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Introduction: Cardiometabolic diseases, a major global health concern, stem
from complex interactions of lifestyle, genetics, and biochemical markers.
While extensive research has revealed strong associations between various
risk factors and these diseases, latent confounding and limited causal
discovery methods hinder understanding of their causal relationships,
essential for mechanistic insights and developing effective prevention and
intervention strategies.

Methods:We introduce anchorFCI, a novel adaptation of the conservative Really
Fast Causal Inference (RFCI) algorithm, designed to enhance robustness and
discovery power in causal learning by strategically selecting and integrating
reliable anchor variables from a set of variables known not to be caused by
the variables of interest. This approach is well-suited for studies of phenotypic,
clinical, and sociodemographic data, using genetic variables that are recognized
to be unaffected by these factors. We demonstrate the method’s effectiveness
through simulation studies and a comprehensive causal analysis of the 2015 ISA-
Nutrition dataset, featuring both anchorFCI for causal discovery and state-of-
the-art effect size identification tools from Judea Pearl’s framework, showcasing
a robust, fully data-driven causal inference pipeline.

Results: Our simulation studies reveal that anchorFCI effectively enhances
robustness and discovery power while handles latent confounding by
integrating reliable anchor variables and their non-ancestral relationships. The
2015 ISA-Nutrition dataset analysis not only supports many established causal
relationships but also elucidates their interconnections, providing a clearer
understanding of the complex dynamics and multifaceted nature of
cardiometabolic risk.

Discussion: AnchorFCI holds significant potential for reliable causal discovery in
complex, multidimensional datasets. By effectively integrating non-ancestral
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knowledge and addressing latent confounding, it is well-suited for various
applications requiring robust causal inference from observational studies,
providing valuable insights in epidemiology, genetics, and public health.
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1 Introduction

Cardiometabolic diseases, including cardiovascular disease and
metabolic syndrome, are major global health concerns. They
significantly contribute to the global burden of disease and
mortality, impacting not only individual health but also societies,
health systems, and economies on a global scale (Miranda et al.,
2019; Rao, 2018). Numerous studies have identified a range of risk
factors that contribute to the development and progression of
cardiometabolic diseases. These factors arise from a complex
interplay of lifestyle choices, genetic predispositions, and pre-
existing conditions such as obesity, hypertension, inflammation,
insulin resistance, type 2 diabetes, and dyslipidemia (Valenzuela
et al., 2023; Kälsch et al., 2015; Wilson and Meigs, 2008).

Understanding the interconnections among these factors in a
causal manner is essential for gaining insights into the mechanisms
at play and accurately assessing an individual’s risk profile. This
knowledge empowers clinicians to make informed decisions and aid
researchers in the development of interventions and prevention
strategies that are both effective and tailored to the specific needs of
each patient.

Traditionally, causality has been established through experimental
studies, following the Bradford-Hill considerations on causality (Höfler,
2005). However, conducting controlled experiments on humans
presents significant challenges and ethical limitations, especially
when addressing long-term effects and interventions that may
necessitate lifestyle changes or carry health risks for participants. In
this work, we aim to identify the causal relationships among various
cardiometabolic risk factors observed in the Health Survey of São Paulo
with a Focus on Nutrition Study (2015 ISA-Nutrition), a
comprehensive epidemiological study conducted in São Paulo, Brazil
(Fisberg et al., 2018). Observational studies are invaluable tools for
gaining insights into the complexities of the real world, but they face
critical challenges due to biases. Significant statistical associations
among variables do not always indicate causality; they may, in fact,
be entirely spurious, originating from confounding factors or other
issues such as selection bias. This complexity emphasizes the need for
rigorous methodologies to address biases in causal inference from
observational data.

For our analysis, we consider Judea Pearl’s framework of
causation (Pearl, 2000a). This framework represents a seminal
advancement in data analysis, enabling us to move beyond mere
correlations and discern causal relationships directly from
observational data, thus reflecting the rigor typically associated
with controlled experiments. Causality is articulated in an
intuitive manner: a variable X is considered a cause of another
variable Y if an intervention on X (e.g., setting it to a specific value,
X � x) results in an expected change in Y. Notably, certain causal
discovery algorithms are capable of identifying, despite hidden

confounding, the graphical structure of the class of causal models
that may have generated the observed data (Zhang, 2008b). These
algorithms, complemented by emerging tools for effect
identification from their outputs (Maathuis and Colombo, 2015;
Perkovi et al., 2018; Jaber et al., 2022), have paved the way for a
powerful, data-driven approach to causal inference.

As our primary methodological contribution, we propose the
anchor Fast Causal Inference (anchorFCI) algorithm, designed to
robustly uncover causal relationships among a set of variables by
leveraging an additional set comprising only non-ancestors (non-
causes) of the variables of interest. This is achieved by strategically
selecting reliable anchors and integrating knowledge of their non-
ancestral relationships into the conservative Really Fast Causal
Inference (RFCI) algorithm (Colombo et al., 2012), renowned for
its effectiveness and robustness in scenarios with latent confounding
and limited sample sizes. Specifically, anchorFCI identifies as
reliable anchors those variables from the additional set that are
significantly associated with the variables of interest and form
unambiguous triplets during the conservative orientation phase
of the algorithm. Then, it incorporates knowledge of their non-
ancestral relationships as outlined in Section 2.4.2. AnchorFCI not
only enforces the appropriate arrowheads but also utilizes an
adapted skeleton phase that prevents conditional independence
tests between anchor variables conditioned on non-anchor
variables. This adaptation is vital for preserving the integrity of
the encoding of the conditional independencies implied by the final
graph while reducing the number of required conditional
independence tests, thereby enhancing the algorithm’s scalability
and robustness.

Our proposed approach is particularly well-suited for causal
discovery among phenotypes, clinical factors, and
sociodemographic variables when information on genetic
variants, such as single nucleotide polymorphisms (SNPs), is
available. This is because we can leverage the well-established
understanding that genotypes are not influenced by any of the
non-genetic variables. It is crucial to emphasize that, while this
approach shares some similarities with Mendelian randomization
principles (Davey Smith and Hemani, 2014; Ribeiro et al., 2016), it
does not assume that SNPs identified as anchors are valid
instruments (de Leeuw et al., 2022). Rather, the anchorFCI
algorithm solely relies on conditional independence tests to
identify genetic anchor variables and uncover causal relationships.

In analyzing the 2015 ISA-Nutrition dataset, our approach has
successfully unveiled the causal connections among all examined
phenotype and clinical variables, by leveraging SNPs identified in
Genome-Wide Association Studies (GWAS). Furthermore, by
employing effect identification tools, we have successfully
identified and estimated the causal effects associated to all
uncovered causal relationships. The results corroborate numerous
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well-established relationships, while also providing a deeper
understanding of the intricate network of connections among
various cardiometabolic risk factors. Additionally, they
demonstrate the potential of robust data-driven causal inference
methods in addressing complex and multifactorial diseases, paving
the way for the development of more effective interventions and
treatments.

2 Materials and methods

2.1 Study design and data collection

Our analysis focused on 681 individuals who were not
genetically closely related, selected from a total of
841 participants in the 2015 Health Survey of São Paulo with a
Focus on Nutrition Study (2015 ISA-Nutrition) – a subset of the
cross-sectional population-based 2015 Health Survey of São Paulo
(2015 ISA-Capital). The primary goal of the 2015 ISA-Nutrition
study is to investigate the relationships between lifestyle choices,
biochemical markers, and genetics in the development of
cardiometabolic diseases among residents of São Paulo city, the
largest Brazilian city located in the Southeastern region of the
country. For more comprehensive information about the study,
refer to Fisberg et al. (2018).

The survey targeted a probabilistic sample of individuals age
≥ 12, residing in permanent households within the urban area of São
Paulo city, excluding those who were pregnant or lactating. The
sampling process involved two stages with stratification by clusters
(urban census tracts and households) to ensure representative
coverage at the population level. During the year of 2015, ISA-
Capital collected sociodemographic data, information regarding the
use of health services, lifestyle, and other relevant information
through a structured questionnaire administered in the
households by trained interviewers (Alves et al., 2018).
Anthropometric data, blood pressure measurements, and blood
samples were collected by trained nurses during a second visit to
the participant’s household. Detailed protocols for these
measurements are also available in Fisberg et al. (2018).

