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Introduction:Cervical cancer remains a significant challenge in oncology with an
escalating demand for novel therapeutic strategies that can navigate the
complexities of its pathophysiology. This study elucidated the antineoplastic
effects of cryptotanshinone, a derivative of danshen (Salvia miltiorrhiza), a
herb widely utilized in traditional Chinese medicine practices.

Methods: Employing a comprehensive multi-omics approach, including
transcriptomic, proteomic, and bioinformatics analyses, we investigated the
potential effects of cryptotanshinone on cervical cancer through data mining
and computational analysis.

Results and Discussion: Our results demonstrated that the potential of
cryptotanshinone to disrupted cancer cell proliferation and induced apoptosis
may be ascribed to its modulation of gene expression and interaction with
specific protein networks. Furthermore, network pharmacology and pathway
enrichment analyses identified critical hubs and signaling pathways, suggesting a
multi-targeted mechanism of action. Furthermore, the establishment of a
prognostic model, which is founded upon differentially expressed genes
linked to cryptotanshinone treatment, underscores its promising role as both
a prognostic biomarker and a therapeutic agent. These insights pave the way for
the integration of cryptotanshinone into therapeutic regimens, offering a
promising avenue for enhancing the efficacy of cervical cancer treatment and
patient outcomes.

KEYWORDS

cryptotanshinone, cervical cancer, multi-omics analysis, network pharmacology,
bioinformatics, prognostic biomarkers

1 Introduction

Cervical cancer remains a critical public health issue and is characterized by significant
global prevalence and mortality rates. This malignancy, primarily manifesting as squamous
cell carcinoma and adenocarcinoma, originates in the cervix and lower part of the uterus.
Human Papillomavirus (HPV) infection has been definitively recognized as the primary
contributory factor leading to the development of cervical cancer, underscoring the
importance of preventive measures such as regular screening and HPV vaccination (Lei
et al., 2020). The severity of the disease is particularly pronounced in low- and middle-
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income economies, where limited availability of preventive
healthcare and treatment options often exacerbates the situation.
It is crucial to decrease the impact of cervical cancer by making
progress in comprehending the biological processes involved and
creating successful treatment choices. The advancement of
innovative diagnostic and therapeutic methodologies is crucial for
enhancing patient outcomes as early detection significantly
improves prognosis (Sundstrom and Elfstrom, 2020).

Danshen (Salvia miltiorrhiza), a widely used herb in traditional
Chinese medicine, and its bioactive compound, cryptotanshinone,
have garnered attention for their therapeutic potential in oncology,
including cervical cancer treatment (Jin et al., 2021). Historically
utilized for the therapy of cardiovascular and cerebrovascular
diseases, Danshen exhibits anti-inflammatory, antioxidant, and
antitumor properties. Cryptotanshinone has been the subject of
research due to its potential in inhibiting the proliferation of cancer
cells and triggering apoptosis. (Zhang et al., 2020). The
pharmacological effects of danshen and cryptotanshinone
highlight their relevance in cancer research and offer a promising
avenue for novel treatment strategies that target the complex
pathophysiology of cervical cancer (Liu et al., 2020). Their
incorporation into cancer treatment regimens underscores the
integration of traditional medicine into modern oncological
practices, potentially enhancing therapeutic outcomes and patient
quality of life (Li et al., 2021).

In our preliminary investigations using the HERB and SymMap
databases, we identified Danshen and Lei Gong Teng as potential
botanical agents implicated in the etiology and progression of
cervical cancer. These findings highlight the intricate interplay
between specific herbal compounds and the pathophysiological
mechanisms of cervical cancer and suggest a promising direction
for future research. This exploration of traditional medicinal herbs
using contemporary bioinformatic approaches provides novel
insights into their potential therapeutic roles, paving the way for
innovative treatment strategies against cervical cancer.

The burgeoning resistance to conventional chemotherapeutic
agents and adverse side effects associated with current cervical
cancer treatments underscore the urgent need for innovative
therapeutic strategies. Natural compounds, such as danshen and
cryptotanshinone have emerged as promising candidates owing to
their multi-targeted therapeutic potential and low toxicity profiles.
Their capacity to regulate critical signaling pathways implicated in
cancer cell proliferation, apoptosis, and metastasis positions them as
viable complements or alternatives to traditional treatments (Wang
et al., 2024; Song et al., 2023). This paradigm shift toward
incorporating phytochemicals into cancer management could
significantly improve treatment outcomes and patient quality of
life, requiring further exploration of their clinical applicability.

Network drug analysis represents a cutting-edge approach in
cancer research that leverages the power of systems biology to
unravel the complex interactions within the cellular networks
exploited by cancer cells (Theodoris et al., 2023). This approach
aids in the discovery of new drug targets and understanding of drug
mechanisms by examining the interconnected pathways and genetic
networks that are modified in cancer.Moreover, it offers the
potential to repurpose existing drugs for cervical cancer
treatment by revealing previously unrecognized anticancer
activities within their pharmacological profiles. This innovative

strategy holds promise for accelerating the development of more
effective and targeted therapies for cervical cancer, thereby
enhancing the precision of treatment interventions.

This research aimed to investigate the therapeutic efficacy and
underlying mechanisms of danshen and cryptotanshinone in treating
cervical cancer. By focusing on these natural compounds, we aimed to
elucidate their impact on cancer cell biology, their potential to inhibit
tumor growth, and their ability to improve patient outcomes.

2 Materials and methods

2.1 Data download

Utilizing the TCGAbiolinks package in R (Colaprico et al., 2016) we
retrieved datasets specific to cervical endocervical adenocarcinoma and
squamous cell carcinoma (CESC) from The Cancer Genome Atlas
(TCGA-CESC). This data was used as the primary test set. Following
the exclusion of samples that lacked comprehensive clinical details, the
final count included 306 CESC samples and three normal controls, all
sequenced in count format. These data have been standardized by
FPKM per thousand bases, and the relevant clinical information was
obtained from the UCSCXena database (Goldman et al., 2020) (https://
xena.ucsc.edu/). For additional details, please see Table 1.

