene was reserved as the input of the algorithm. After that, we
constructed the biological pathway mask matrix P, in which the
genes existing in the biological pathway are set to 1, or otherwise 0; a
total of 428 fixed gene-biological pathway connections
were obtained.

Human protein links information was obtained from the String
Database (https://string-db.org). All links involving genes were
screened out, obtaining a total of 38,284 items of PPI network data.

3.2 Construction of the ceRNA network

The mRNA and lncRNA data were first isolated from the
transcript data. The Deseq2 R package developed by Love et al.
(2014) was then used to analyze the differences between the three
kinds of gene and identify the significant genes for subsequent
processing to improve the accuracy of the algorithm. By using the
thresholds of |logFC|>2 and p-value<0.05, 3347 characteristic
mRNA expressions, 168 characteristic miRNA expressions, and
2,282 characteristic lncRNA expressions were obtained.

In order to determine the regulatory relationship between genes,
miRNA data related to DElncRNA were identified from the
“mircode” database (Jeggari et al., 2012) to obtain the
miRNA–lncRNA relationship pair. Then, the “starbase” database
(Li et al., 2014) was used to label miRNA with 3P and 5P to find the
target mRNA of miRNA in the miRDB (Wong and Wang, 2015),
miRTarBase (Chou et al., 2016), and TargetScan (Garcia et al., 2011)
databases. Lastly, their intersections were obtained, and
miRNA–mRNA relationship pairs were obtained to construct
ceRNA networks.

3.3 Experimental setting

Following the design idea of the neural network, its parameters
were determined and adjusted by repeated experiments for accuracy
as the reference standard before random validation. The learning
rate was η = 0.0001, λ_1 = 0.1, and λ_2 = 0.0004. The adaptive
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moment estimation (“Adam”) was used as the optimizer (Kingma
and Ba, 2014). Each training had a batch size of 64, with a total of
350 iterations. In addition, the number of nodes in each layer of the
neural network needed to be consistent with the actual number to
ensure the interpretability of the model. For example, the biological
pathway layer had 1,104 nodes because there were 1,104 pathways in
total. The hidden layer had 500 nodes, which was the best parameter
obtained by increasing the number of nodes in the experiment.
Finally, using pyTorch as a tool to build a neural network
framework, DGL was used to build the GNN. The source code is
available at https://github.com/safu-HL/ISGPN, and the result can
be copied.

3.4 Result and comparison

Through five repetitions of ten-fold random validation, the
average accuracy of TSGPN was 68.2758%, of which the
verification and the test sets accounted for 10% each, and the
training set accounting for 80%. In order to further evaluate the
performance of TSGPN, we compared it with the support vector
machine (SVM), random forest (RF), and Lasso logistic regression
(LLR). We also compared this algorithm without feature selection
(N-TSGPN) to show the importance of feature selection. These
algorithms were repeatedly calculated to obtain the best parameters.
For the reproducibility of the results, the calculated results were
obtained by ten-fold random validation. The average and standard
deviation of the data on each fold were calculated to
standardize the data.

For N-TSGPN, all involved genes were added to GNN,
and the weights of the edges were distributed by
matrix operation. Specifically, each batch of data X �
[X1, X2, ..., Xlnc, Xlnc+1, ..., Xmi, Xmi+1, ..., Xm] contained vectors of
lncRNA, miRNA, and mRNA, respectively. We multiplied
lncRNA with miRNA and miRNA with mRNA and performed
SoftMax on each column to determine the weight of each edge
between different genes; the sum of the weight values was 1. This is
obviously similar to a fully connected network. Thence, the
prediction performance of this algorithm was evaluated by using
the area under the curve (AUC) and F1-scores. The receiver
operating characteristic (ROC) curve is drawn in Figure 2 to
check the accuracy of the details of the algorithms. The following
indexes in Equations 15–18 are usually used to compare the
performance of several prediction models.