Genomic DNA was obtained from peripheral blood samples
extracted by automated method. SNPs were assessed using the
AxiomTM 2.0 Precision Medicine Research Array in the Thermo
Fisher Scientific Laboratory (Affymetrix Inc., Santa Clara, CA).

This study has been conducted according to the principles
expressed in the Declaration of Helsinki and was approved by
the Ethics Committee on Research of the School of Public Health
of the University of São Paulo (#30848914.7.0000.5421). All
participants authorized their genotyping and signed a written
informed consent/assent before entering the study and, if they
were adolescents, also their proxies. The data and samples were
anonymized after collection.

2.2 Sample selection and description of
the variables

The 2015 ISA-Nutrition study incorporates genetic data from
841 individuals, with some being relatives. Notably, conducting

causal analysis on samples from genetically or familial-related
individuals necessitates careful consideration of the underlying
dependence structure among them (Ribeiro and Soler, 2020). Since
addressing this issue is beyond the scope of this study, we excluded
individuals who might share a parental relationship, resulting to a final
sample size of 681 individuals. Specifically, the genomic relationship
matrix (GRM) was computed for all 841 individuals and our analysis
was limited to individuals with a genetic distance of ≤ 0.125, indicating
relationships beyond second-degree relatives.

The dataset comprises a diverse array of sociodemographic,
clinical, and genetic data. Additionally, it includes principal
components of global ancestry allowing for adjustment for
population stratification effects. This adjustment is particularly
crucial in highly admixed populations such as the Brazilian
population. The principal components of global ancestry are
estimated using a larger set of SNPs across the genome of the
ISA-Nutrition participants and the 1,000 Genome Project reference
data, utilizing the software PLINK 2.0 and R (SNPRelate package
to control for population stratification). More details of genetic
evaluation of ISA-Nutrition data are available in Pereira et al. (2024).

In our analysis, we regarded sex, age, and the first two
components of global ancestry as standard covariates.
Additionally, we selected variables representing lifestyle factors,
biochemical markers, and health conditions acknowledged as
pertinent by domain experts. Moreover, SNP data was utilized in
identifying genetic anchors crucial for causal analysis among the
phenotypic variables.

The variables referring to lifestyle factors, biochemical markers,
and health conditions included in the analysis are described below:

2.2.1 Obesity
Obesity is defined based on the body mass index (BMI), given as

weight (kg)/height (m)2. An adult is obese if their BMI ≥ 30 kg/m2

(WHO Consultationm, 2000). In adolescents, obesity is identified
when their BMI-for-age surpasses two standard deviations (2SD)
above the mean, which, for a 19-year-old, corresponds to a BMI of
30 kg/m2 (Onis et al., 2007).

2.2.2 Type 2 diabetes (T2D)
It is considered positive if fasting blood glucose is > 126 mg/dL

or if medication for T2D (indicated by the binary variable Med_
T2D) is being used, which includes hypoglycemic agents and/or
insulin therapy (Cobas et al., 2022).

2.2.3 Hypertension (HTN)
For adults, hypertension is diagnosed when systolic blood

pressure is elevated (≥ 140 mmHg), diastolic blood pressure is
elevated (≥ 90 mmHg), or if antihypertensive drugs (indicated by
the binary variable Med_HTN) are being used (Barroso et al., 2021).
For adolescents aged 12 and 13 years, the cutoff points for systolic or
diastolic blood pressure are defined as the 95th percentile based on
sex, age, and height. For individuals aged 14–19 years, the cutoffs
were set at systolic blood pressure (SBP) ≥ 130 mmHg or diastolic
blood pressure (DBP) ≥ 80 mmHg (Flynn et al., 2017).

2.2.4 C-reactive protein (CRP)
The concentration of C-reactive proteins in the blood, obtained

through a blood test, serves as a biomarker of inflammation in the
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body. It is measured in milligrams per deciliter (mg/dL), with the
normal range typically falling below 1 mg/dL (Ridker, 2003).

2.2.5 Homeostatic model assessment of insulin
resistance (HOMA-IR)

HOMA-IR is calculated using the formula: fasting plasma
insulin (μU/mL) × fasting plasma glucose (mmol/L)/22.5. The
cutoff point for HOMA-1R, proposed by Geloneze et al. (2009)
and validated for the Brazilian population, is set at 2.71 (Golbert
et al., 2019).

2.2.6 Triglycerides (TGL), LDL cholesterol (LDLc),
and HDL cholesterol (HDLc)

They are all measured using a colorimetric enzymatic method
with reagents from Cobas–Roche Diagnostics GmbH (Mannheim,
Germany). The normal ranges are typically as follows: TGL ideally
below 150 mg/dL (adults) and 130 mg/dL (adolescents), LDLc
ideally below 160 mg/dL (adults) and 130 mg/dL (adolescents),
and HDLc ideally above 40 mg/dL (men), 50 mg/dL (women), and
45 mg/dL (adolescents) (Précoma et al., 2019; Giuliano et al., 2005).

2.2.7 Dyslipidemia (DLP)
Dyslipidemia is classified as positive if the individual is taking

lipid-lowering medication (indicated by Med_DLP) or if any of the
following conditions are met: elevated LDLc levels (≥ 160mg/dL for
adults and ≥ 130 mg/dL for adolescents), elevated TGL levels (≥
150 mg/dL for adults and ≥ 130 mg/dL for adolescents), or low
HDLc levels (men < 40 mg/dL, women < 50 mg/dL, and < 45 mg/
dL for adolescents) (Précoma et al., 2019).

2.2.8 Physical activity
A binary variable indicating whether the individual meets the

total physical activity recommendations across four domains–work,
domestic activities, transportation, and leisure–as outlined in the
2010 Global Recommendations on Physical Activity for Health
(World Health Organization, 2010).

Additionally, variables indicating use of Medication for T2D
(Med_T2D), Medication for HTN (Med_HTN), and Medication for
DLP (Med_DLP) were included in the analysis.

2.3 Genome-wide association study (GWAS)

Within the database of 681 unrelated individuals, we conducted
a quality control process for genotypes, excluding SNPs with aminor
allele frequency (MAF) of less than 5% or a Hardy-Weinberg
equilibrium p-value of less than 1 × 10−5. This process led to the
removal of a total of 474,649 SNPs, resulting in a final dataset of
330,656 SNPs.

To conduct the GWAS, we included age, sex, and the square of
age as covariates to separate genetic effects from the influence of
these individual characteristics. Additionally, we included ancestry
as a covariate using the first two estimated principal components of
global ancestry to control for population structure and reduce false
positive associations. We conducted a single SNP-GWAS using
additive logistic regression to evaluate the association between
genetic predictors and the binary phenotypic traits of interest:
obesity, HTN, T2D, and DLP. For the continuous variables

HDLc and CRP, we applied linear regression on their log-
transformed values. In all regression models, we used hypothesis
tests to determine the significance of each SNP, with a null
hypothesis stating that there is no association between the SNP
and the studied trait (the regression parameter associated with the
SNP is equal to zero), and an alternative hypothesis stating that there
is an association. To account for the increase in type I error due to
multiple testing, we selected SNPs with at least genome-wide
suggestive association (p-value ≤ 10−5).

2.4 AnchorFCI: causal discovery with non-
ancestral knowledge

Causal discovery algorithms are increasingly being employed to
elucidate, from observational data, the nature of statistical
associations among variables. They can distinguish between
purely spurious associations, which arise from the shared
influence of other variables (referred to as confounders), and
relationships that are truly causal, sometimes even elucidating
their direction.

Among the existing algorithms, the Fast Causal Inference
(FCI) (Spirtes et al., 2001), combined with the complete set of
orientation rules by Zhang (2008b), stands out for its rigorous
foundational principles and minimal reliance on assumptions
compared to other methods. Since the introduction of the FCI, a
range of strategies and adaptations have emerged to tackle
scalability and robustness in scenarios of limited data. These
include the anytime FCI by Spirtes (2001), the RFCI by Colombo
et al. (2012), and their conservative counterparts (Colombo and
Maathuis, 2014). Crucially, these algorithms do not require causal
sufficiency, demonstrating their effectiveness in managing latent
confounding. This capability makes FCI-like algorithms highly
suitable for analyzing real-world datasets.

Relying solely on a reliable conditional independence test, the
FCI and its variants learn a Partial Ancestral Graph (PAG)
representing the class of all causal models that entail the set of
observed conditional independencies, referred to as the Markov
equivalence class (MEC). In a PAG, tails and arrowheads represent,
respectively, ancestral (causal) and non-ancestral (non-causal)
relationships common to all models within the most plausible
MEC. A circle (“o”) denotes a non-invariant edge mark,
indicating that within the MEC, there is a model where the edge
mark is a tail and another model where the same edge mark is an
arrowhead. Remarkably, the output is ensured to be asymptotically
sound and complete, even in scenarios involving unobserved
confounding and selection bias.

Scalability and integration of background knowledge are major
challenges in causal discovery under latent confounding. While
increasing the number of variables in the graph can boost
discovery power, the reliability of the inferences often decreases
due to statistical instabilities. Moreover, merely enforcing edge
marks can lead to incorrect downstream orientations and
violations of the equivalence class representation if the algorithm
is not properly adapted. Currently, no complete strategy exists for
integrating general background knowledge into the FCI framework.
This integration has only been explored in specific contexts, such as
studies with time series data (Gerhardus and Runge, 2020) or certain
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types of knowledge, such as tired (known causal order) or local
knowledge (Andrews et al., 2020; Wang et al., 2022).

In this work, we introduce anchorFCI, a novel adaptation of the
conservative RFCI designed to strategically identify reliable anchors
and effectively integrate them with their known non-ancestral
relationships. As detailed in Section 2.4.2, anchorFCI operates on
two variable sets: the first contains the variables of interest, while the
second comprises variables that are not caused by any from the first.
It begins by identifying reliable anchors, defined as variables Vi from
the second set that are significantly associated with a variable Vj

from the first set and form unambiguous triplets during the
algorithm’s conservative orientation phase. Next, it performs an
adapted skeleton phase that ensures a consistent selection of
d-separators while remaining order-independent, as it is based on
the stable skeleton algorithm by Colombo and Maathuis (2014).
Finally, it enforces arrowheads on the appropriate edges Vi◦−→ Vj

according to the established non-ancestral relationship between the
two variable sets. Notably, strategies for managing conflicting
orientations and limiting conditioning set sizes, as detailed in
Section 2.4.1, are integral features of the RFCI and, thus, can be
easily adjusted through parameters in the anchorFCI function. The
algorithm is publicly available as an R package on GitHub at https://
github.com/adele/anchorFCI and it leverages the RFCI
implementation from the pcalg R package (Kalisch et al., 2024).

We apply the anchorFCI algorithm with strategies to enhance
robustness to uncover causal relationships among the 14 phenotypic
and clinical variables outlined in Section 2.2. The algorithm
identifies anchors from SNPs that are significantly associated
with phenotypes of interest through GWAS, and incorporates
knowledge of their non-ancestral relationships. This approach
not only improves robustness but also boosts discovery power by
facilitating the identification of additional causal relationships. To
account for confounding effects related to sex, age (both original and
squared), and the first two principal components of global ancestry,
these covariates will be included in all necessary tests of conditional
independence.

2.4.1 Strategies for addressing conflicts and
inconsistencies arising from unfaithfulness

Despite the significant potential of causal discovery algorithms,
they present considerable challenges in terms of scalability to larger
graphs and robustness to statistical errors. Firstly, the number of
potential causal structures grows super-exponentially with the
number of variables, rendering the problem computationally NP-
hard (Chickering et al., 2004). Achieving scalability to large graphs,
particularly in scenarios involving latent confounding, necessitates
reliance on model assumptions. These may include enforcing
sparsity and constraining the size of conditioning sets (Claassen
et al., 2013).

Moreover, the majority of the existing algorithms, including the
FCI and its variants, rely on the assumption of faithfulness, which
posits that the independencies inferred from data accurately
represent the true underlying model. Notably, any falsely
identified independencies can lead to conflicting orientations and
inconsistencies in the implied conditional independencies (Zhang
and Spirtes, 2008; Zhalama et al., 2017). This poses a significant
challenge for real-world applications, particularly when dealing with
limited sample sizes, as statistical tests may lack sufficient power to

accurately identify potentially weak or noisy associations. This issue
becomes more pronounced when dealing with larger graphs (e.g.,
10 or more variables), exemplifying the curse of dimensionality, as it
leads to an increased number of conditional independence tests and
a significant decrease in statistical power as the conditioning set
size grows.

To minimize issues arising from unfaithfulness, we employ the
following two strategies:

• Conservative edge orientations with majority rule: as proposed
by Colombo and Maathuis (2014), edge orientations are
strictly conducted conservatively, meaning that they
exclusively rely on triplets that have been previously
determined as unambiguous. To assess the ambiguity of an
unshielded triplet (i.e., three variables where the first and
second, and the second and third, are adjacent, but not the first
and third), additional conditional independence tests are
performed. These tests aim to detect errors in determining
whether the second variable belongs or not to the set that
renders the first and third variables independent of each other,
potentially due to instances of unfaithfulness. With the
majority rule approach, the decision is based on the
majority of the involved conditional independence tests. In
the event of a tie, the triplet is deemed ambiguous, and no
orientation is conducted.

• Constrained conditioning set size: as pointed out by Spirtes
(2001) and Colombo et al. (2012), the accuracy of the FCI
significantly decreases when relying on independencies
conditional on a large set of variables, as, in such cases,
statistical errors due to the low power of the tests become
inevitable, especially with small sample sizes. They also
demonstrate that restricting the size of conditioning sets in
the independence tests does not compromise the correctness
of the output PAG; it may only lead to a less informative PAG.
In light of this result, the RFCI not only accepts a constraint on
the size of the conditioning sets, but also employs a procedure
that requires fewer conditional independence tests than the
FCI. The authors demonstrated the RFCI’s consistency in
sparse scenarios, showing that by avoiding statistical tests with
the least power (i.e., those with relatively large conditioning
sets), the results become notably more reliable, particularly for
small sample sizes.

2.4.2 Identification of reliable anchors and
integration of non-ancestral knowledge

Applying the RFCI combined with strategies aimed at enhancing
robustness (e.g., conservative edge orientations) can contribute to
more reliable results. However, these strategies often result in PAGs
with numerous underdetermined edge marks (i.e., circles).

To enhance robustness and discovery power, we propose
extending the RFCI algorithm to utilize two partially ordered
variable sets: the first contains the variables of interest, while the
second comprises variables known not to be caused by any variable
in the first set. This structure is ideal for datasets with non-genetic
variables, such as phenotypic, clinical, or sociodemographic data, in
the first set, and genetic variables in the second. This novel
algorithm, referred to as anchorFCI, introduces three key
adaptations:
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1. Identification of robust anchors: These are variables from the
second set (e.g., SNPs) that are identified as significantly
associated with variables from the first set (e.g., phenotypes)
and, upon integration into the graph, form triplets that are
unambiguous according to the majority rule.

2. Skeleton inference with an adapted search for minimal
d-separating sets: In the initial phase of the algorithm,
known as the adjacency phase, the model’s skeleton is
inferred through a series of conditional independence tests.
Whenever a pair of variables is found to be conditionally
independent given a set of other variables, such separating
set is considered minimal and the edge connecting them is
removed. In this phase, it is essential to prevent the algorithm
from performing independence tests between two variables
from the second set (e.g., two SNPs) conditional on any
variable from the first set (e.g., a phenotype). Notably, this
restriction does not compromise the correctness or
completeness of the algorithm. This can be demonstrated
through a direct application of (Tian et al., 1998, Theorem
2), which states that if a set Z d-separates two variables X and
Y, we can get a smaller d-separator Z′ by removing from Z all
nodes that are not ancestors of X or Y. This implies that, since
the first set consists entirely of non-ancestors of the second set,
any faithful minimal separating set for a pair of variables from
the second set will necessarily exclude variables from
the first set.