Accuracy � TP + TN

TP + TN + FP + FN,
(15)

Recall � Sensitivity � TP

TP + FN
, (16)

Specificity � TN

TN + FP,
(17)

Precision � TP

TP + FP
, (18)

The results of algorithm comparison and calculation are shown
in Table 1. It can be seen from there that the proposed TSGPN
method is superior to other algorithms in average AUC and F1-
score. The top algorithms are all nonlinear, which indicates that the
relationship between genes requires deeper mining; the model that

can capture the nonlinear relationship will have more advantages.
Compared with N-TSGPN, the accuracy of TSGPN with feature
selection has been greatly improved, ensuring the sparsity and
interpretability of the algorithm and also demonstrating the
importance of feature selection. Moreover, the accuracy of cancer
prognosis prediction is generally not very high. For example, Zhang
et al. (2023) used a local augmented GNN (LAGProg) to enhance the
model’s ability to express multi-omics characteristics. This extracts
the features in the omics data and biological network that meet the
enhancement conditions and then feeds the enhanced features and
original features back to the prognosis prediction model. By
verifying different data sets, it was concluded that the C-index
values of the model with LAGProg increased by 8.5% on average,
but the accuracy of most data was still between 0.6 and 0.8, and the
accuracy of LUSC was 0.625.

In order to illustrate the performance difference between
TSGPN and other algorithms, the Wilcoxon signed-rank test, a
non-parametric paired bilateral test, was used in this study. First, it is
assumed that TSGPN is not much different from other methods
(H0). Then, the predicted values after the algorithm operation were
used as data and were tested with the predicted values of TSGPN
respectively using the Wilcoxon signed-rank test. As shown in
Table 2, TSGPN rejects the original hypothesis H0 at the
significance level of 5% (p-value<0.05)—the performance of
TSGPN is obviously superior to other algorithms, which is
statistically significant.

FIGURE 2
ROC curves of each algorithm.

TABLE 1 Comparison of AUC and F1-SCORE.

Model AUC F1-score

TSGPN 68.2758 0.4505

N-TSGPN 61.7641 0.1333

SVM 65.5172 0

LLR 52.4138 0.3268

RF 64.1379 0.1725

LAGProg 62.5 0
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4 Discussion

In this section, the results of the algorithm are fully explained
and visualized. Because the meaning of each node is defined at the
beginning of designing the model, every step in the algorithm can be
explained. According to the sequence of the algorithm, the strong
and weak connections between key biomolecular markers, the
possibility of genes corresponding to biological pathways, and the
mutual combination of pathways are displayed. We use particular
analyses to obtain the possible reasons and explanations of the
results of the algorithm, such as a key biomolecule marker, cell
activity in biological pathways, or their combination.

4.1 Prediction, reconstruction, and analysis
of ceRNA network

Through the continuous iterations of the model, the sparse
network with the accurate values of connections between nodes is
obtained. The number of edges dropped from 842 to 340, which
greatly helped identify and explain important edges. The top edges
are sorted according to the weight values (Figure 3). By analyzing the
up- and downregulated genes in the network and the connection
trend of genes, the possible key biomarkers of LUSC prognosis can
be predicted.

Four modules are obtained, two of which have a complete
ceRNA network, while the other two lack lncRNA. An extensive
literature search found that most of the genes in Figure 3 have
different effects on the prognosis of lung cancer. Using this evidence,
other genes in the algorithm results are more likely to be verified by
biologists, which provides a reference for the key biomarkers of
LUSC prognosis. Module A contains the LINC02544 lncRNA, the
upregulation of which enhances the proliferation, migration, and
invasion of LUSC cells (Wei et al., 2022). Therefore, it may be
possible to obtain the biomarkers for the prognosis or target
treatment of LUSC by identifying the downregulated genes
associated with it in Figure 3. In particular, the weights of
LINC02544 and hsa-mir-486-1/hsa-mir-486-2 are 0.33 and
0.25 respectively, in which hsa-mir-486-1 and–2 belong to the
same miRNA family. These can affect mRNA stability and
translation to regulate gene expression after transcription in
multicellular organisms. The TGF-beta signal can induce EMT
and plays an important role in it. The overexpression of hsa-mir-
486 can suppress TGF-beta-induced EMT as well as the migration
and invasion of NSCLC cells (Chen et al., 2019). The low expression
of hsa-mir-486 in LUSC may be used as an anti-cancer gene and is
an important biomarker. The overexpression of SELENBP1 is
obviously related to hsa-mir-468-2, showing an inhibitory effect
on NSCLC (Zhu et al., 2023). More importantly, the downregulation
of SELENBP1 is an early event of LUSC, which increases bronchial
epithelial cell transformation and may be used as a new potential
biomarker for the early detection of LUSC (Zeng et al., 2013). In
addition, it was found that C1orf116 has a high weight and is closely
related to the EMT process, which may be a key early event in tumor
metastasis. The low expression of C1orf116 is related to the poor
prognosis of lung cancer (Parsana et al., 2017).