3. Enforcing known arrowheads: During the orientation phase of
the algorithm, edge-mark inference rules (R0 to R10, as
detailed in Zhang (2008b)) are sequentially applied until
they can no longer be utilized. Throughout this phase, we

ensure that every edge connecting a variable Vi from the first
set (e.g., a SNP) and a variable Vj from the second set (e.g., a
phenotype) is oriented with an arrowhead pointing towards
Vj. In other words, these edges will take the form Vip→ Vj,
where p denotes any edge mark that the algorithm may learn.
Incorporating this type of background knowledge is
straightforward and can be achieved simply by applying the
rules once the known edge marks are enforced and then
checking the validity of the PAG as an ancestral graph
(i.e., no cycles or almost cycles). Notably, the integration of
non-ancestral knowledge in the context of time-series data
(Gerhardus and Runge, 2020) showcases the potential to
enhance both robustness and learning capabilities in
causal discovery.

Notably, when applied to a dataset comprising SNPs and
phenotype variables, the resultant PAG from the anchorFCI
algorithm will exclusively include edges between an SNP and a
phenotype falling into one of the following types: SNP↔ Phenotype
(indicating purely spurious association), SNP → Phenotype
(indicating a causal SNP), or SNP ◦→ Phenotype (indicating
there is not sufficient evidence to determine whether the SNP is
a cause or only spuriously associated with the phenotype).

By integrating inherently unambiguous orientations, anchorFCI
not only prevents discrepancies with established non-ancestral
knowledge, potentially induced by violations of faithfulness, but
also boosts discovery power by facilitating the conservative
identification of additional causal relationships.

To further illustrate how anchorFCI can achieve greater
robustness and accuracy compared to RFCI, particularly in

FIGURE 1
Comparison of PAGs inferred by RFCI and anchorFCI using a simulated dataset. The dataset was generated based on the MAG in (A), structured as
G1 ,G2 ,G3 ≺ A,B,C,D, E. The true PAG is presented in (B), while the PAGs inferred by RFCI and anchorFCI are shown in (C, D), respectively.
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limited data settings where the faithfulness assumption is likely to be
violated, we selected a dataset from our simulation study, as detailed
in Section 2.4.4. The dataset consists of 1,000 samples, generated
based on the Maximal Ancestral Graph (MAG) shown in Figure 1A.
The variables {G1, G2, G3} ≺ {A, B, C,D, E}, with ≺ denoting
precedence in the partial ordering. The corresponding true PAG,
obtained without using the partial order information, is shown
in Figure 1B.

When applying the conservative RFCI algorithm with the
majority rule, we obtain the PAG in Figure 1C. The collider
triplets 〈A,C, B〉, 〈E, B,D〉, 〈A,C, E〉, and 〈G2, D, B〉 are
identified as unambiguous and correctly oriented. The triplets
〈G1, A, C〉 and 〈G3, B, C〉 are identified as unambiguous non-
collider triplets, however, without the partial order information,
their orientations cannot be determined. The triplet 〈C, B,D〉 is
marked as ambiguous. After applying the remaining orientation
rules, RFCI incorrectly orients B → G3, violating the known, but
unused, information that G3 ≺ B. The resulting PAG has a
Structural Hamming Distance (SHD) of five from the true PAG,
reflecting the number of incorrect orientations.

In contrast, when applying anchorFCI, we obtain the PAG in
Figure 1D, which not only accurately captures all the oriented edges
from the true PAG but also correctly identifies additional
orientations from the original MAG. First, variables G1, G2, and
G3 are all identified as reliable anchors, as they form unambiguous
triplets 〈G1, A, C〉, 〈G2, D, B〉, and 〈G3, B, C〉. Then, after applying
the adapted skeleton algorithm, anchorFCI integrates the known
non-ancestral relationships by orienting G1◦→ A, G2◦→ D, and
G3◦→ B. This not only avoids the mistakes made by RFCI but also
enables the accurate orientation of the edge B → C and of the
collider 〈C, E, B〉. Notably, anchorFCI also infers the tail on A → C,
indicating that A is a definite cause of C, thereby learning a
representation that goes beyond the MEC.

2.5 Conditional independence tests for mixed data
As stated before, the FCI and its variants identify ancestral and

non-ancestral relationships by employing a combination of
conditional independence tests and orientation rules.

To test conditional independence between binary (obesity, T2D,
HTN, DLP, physical activity, and medication variables), continuous
(CRP, HOMA-IR, TGL, LDLc, and HDLc), and multinomial (SNP)
variables, we use the symmetric conditional independence test for
mixed data proposed by Tsagris et al. (2018), available in the MXM R
package (Lagani et al., 2017). This test utilizes linear or generalized
linear regression, depending on the nature of the involved variables.
Logistic regression is employed for binary outcomes, Gaussian linear
regression for continuous outcomes, and multinomial log-linear
regression for multinomial outcomes. To prevent departures from
normality in tests involving continuous variables, we transformed
them using the rank-based inverse normal transformation available
in the RNOmni R package (McCaw, 2023). Missing values were
imputed using MissForest, a non-parametric method for imputing
mixed-type data sets by employing random forests (Stekhoven and
Bühlmann, 2012). We utilized the implementation of the MissForest
algorithm available in the MissRanger R package (Mayer and
Mayer, 2019), setting the number of forests to 500.

Formally, Tsagris et al. (2018) test evaluates the conditional
independence of two variables,Vi andVj, given a set of variables Sij,

by testing two null hypotheses: H01: P(Vi|Sij) � P(Vi|Vj, Sij) and
H02: P(Vj|Sij) � P(Vj|Vi, Sij). The null hypothesis H01 is tested
using a nested likelihood-ratio test comparing a reduced model
(where Vi is regressed on Sij) against a full model (where Vi is
regressed on both Sij and Vj). Similarly, H02 is tested by reversing
the roles of Vi and Vj. In general, the p-values p1 and p2 from the
tests for H01 and H02, respectively, tend to be identical only
asymptotically. To correct for any potential asymmetry in limited
data scenarios, we adopt Tsagris et al. (2018) strategy of merging
dependent p-values. Such method calculates the combined p-value
as min(2 × min(p1, p2),max(p1, p2)) and has demonstrated
superior learning accuracy when compared to alternative methods.

All tests include sex, age (original and squared), and the first two
principal components of global ancestry in the conditioning set,
ensuring comprehensive adjustment for these variables.
Importantly, these variables stand out as special covariates
because they are not caused by any other variables, and thus,
conditioning on them can never introduce biases such as collider
bias (Holmberg and Andersen, 2022).

Finally, all tests were conducted with a significance level set at
5%, without applying any correction for multiple comparisons. In
contrast to association studies, which aim to validate statistical
dependencies, causal discovery relies on establishing reliable
statistical independencies. It is crucial to note that the non-
rejection of the null hypothesis (indicating conditional
independence) does not imply the acceptance of the alternative
hypothesis (indicating conditional dependence). Any correction
aimed at reducing the number of falsely identified associations
may significantly increase the number of falsely identified
independencies, thereby triggering a cascade of erroneous edge
orientations. Conversely, as noted by Spirtes (2001); Colombo
et al. (2012), false associations often prevent certain edge
orientations, leading to a final PAG that, while less informative,
still tends to uphold accuracy.

2.6 Comparative study of RFCI and AnchorFCI
To quantitatively assess the enhanced robustness and discovery

power of anchorFCI compared to the conservative RFCI, we
designed a simulation study. To capture diverse scenarios, we
simulated 50 unique random MAGs with eight nodes, structured
as {G1, G2, G3} ≺ {A, B, C,D, E}. Additionally, to account for
varying degrees of unfaithfulness, we generated 30 datasets for
each MAG, with sample sizes N � 500, 1000, 5000, 10000. The
variables G1, G2, G3 are modeled as discrete variables, each with
three levels, following a multinomial distribution, whileA, B, C,D, E
are continuous variables, following a Gaussian distribution. The
datasets were generated using the simMixedDAG R package (Lin,
2019), where each variable is modeled as a linear combination of its
parents (including potential latent variables), with randomly
assigned coefficients. The choice of distributions does not impact
the comparison between the algorithms but was selected to reflect
typical applications involving genotype and phenotype variables.

Since anchorFCI aims to enhance causal discovery among the
variables of interest {A, B, C,D, E} by selecting reliable anchors from
{G1, G2, G3}, we evaluate the algorithms using a score based on the
Structural Hamming Distance (SHD) computed considering
exclusively edges among the variables of interest. Given that
anchorFCI can identify orientations beyond those in the true
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MEC’s PAG (i.e., the one obtained without using any partial order
information), this score allows us to assess both the accuracy and
informativeness of the inferred PAG. It is calculated as the difference
between the SHD of the inferred PAG relative to the true MAG, and
the SHD of the true MEC’s PAG relative to the true MAG. Smaller
scores indicate higher accuracy, with zero indicating the inferred
PAG is as informative as the true MEC’s PAG (i.e., the one obtained
without using any partial order information), and negative values
indicating the inferred PAG is more informative than the
true MEC’s PAG.

2.7 Causal effect identification and
estimation

As previously discussed, a PAG represents a class of the most
probable models based on the available observational data.
Remarkably, all models in this class fit the data equally well, as
they entail the same set of observed conditional independencies,
rendering them statistically indistinguishable. Whenever ancestral
and non-ancestral relationships are shared across all models within
this equivalence class, they are represented as non-circle edge marks
in the PAG.While this may suffice for a qualitative description of the
relationships among the variables, a more comprehensive approach
is required to quantify a causal effect.

For each directed edge inferred in the PAG, it is necessary to
assess the identifiability of the corresponding causal effect. The
identification of a causal effect is contingent upon its uniqueness–it
is identifiable if and only if it is uniquely computable among all
models within the equivalence class represented by the PAG, and
utilizing the same expression solely based on observational
(conditional) probabilities.

A necessary condition for identifying the causal effect of a
variable X on a variable Y is that the edge X → Y is visible,
indicating that X and Y do not share any latent causes This
condition can be easily verified through a graphical criterion
presented by Zhang (2008a).

The generalized backdoor criterion (Maathuis and Colombo,
2015) is regarded as one of the most straightforward effect
identification graphical criteria. It states that the causal effect of a
variable X on a variable Y can be identified from a PAG P if there
exists a set Z, comprising solely non-descendants of X, that blocks
(in the sense of d-separation–see Pearl (2000b)) all definite-status
backdoor (confounding) paths between X and Y in P. In this case,
the post-interventional probability distribution of a variable Y after
an intervention that setsX � x, denoted do(X � x), is expressed by:

P Y � y|do X � x( )( ) � ∫
z
P Y � y|X � x,Z � z( )P Z � z( )dz.

Such an integral can be estimated fromN observational samples
{yi, xi, zi}Ni�1 as following:

P̂ Y � y|do X � x( )( ) � ∑
N

i�1
f̂ x, zi( ),

where f̂(x, z) � P̂(Y � y|X � x,Z � z) can be readily obtained
through (generalized) regression analysis of Y on X and Z. Note
that if Z � ∅ is admissible for backdoor adjustment, the

interventional distribution simplifies to
P(Y � y|do(X � x)) � P(Y � y|X � x), which can also be
readily obtained using (generalized) regression analysis of Y on
X. If continuous response variables are (natural) log-transformed
before regression analyses to normalize residual distributions, then
estimates are subsequently back-transformed to the original scale
using the improved Cox’s method proposed by Olsson (2005). Effect
sample sizes for each prediction are determined using the
methodology by Thomassen et al. (2024).

In cases where the generalized backdoor criterion does not
apply, alternative tools for causal effect identification and
estimation from PAGs are available. These include the
generalized adjustment criterion, introduced by Perkovi et al.
(2018), and the complete causal calculus and (conditional)
complete effect identification algorithm developed by Jaber
et al. (2022).

3 Results

3.1 Descriptive analysis

In the database of 681 individuals, the proportions of gender are
similar, with 53.59% male participants, and the mean age is 44.70 ±
23.37 years. The age groups also have similar proportions: 29.51% of
adolescents (12–19 years old), 32.74% adults (20–59 years old), and
37.73% older adults (≥ 60 years old).

The proportions of binary health conditions vary: 23.2% of
individuals are obese, 14.7% have T2D (with 70% of them taking
medication for T2D), 45.8% have HTN (with 53.4% of them taking
medication for HTN), and 66.7% have DLP (with 12.8% of them
taking medication for DLP). Moreover, 68.8% of individuals fulfill
the 2010 WHO recommendations for total physical activity (Bull
et al., 2020). Summary statistics for the continuous variables in the
study are provided in Table 1.

3.2 Genome-wide association study (GWAS)

We conducted a single SNP-GWAS to detect the association
between each individual SNP and six phenotypic traits: obesity,
HTN, T2D, DLP, CRP levels, and HDLc. Utilizing a p-value
threshold indicative of genome-wide suggestion, set at 10−5, we
identified a total of ten SNPs.

Specifically, the Manhattan plots in Figure 2 reveal the following
genetic associations: 1 SNP for obesity (rs41282114), 3 for HTN
(rs726164, rs34500244, rs9354481), 1 for DLP (rs340643), 4 for
HDLc (rs269029, rs17268691, rs6589567, rs4815295), and 1 for CRP
levels (rs7577826). No genetic associations with T2D were found at
this threshold. Table 2 presents a detailed summary of the SNPs
identified for each of the phenotypic traits studied. Notably, no SNP
was found to be common across all phenotypic traits. Observe that
the SNPs associated with DLP, HDL, and CRP exhibit negative
effects, indicating an association with a reduction in the respective
studied traits. These identified SNPs are potential genetic markers
for the respective conditions and may contribute to our
understanding of the underlying genetic architecture.
Additionally, they will undergo further analysis in the causal
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discovery phase to determine their potential as reliable anchors,
thereby aiding in learning of causal relationships.

3.3 Causal discovery using the proposed
AnchorFCI algorithm

3.3.1 Comparative study of RFCI and AnchorFCI
The results of the simulation study comparing the performance

of RFCI and anchorFCI in learning the structure among the
variables of interest are summarized in Table 3. The analysis
reveals that anchorFCI consistently exhibits superior robustness
and accuracy compared to RFCI. This is supported by
statistically significantly lower scores for anchorFCI, with all
p-values from a one-sided Wilcoxon test indicating very strong
significance. Additionally, anchorFCI exhibits enhanced discovery
power. Notably, it often achieves negative scores, indicating its
ability to learn representations beyond the MEC even in
scenarios with limited data. While both methods improve in
performance with increasing sample sizes, anchorFCI consistently
outperforms RFCI across all evaluated conditions.

For completeness, we provide a comparison of performance in
learning the graphical structure among the variables of interest and
the anchors in the Supplementary Material. As expected, anchorFCI
significantly outperforms RFCI, thanks to its effective integration of
partial order knowledge. Notably, while RFCI exhibits considerable
instability in low-data regimes, anchorFCI consistently
demonstrates superior robustness and accuracy.

3.3.2 Applying AnchorFCI to the 2015 ISA-
nutrition dataset

Figure 3 shows the output PAG from our proposed anchorFCI
algorithm. Conditional independence for mixed variables were
conducted following the approach in Section 2.4.3, at a
significance level of 5%. Furthermore, as outlined in Section
2.4.1, we enforced a limitation on the size of the conditioning
sets, allowing for a maximum of 2 (two) variables. This choice is
based on our exhaustive experimentation with the algorithm, which
revealed that independencies conditional to larger sets led to the
separation of certain pairs of dependent variables within the graph,
thereby compromising the model’s accuracy. Edge mark inference
was conducted conservatively, meaning that edge orientations were
established solely based on triplets identified as unambiguous
according to the majority rule.

Among all SNPs identified as significantly associated with
phenotypes (with p-value less than 10−5), the anchorFCI

algorithm exclusively selected those forming unambiguous triples
in the inferred PAG, as determined by the majority rule. These
include: rs41282114 (associated with Obesity), rs726164 and
rs9354481 (associated with HTN), rs340643 (associated with
DLP), and rs269029 and rs4815295 (associated with HDLc).
Prior knowledge asserting those SNP variables cannot be caused
by any of the other variables was incorporated in the learning
process through the steps detailed in Section 2.4.2. Note that we
excluded Med_DLP from the analysis due to numerous conditional
independence tests raising errors, primarily because of the limited
number of individuals who take medication for DLP in our sample.