In module D, the intricate gene relationship in the ceRNA
network is well displayed. Ma et al. (2019) identified the

TABLE 2 Wilcoxon signed-rank tests.

W statistic p-value

TSGPN vs SVM 6.5393 6.18e-11

TSGPN vs LLR 3.8334 1.26e-04

TSGPN vs RF 5.6373 1.73e-08

FIGURE 3
Reconstruction diagram of the ceRNA network based on GNN prediction. Most of the weights are over 0.6. Oval nodes represent mRNAs; square
nodes represent miRNAs; diamond nodes represent lncRNAs. Red/green indicates that the gene is up-/downregulated in the patient for healthy, and
weight represents the strength of the relationship between them. A total of four modules, (A–D), are obtained for the following analysis.
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relationship between hsa-mir-144 and HOXA10, which proved
the reliability of the proposed algorithm. They found that
HOXA10 would be downregulated in response to
the overexpression of hsa-mir-144, while inhibiting
LINC00466 would reduce its binding with hsa-mir-144, thus
upregulating the latter. The upregulation of hsa-mir-144 and
downregulation of HOXA10 exert an inhibitory role in
tumorigenicity, invasion, migration, and proliferation and also
promote the apoptosis of LUAD cells. Therefore, hsa-mir-144 is a
potential biomarker, and LINC00466 still exists in the remaining
connections, although it does not appear in module D. In
addition, the overexpression of HOXA10 is closely related to
the clinical stage of LUSC, which plays a key role in non-small cell
carcinoma; this effect is more obvious in LUSC than in LUAD
(Guo et al., 2019). At the same time, other genes in the module
also show effects on lung cancer, such as KPNA2 and SLC7A11,
and their overexpression can promote the growth of cancer cells
(Zhou et al., 2017; Liu et al., 2020).

Moreover, several pairs of mRNA–miRNA relationships
with greater weight were found. For example, Luo et al.
(2018) found that hsa-mir-182 played an important role in
LUSC and revealed the molecular mechanism of LUSC
through the PPI network, GO, and KEGG enrichment
analysis. Among these, PRKCE is located in the center of the
PPI network, which has a strong influence on molecular
mechanism. Tan et al. (2011) identified a 5-mircroRNA
classifier to distinguish LUSC and normal tissues, including
hsa-mir-182 and hsa-mir-486. The high expression of hsa-mir-
31 was also related to the low survival rate of LUSC. This showed
that these genes play a representative role in LUSC. On the
whole, determining the relationship in the ceRNA network
through GNNs can help us analyze the interaction between

genes and find potential biomarkers. The above analysis also
demonstrates the accuracy of the results and provides a possible
scheme for the search for targeted genes.

4.2 Analysis of LUSC based on the
biological pathway

Through the GNN network, we can identify the key mRNA
genes according to their weights and then analyze the internal
mechanism of LUSC in terms of molecular pathways and genes.
For each biological pathway, the absolute values of weights of the key
genes are calculated and added, and the top ten are selected as the
main pathways.

FIGURE 4
Weights between genes and ten top-ranked pathways. The key genes of each pathway are determined by the biological pathway database, in which
the sum of absolute values of the key gene weights is the largest in the first pathway.