In the resulting PAG, the relationships among all phenotypes
and clinical variables have been fully characterized. Only a few edge
marks in edges with SNPs remain undetermined (i.e., circles).

Directed edges represent definite ancestral (causal)
relationships. Obesity emerges as a significant upstream causal
factor for multiple conditions. It directly influences HTN, CRP
levels–suggesting an impact on the body’s inflammation levels –, and
insulin resistance, as measured by HOMA-IR. Insulin resistance,
inferred to be directly influenced by CRP, is considered a causal
factor for T2D, TGL, and HDLc. TGL and HDLc are identified as
causes of DLP. Furthermore, T2D appears to causally contribute to
LDLc. The probabilities of undergoing medication for HTN (Med_
HTN) and for T2D (Med_T2D) are, as expected, influenced by their
respective conditions. Med_HTN appears to influence the likelihood
of Med_T2D. Bidirected edges represent definite spurious
associations, indicating no causal relationship in any direction.
Notably, the model suggests that the relationship between LDLc
and TGL exhibits this characteristic, thus solely attributable to the
influence of latent confounders.

To assess the stability of the inferred relationships, we present
the results from 50 bootstrap samples in the Supplementary
Material. The following relationships were inferred in the
respective percentages of bootstrap samples: Obesity → HOMA-
IR (88%), TGL→ DLP (84%), HTN→Medication for HTN (80%),
TGL↔ LDLc (64%), HDLc→ DLP (58%), Medication for HTN→
Medication for T2D (58%), HOMA-IR → T2D (54%). For certain
relationships, however, the highest percentages correspond to non-
adjacency, suggesting weak connections between CRP and TGL
(52%), HOMA-IR and HDLc (42%), and Obesity and HTN (38%).
For the remaining relationships, the edge types inferred with highest
percentage correspond to those inferred from the original dataset,
although such percentage did not exceed 50%.

It is essential to emphasize that the stability of any causal
discovery algorithms is highly dependent on the number of
variables in the graph, with performance significantly declining

TABLE 1 Summary statistics for the continuous variables in the study, including Minimum (Min.), Median, Mean, 1st and 3rd Quantiles (Qu.), Maximum, and
total number of missing values (NA’s).

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

CRP (mg/dL) 0.02 0.10 0.30 0.54 0.78 2.24 21

HOMA-IR 0.35 1.76 2.69 3.58 4.08 33.89 8

HDLc (mg/dL) 10.00 35.00 43.00 44.14 52.00 119.00 14

LDLc (mg/dL) 6.00 77.50 101.00 103.52 126.00 259.00 14

TGL (mg/dL) 10.00 73.00 100.00 120.22 139.50 1402.00 13
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when the number of variables exceeds a handful. To illustrate this
point, we present bootstrap results in the Supplementary Material
based on only nine variables: Obesity, HOMA-IR, T2D, LDLc,
HDLc, TGL, DLP, rs41282114, and rs4815295. In this scenario,

the results are significantly more robust, as exemplified by the
following relationships and respective percentages of bootstrap
samples: Obesity → HOMA-IR (100%), TGL → DLP (90%),
HOMA-IR → T2D (82%), and T2D → LDLc (54%).

FIGURE 2
Manhattan plots for Obesity, Hypertension, Dyslipidemia, HDL cholesterol, Type 2 Diabetes, and C-Reactive Protein levels.
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Notably, if we had employed the original conservative
RFCI with the SNP variables but without the adaptations
proposed in the anchorFCI algorithm, not only would
numerous orientations remain undetermined, but we would
also see some phenotypes identified as causes of genotypes
(e.g., DLP is learned as a cause of the SNP rs340643),
contradicting the current understanding that genetic variables
cannot be caused by phenotypes. For further details, please refer
to the Supplementary Material.

3.4 Causal effect identification and
estimation

All directed edges in Figure 3 of the PAG are free from latent
confounding influence (as per the visibility graphical criterion by
Zhang (2008a)), and their corresponding total causal effects are all
identified using the generalized backdoor criterion (GBDC), by
Maathuis and Colombo (2015). The estimation of interventional
expectations and probabilities was conducted as detailed in Section
2.5. For coefficient estimates, associated statistics, and p-values
of all regression models involved, please refer to the
Supplementary Material.

3.4.1 Obesity → HTN
Figure 4A shows the point estimate and 95% confidence interval

(CI) for the probability of HTN given an intervention on Obesity
(P(HTN|do(Obesity))). The effect appears as unconfounded in the
PAG, so the adjustment only considered the standard set of
covariates, namely sex, age (original and squared), and the first
two principal components of global ancestry. The non-overlapping
intervals suggest a significant difference between these probabilities:
for non-obese individuals, it is 0.38 with a 95% CI of [0.29, 0.5],
while for obese individuals, it is 0.65 with a 95% CI of [0.52, 0.76].

3.4.2 Obesity → CRP
Figure 4B shows the point estimate and 95% CI for the

expectation of CRP levels given an intervention on Obesity
(E(CRP|do(Obesity))). Since the effect appears unconfounded in
the PAG, we adjusted solely for the standard set of covariates. The
difference between these expectations is significant: for non-obese
individuals, it is 0.35 with a 95% CI of [0.28, 0.44], while for obese
individuals, it is 0.71 with a 95% CI of [0.53, 0.94].

3.4.3 Obesity → HOMA-IR
Figure 4C shows the point estimate and 95% CI for the

expectation of HOMA-IR levels given an intervention on Obesity

TABLE 2 List of SNPs associated with Obesity, HTN, and DLP, HDL and CRP at a significance level of 10−5, with their corresponding minor allele, MAF,
chromosome (Chr.), linear regression coefficient (β), and p-value.

Trait SNP Minor allele MAF Chr. β p-value

Obesity rs41282114 T 0.07 20 0.98 9.3 × 10−6

HTN rs726164 A 0.45 2 0.65 1.2 × 10−6

rs34500244 . 0.07 12 1.40 1.6 × 10−6

rs9354481 G 0.12 6 −0.62 9.0 × 10−6

DLP rs340643 A 0.36 4 −0.57 5.7 × 10−6

HDLc rs269029 G 0.29 5 −0.09 1.6 × 10−6

rs17268691 T 0.10 5 −0.13 6.6 × 10−6

rs6589567 A 0.12 11 −0.11 9.0 × 10−6

rs4815295 T 0.41 20 −0.08 8.5 × 10−6

CRP rs7577826 C 0.34 2 −0.30 6.6 × 10−6

TABLE 3Comparison of RFCI and anchorFCI performance in learning the structure among the variables of interest. Scores represent the difference between
the SHD of the inferred PAG relative to the true MAG and the SHD of the true PAG relative to the true MAG.

N RFCI AnchorFCI Diff P-value

[Min, max] Mean ± SD [Min, max] Mean ± SD #Anchors

500 [2.00, 7.40] 5.33 ± 1.27 [−0.53, 6.30] 3.72 ± 1.39 1.84 1.62 8.76 × 10−193

1,000 [1.47, 5.97] 4.27 ± 1.12 [−0.80, 4.43] 2.72 ± 1.28 2.19 1.55 4.94 × 10−204

5,000 [0.80, 3.83] 2.65 ± 0.805 [−1.60, 2.83] 1.19 ± 1.10 2.64 1.47 9.63 × 10−227

10,000 [0.60, 3.57] 2.21 ± 0.716 [−2.20, 2.40] 0.70 ± 0.97 2.73 1.50 8.07 × 10−236

Values are averages across 50 randomly generated MAGs, each evaluated on 30 datasets with varying sample sizes N. #Anchors indicates the average number of selected reliable anchors by

anchorFCI. Smaller scores indicate higher accuracy, with zero indicating performance equivalent to the true PAG and negative scores suggesting greater informativeness beyond the MEC.

P-values are from a one-sided Wilcoxon test with alternative hypothesis that the average difference between RFCI and anchorFCI scores (Diff) is greater than 0.
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(E(HOMA − IR|do(Obesity))). Once more, the estimated
expectations were adjusted solely by the standard set of
covariates, and the difference between the expectations is
statistically significant: for non-obese individuals, it is 2.6 with a
95% CI of [2.4, 3], while for obese individuals, it is 5.6 with a 95% CI
of [4.8, 6.5].