FIGURE 5
Weights of the output layer with the ten top-ranked hidden
nodes. The upper layer represents the output with good prognosis,
and the lower layer represents the output with poor prognosis. Their
proportion is consistent with the proportion of overall data.
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Figure 4 shows the weight between biological pathway and
gene. The first pathway from top to bottom has the most obvious
relationship with genes and is arranged in descending order. The
“REACTOME SIGNALING BY INTERLEUKINS” pathway
corresponds to IL33, which shows good diagnostic
performance for NSCLC (Hu et al., 2013). Similarly, the
expression of SLC39A4 is significantly correlated with tumor
size and overall survival in the “REACTOME ZINC
TRANSPORTERS” pathway (Wu et al., 2017). SLC39A8 and
SLC39A4 are both a kind of zinc transporter. In addition, the
content of diacylglycerol in the “REACTOME
INTRACELLULAR SIGNALING BY SECOND MESSENGERS”
pathway can be used as a biomarker for the early detection and
prognosis monitoring of LUSC (Casamassima et al., 1996).
Interestingly, LUSC is more dependent on glucose than LUAD
in the “FATTY ACIDS” pathway, and the genes related to the
fatty acid metabolism have also increased (Leitner et al., 2022).
LUAD’s metabolism is more flexible, and metabolic adjunct
therapy may be more successful in LUSC than LUAD. Genes
related to the “METABOLISM OF LIPIDS” pathway are PTGIS
and HRASLS, and they are also related to tumor immunity (Lei
et al., 2023). Another metabolite, adenosine diphosphate, is
helpful for hemostasis, angiogenesis, cell proliferation, and
metastasis, which occurs in the HEMOSTASIS pathway and
may be a potential therapeutic target (Hoang et al., 2019). In
summary, the pathways related to LUSC include interleukin,
protein cells, lipid metabolism, and immune system pathways.

Next, we show the weights in the hidden and output layers in
Figure 5 revealing the different weight patterns of the two output
neurons. We select the top ten hidden layer nodes with the largest
output difference, which represents the most obvious pathway
combination. Moreover, the positive and negative sample outputs
of these ten nodes are also in proportion to the data.

Finally, we can determine the relationship between the pathways
according to Figure 6. These ten biological pathways simply
correspond to the mRNA gene in the previous step—the top ten

biological pathways with the greatest weight. Similarly, the top ten
hidden layer nodes with the greatest weight are selected to represent
the interaction of these paths. The calculation of node weight is the
sum of the absolute value of all weights. Then, for each hidden layer
node, we select the pathway layer node with the largest absolute
weight among all nodes connected to this hidden layer node. As
shown in Figure 6, hidden layer nodes 436 and 416 aggregate
multiple paths, meaning that there may be mutual restriction or
promotion between them for subsequent analysis. The innate
immune system, zinc transporters, and signaling by interleukins
may have a positive relationship, as well as intracellular signaling by
second messengers and cytokine signaling in the immune system.
However, the metabolism of lipids seems to have a negative
relationship with them.

5 Conclusion

The TSGPN method proposed here reveals the interaction
between genes very well. The expected result is not only to predict
the prognosis of LUSC, but more importantly, to determine the
key pathogenic factors and their potential correlation using the
transparency of the model. First, according to the simulation of
the biological network, a fully connected graph neural network is
constructed, and the hard concrete gradient estimator is used to
gradually make the connections between networks sparser during
the training process. At the same time, prior knowledge of the
ceRNA and PPI networks is added to make the results more
accurate. After obtaining the reconstructed ceRNA network with
weight values, the pathway database is added to make the results
of the algorithm more bio-interpretable, and its activities in
organisms can be analyzed from the perspective of pathways.
Through the continuous improvement of the prediction accuracy
of the model, the internal network of the model is also changing,
and this is transparent. Because every node in the network has a
defined meaning, we can predict the possible connections

FIGURE 6
Main connections between pathway layer nodes and hidden layer nodes. Blue line represents negative weight, and the orange line represents
positive weight. Pathways and hidden layer nodes are in the ten top-ranked.
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between genes or between them and pathways according to the
experimental results. These results showed that TSGPN is
superior to SVM, RF, and LLR in the AUC and F1 scores, and
the feature selection is beneficial for improving the accuracy of
the algorithm.
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