3.4.4 T2D → LDLc
Figure 4D shows the point estimate and 95% CI for the

expectation of LDLc given an intervention on T2D
(E(LDLc|do(T2D))). Given that the effect appears
unconfounded in the PAG, it was adjusted solely by the standard
set of covariates. For individuals without T2D, it is 100 with a 95%
CI of [97, 110], while for individuals with T2D, it is 93 with a 95% CI
of [85, 100]. The overlapping of the confidence intervals prevents us
from concluding that the difference is significant.

3.4.5 Medication for HTN → medication for T2D
Figure 4E shows the point estimate and 95% CI for the

probability of taking medication for T2D given an intervention
on medication for HTN (P(Med_T2D|do(Med_HTN))). In
accordance with the GBDC, the unbiased effect is achieved
through adjustment for Obesity and standard covariates. If an
individual is on medication for HTN, the probability of taking
medication for T2D is 0.02, with a 95% CI of [0.0061, 0.064].
Conversely, if an individual is not on medication for HTN, the
probability is 0.15, with a 95% CI of [0.05, 0.36]. Again, the
overlapping of the confidence intervals prevents us from
concluding that the difference is significant.

3.4.6 CRP → HOMA-IR
Figure 5A shows the average estimate and 95% confidence

region for the expectation of HOMA-IR levels given different
levels of CRP set by intervention (E(HOMA − IR|do(CRP))). As
per GBDC, estimates were obtained by adjusting for Obesity along
with the standard set of covariates. While, on average, HOMA-IR
levels tend to increase with CRP levels, the confidence region, which
includes the constant line, suggests that this trend may not be
statistically significant. For individuals with CRP = 0.3, the post-
interventional expectation of HOMA-IR is 3.1, with a 95%CI of [2.7,
3.5]. In contrast, for individuals with CRP = 2, the expectation is 3.7,
with a 95% CI of [3.1, 4.5].

3.4.7 CRP → TGL
Figure 5B shows the average estimate and 95% confidence region

for the expectation of TGL given different levels of CRP set by
intervention (E(TGL|do(CRP))). As per GBDC, estimates were
obtained by adjusting for Obesity along with the standard set of
covariates. On average, TGL levels tend to rise with increasing CRP
levels. However, the confidence region, which includes the constant line,
suggests that this trend may not be statistically significant. Specifically,
for individuals with CRP = 0.3, the post-interventional expectation of
TGL is 110, with a 95% CI of [99, 120]. In contrast, for individuals with
CRP = 2, the expectation is 130, with a 95% CI of [110, 150].

3.4.8 HOMA-IR → T2D
Figure 5C shows the average estimate and 95% confidence

region for the probabilities of T2D, given different levels of
HOMA-IR set by intervention (P(T2D|do(HOMA − IR))). Since

FIGURE 3
Partial Ancestral Graph inferred by the anchorFCI algorithm, using conservative orientations guided by the majority rule, and integrating the partial
order SNPs ≺ phenotype variables. Directed edges imply ancestral (causal) relationships. Bidirected edges imply purely spurious associations. Circles
indicate uncertain edge-marks, interchangeable with tail or arrowhead in equally probable models. Nodes representing various phenotypic traits include:
Obesity, Type 2 Diabetes (T2D), Hypertension (HTN), Dyslipidemia (DLP), C-reactive protein (CRP), Homeostatic Model Assessment of Insulin
Resistance (HOMA-IR), Triglycerides (TGL), Low-Density Lipoprotein Cholesterol (LDLc), High-Density Lipoprotein Cholesterol (HDLc), Medication for
T2D (Med_T2D), Medication for HTN (Med_HTN), and Physical Activity (PhysAct).
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the effect is unconfounded in the PAG, it was adjusted solely using
the standard set of covariates. The probability significantly increases
with HOMA-IR levels. For instance, for individuals with HOMA-
IR = 1, the probability of T2D is 0.02, with a 95% CI of [0.0062,
0.062]. In contrast, for individuals with HOMA-IR = 10.17, it rises to
0.16, with a 95% CI of [0.053, 0.39], and for those with HOMA-IR =
15.25, it further increases to 0.4, with a 95% CI of [0.14, 0.73].

3.4.9 HOMA-IR → TGL
Figure 5D shows the average estimate and 95% confidence

region for the expectation of TGL given different levels of
HOMA-IR set by intervention (E(TGL|do(HOMA − IR))).
Following the GBDC, unbiased estimates were derived through
adjustment by CRP and standard covariates. TGL levels
significantly increase with HOMA-IR levels. For individuals with
HOMA-IR = 1 the post-interventional expectation of TGL is

100 with a 95% CI of [92, 110], while for individuals with
HOMA-IR = 10.17, it is 130 with a 95% CI of [120, 150].

3.4.10 HOMA-IR → HDLc
Figure 5E shows the average estimate and 95% confidence region

for the expectation of HDLc given different levels of HOMA-IR set by
intervention (E(HDLc|do(HOMA − IR))). As per GBDC, estimates
were derived by adjusting for CRP and standard covariates. HDLc
significantly decreases with HOMA-IR levels. For individuals with
HOMA-IR = 1 the post-interventional expectation of HDLc is
45 with a 95% CI of [43, 48], while for individuals with HOMA-
IR = 10.17, it is 38 with a 95% CI of [35, 41].

3.4.11 TGL → DLP
Figure 5F shows the average estimate and 95% confidence

region for the probabilities of DLP, given different levels of TGL

FIGURE 4
Post-interventional probabilities/expectations, with interventions on binary variables. Specifically, panels (A) to (E) show:E(HTN|do(Obesity)),
E(CRP|do(Obesity)), E(HOMA − IR|do(Obesity)), E(LDLc|do(T2D)), and E (Med_T2D|do(Med_HTN)). Dots represent point estimates, while the error
bars indicate the 95% confidence intervals.
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set by intervention (P(DLP|do(TLG))). The probability of
DLP significantly increases with TGL levels. Following
GBDC, unbiased estimates were derived through adjustment
for CRP and the standard set of covariates. For individuals

with TGL = 52.2, the post-interventional probability of
DLP is 0.54 with a 95% CI of [0.42, 0.65], while for
individuals with TGL = 150.6, it is 0.76 with a 95% CI
of [0.66, 0.84].

FIGURE 5
Post-interventional probabilities and expectations, with interventions on continuous variables. Specifically, panels (A). to (G).
show: E(HOMA − IR|do(CRP)), E(TGL|do(CRP)), P(T2D|do(HOMA − IR)), E(TGL|do(HOMA − IR)), E(HDLc|do(HOMA − IR)), P(DLP|do(TLG)), and
P(DLP|do(HDLc)). Full lines represent average estimates, while the shaded areas indicate the 95% confidence regions.
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3.4.12 HDLc → DLP
Figure 5G shows the average estimate and 95% confidence

region for the probabilities of DLP, given different levels of
HDLc set by intervention (P(DLP|do(HDLc))). Following the
GBDC, unbiased estimates were obtained through adjustments
for TGL and the standard set of covariates. The probability of
DLP is notably elevated for low values of HDLc. With an HDLc
of 40.82, the post-interventional probability of DLP reaches
0.89 with a 95% CI of [0.8, 0.94]. As HDLc levels increase, the
probability decreases: for HDLc = 50.73, it drops to 0.49, with a 95%
CI of [0.34, 0.64], and further decreases to 0.11 for HDLc = 60.64,
with a 95% CI of [0.054, 0.2].

4 Discussion

Our data-driven approach not only uncovers a causal
relationship from obesity to HTN, body inflammation (assessed
by CRP levels), and insulin resistance (HOMA-IR), but also provides
further evidence that obesity significantly increases the risk of
developing these conditions. The analysis also indicates that body
inflammation, as indicated by CRP, causally influences insulin
resistance, as indicated by HOMA-IR. However, its effect size
could not be obtained as statistically significant using our
observed sample.

4.1 Obesity → HTN

Extensive research HTN established a strong association and a
causal link from obesity to HTN, elucidated by complex underlying
mechanisms (Jiang et al., 2016; Seravalle and Grassi, 2017; Powell-
Wiley et al., 2021). The contribution of obesity to the development
and progression of HTN can be attributed to a range of factors.
These include the overactivation of the renin-angiotensin-
aldosterone system and the sympathetic nervous system, the
overstimulation of pro-inflammatory adipokines–such as tumor
necrosis factor-α (TNF-α), leptin, and plasminogen activator
inhibitor type 1 –, insulin resistance, immune dysfunction, and
structural and functional alterations in renal, cardiac, and adipose
tissues (Kotsis et al., 2010; Shams et al., 2022). Unraveling the precise
interplay between these factors remains a significant ongoing
challenge in the field of medical research.

4.2 Obesity → CRP → HOMA-IR → T2D

Numerous studies consistently show that individuals with
obesity exhibit higher CRP levels—a marker of low-grade
inflammation—compared to those with a healthy weight (Visser
et al., 1999; Yudkin et al., 1999; Choi et al., 2013). Obesity primarily
contributes to chronic low-grade inflammation by releasing a surge
of signaling molecules, including the adipokines leptin and resistin,
the cytokine interleukin-6 (IL-6), and the chemokine monocyte
chemoattractant protein-1 (MCP-1). These molecules create a pro-
inflammatory environment, attracting immune cells called
monocytes into adipose tissue. This inflammatory cascade is
implicated in obesity-related metabolic dysfunctions, potentially

culminating in insulin resistance and the onset of T2D (Chen
et al., 2015; Wu and Ballantyne, 2020).

4.3 Obesity → HOMA-IR

The contribution of obesity to insulin resistance is not solely
mediated through inflammation. Besides inflammation, obesity-
driven factors such as elevated levels of free fatty acids (FFA) in
muscle and liver tissues can directly disrupt insulin signaling
pathways, in a process called lipotoxicity (Ahmed et al., 2021;
Filipović et al., 2021). Additionally, adipose tissue dysfunction in
obesity leads to the release of proinflammatory cytokines such as IL-
6 and TNF-α that can directly interfere with insulin signaling within
cells, further exacerbating insulin resistance (Fève and
Bastard, 2009).

Our causal analysis reveals that high levels of HOMA-IR
significantly contributes not only to the onset of T2D but also to
elevated TGL and decreased HDLc levels. Furthermore, in
accordance with the definition of DLP, our analysis reveals that
both HDLc and TGL causally contribute to DLP, with low levels of
HDLc and high levels of TGL significantly increasing the
likelihood of DLP.

4.4 HOMA-IR → TGL and HDLc → DLP

Various population-based studies have consistently established a
correlation between insulin resistance and increased TGL alongside
decreased levels of HDLc. For a comprehensive list of references, see,
for instance, Howard (1999). Individuals with insulin resistance
often exhibit a condition known as diabetic dyslipidemia or
dyslipidemia of insulin resistance, marked by elevated TGL levels,
decreased levels of HDLc, and normal or slightly elevated levels of
LDLc (Bahiru et al., 2021). The potential of a higher TGL/HDLc
ratio as a marker for insulin resistance has been explored in several
studies (Giannini et al., 2011; Behiry et al., 2019). In insulin
resistance, the typical suppression of VLDL production by the
liver, a lipoprotein rich in triglycerides, does not occur as
expected. Consequently, there is an increase in VLDL production,
leading to elevated triglyceride levels in the bloodstream.
Additionally, various factors in insulin resistance may contribute
to reduced HDL, such as cholesterol ester exchange between HDLc
and VLDL triglycerides, increased hepatic lipase activity, and altered
hepatic function affecting production of apo AI (the main
apoprotein of HDL) and secretion of nascent HDLc (Howard,
1999; Ginsberg et al., 2005).

Certain identified causal relationships exhibited effect sizes that
did not reach statistical significance. These included the effects of
CRP on HOMA-IR and TGL, as well as the effect of T2D on LDLc.
The corresponding effect of the causal relationship fromMed_HTN
to Med_T2D was also not significant.

4.5 CRP → HOMA-IR and TGL

Numerous studies indicate that systemic inflammation
significantly influences insulin resistance (Wu and Ballantyne,
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2020; Bulcão et al., 2006) and is associated with elevated TGL levels
Feingold and Grunfeld (2022); Ronti et al. (2006). The lack of
statistical significance in our analysis could be attributed to
substantial variability within our dataset, indicating a need for a
larger sample size in further investigations.

4.6 T2D → LDL

The lack of statistical significance in the effect of T2D on LDLc
may indicate that this relationship involves a more complex
interplay than a mere quantitative change in LDLc levels. Within
our dataset, many diabetic patients have normal or even low LDLc
levels, which is consistent with existing studies (Howard et al., 2000).
However, T2D can qualitatively alter LDL particles, leading to the
formation of smaller, denser particles that are more prone to
oxidation and arterial infiltration. These changes increase the risk
of atherosclerosis and cardiovascular complications in diabetic
individuals (Taskinen, 1992).

4.7 Med_HTN → Med_T2D

The causal edge from Med_HTN to Med_T2D appears to be
false, given the non-significance of the corresponding effect and the
absence of scientific evidence supporting the claim that medication
for HTN has a direct effect on medication for T2D. However, some
studies have indicated that Med_HTN can increase the risk of T2D
Bangalore et al. (2007); Arnold et al. (2020). In this scenario, the
causal edge fromMed_HTN to Med_T2D may be accounting for an
effect that is mediated by T2D but was not accurately represented in
the graph. This discrepancy could have occurred because the edge
between Med_HTN and T2D may have been mistakenly removed
by the algorithm, possibly due to a false identification of conditional
independencies from weak correlations. Further exploration is
necessary to gain a better understanding of the nature of this
relationship and its implications.

5 Conclusion, limitations, and
final remarks

The conservative RFCI is a classical causal discovery algorithm
tailored for scenarios featuring latent confounding. It distinguishes
itself by providing superior computational efficiency while
maintaining consistency in sparse models, along with enhanced
robustness through an approach that avoids tests susceptible to low
statistical power (Colombo et al., 2012). However, it tends to
produce rather uninformative models when faced with conflicting
orientations.

To address this limitation, this paper introduces anchorFCI, a
novel adaptation of the conservative RFCI. Given two sets of
variables, where the first includes the variables of interest and the
second consists solely of those known not to be caused by the first,
the algorithm strategically identifies reliable anchor variables and
seamlessly integrates their known non-ancestral relationships in the
learning process. Reliable anchor variables are defined as those from
the second set that are significantly associated with a variable from

the first set and, when integrated into the graph, form unambiguous
triples based on the majority rule. By effectively identifying and
integrating these variables, anchorFCI significantly enhances its
capability to orient edges within the conservative framework,
thereby increasing both robustness and overall discovery power,
particularly in real-world scenarios marked by latent confounding
and limited sample sizes.

By employing the anchorFCI, followed by state-of-the-art effect
identification tools (Jaber et al., 2022), we conducted a fully data-
driven causal analysis of various cardiometabolic risk factors and
related SNP variables included in the 2015 ISA-Nutrition dataset
(Fisberg et al., 2018). The approach proved effective, uncovering the
causal relationships among all the phenotype and clinical variables
under consideration. Importantly, many of the identified
orientations are strongly supported by existing literature, thereby
enhancing the credibility of our findings.

While our investigation has yielded interesting results, it also
highlights the critical need for more robust methods for causal
discovery from observational data in practical scenarios. A
plethora of causal discovery methods have been recently
proposed, with many emphasizing scalability (Zheng et al.,
2018; Glymour et al., 2019; Vowels et al., 2022). However,
they often focus on scenarios that are unrealistic due to the
imposition of strong assumptions, including not only faithfulness
but also causal sufficiency and various parametric or
distributional assumptions. Only a few have been proposed for
non-parametric causal discovery in scenarios involving latent
confounding (Colombo et al., 2012; Colombo and Maathuis,
2014; Hyttinen et al., 2014; Magliacane et al., 2016).
Nevertheless, they still exhibit high vulnerability to violations
of the faithfulness assumption, which is commonly observed in
real-world settings. Any falsely identified conditional
dependence or independence may lead to findings that deviate
from the truth and our current understanding. Hence, there is an
urgent demand for methods that demonstrate greater resilience
in situations with limited data, capable of adeptly managing
conflicting orientations, accommodating uncertainty in the
learning process, and integrating background knowledge.
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