For validation purposes, we employed the GEOquery package
(Davis and Meltzer, 2007; Barrett et al., 2013) to access cervical
cancer datasets GSE7803 (Zhai et al., 2007) and GSE9750 (Scotto
et al., 2008) from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/). These datasets consisted of cervical tissue samples analyzed on

TABLE 1 Overall baseline data sheet.

Characteristics Overall

Pathologic T stage, n (%)

T1 142 (53.8%)

T2 74 (28.0%)

T3 21 (8.0%)

T4 10 (3.8%)

TX 17 (6.4%)

Pathologic N stage, n (%)

N0 136 (51.5%)

N1 62 (23.5%)

NX 66 (25.0%)

Pathologic M stage, n (%)

M0 116 (44.8%)

M1 11 (4.2%)

MX 132 (51.0%)

Age, n (%)

≤ 50 189 (61.2%)

>50 120 (38.8%)
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GPL96 microarrays. The GSE7803 dataset included 21 CESC and
10 normal samples, whereas GSE9750 comprised 33 CESC and
24 normal samples. Comprehensive sample details are available in
Supplementary Table S1.

To address batch effects during the integration of TCGA-CESC and
GEO datasets, we utilized the sva package (Leek et al., 2012) specifically
utilizing the ComBat method within an empirical Bayes framework. We
initially used Principal Component Analysis (PCA) to detect potential
discrepancies in the datasets, enabling us to visually assess batch effects
before integration. After correction with ComBat, PCA was reapplied,
confirming effective batch effect removal through clearer clustering of
samples. This resulted in a harmonized dataset comprising 54 CESC and
34normal samples. Subsequently, the limmapackage (Ritchie et al., 2015)
was used to standardize this combined dataset, including probe
annotations and processing steps. The standardized dataset was then
visualized in two- or three-dimensional PCA plots, providing a reduced-
dimensionality perspective that demonstrated successful integration.

2.2 Cryptotanshinone target prediction

Initially, an exploration of Cryptotanshinone’s potential target
genes was conducted by accessing the PubChem database (Kim
et al., 2021) (https://pubchem.ncbi.nlm.nih.gov), a repository rich in
chemical data pertinent to drug discovery. The search term
“Cryptotanshinone” yielded 46 cryptotanshinone-related genes
(CTSRGs). Further predictive analysis was performed using the
SwissTargetPrediction tool (Daina et al., 2019) (http://
swisstargetprediction.ch/), which suggested an additional
100 CTSRGs. Complementing these methods, the DGIdb database
(Freshour et al., 2021) (https://dgidb.org/), which catalogs potential
drug-gene interactions, was queried using “Cryptotanshinone” as the
keyword, identifying 14 unique CTSRGs. A comprehensive set of
133 CTSRGs was assembled from these sources, and their
interactions were visualized using a network map created using
Cytoscape software (Shannon et al., 2003).

2.3 Cryptotanshinone-related differentially
expressed genes associated with
cervical cancer

Analysis of the TCGA-CESC dataset, which segregates samples into
CESC and normal controls, was conducted using the DESeq2 package
(Love et al., 2014) Differentially expressed genes (DEGs) were identified
using strict criteria, with |logFC| > 3.0 and adjusted p-value <0.05.
Upregulated genes exhibited logFC >3.0 and adj. p < 0.05, while
downregulated genes presented with |logFC| < −3.0 and adj.
p < 0.05. The Benjamini–Hochberg method was applied for
p-value correction. These differential expression results were
graphically depicted using the ggplot2 package in R.

To discern Cryptotanshinone-related differentially expressed genes
(CTSRDEGs) pertinent to cervical cancer, DEGs from TCGA-CESC
dataset that met the criteria of |logFC| > 3.0 and P-adj <0.05 were
intersected with the CTSRGs, and the intersections were visualized using
aVenn diagram.Using the pheatmap package in R to create a heatmap of
the CTSRDEGs further elucidates the gene expression changes associated
with Cryptotanshinone expression in cervical cancer.

2.4 Protein–protein interaction (PPI)
network and hub gene screening

The PPI network encompasses a complexweb of interacting proteins
that play critical roles in various biological functions including signal
transduction, gene regulation, and essential life processes like metabolic
pathways and cell cycle control. Analyzing these interactions provides
profound insights into protein functions, biological signaling
mechanisms, and metabolic processes under specific physiological
conditions, including disease states. For constructing the PPI network
related to CTSRDEGs, we utilized the STRING database (Szklarczyk
et al., 2019) (https://string-db.org/) to map out both known and
predicted protein interactions, setting a minimum confidence score
threshold of 0.40. Regions within the PPI network demonstrating
high connectivity often indicate the presence of protein complexes
linked to specific biological functions. We employed several
algorithms via the CytoHubba (Chin et al., 2014) plugin in Cytoscape
to determine the centrality of nodes within the network:Maximal Clique
Centrality (MCC), Degree, Maximum Neighborhood Component
(MNC), Edge-Percolated Component (EPC), and Closeness (Yang
et al., 2019). The top 10 CTSRDEGs were identified based on their
network scores, and the overlap of results from these algorithms
highlighted key hub genes associated with cryptotanshinone.

2.5 Enrichment analysis of gene ontology
(GO) and kyoto encyclopedia of genes and
genomes (KEGG) pathway

Functional enrichment analysis is pivotal for understanding the
roles of genes within biological contexts. GO analysis (Mi et al., 2019)
and the Kyoto Encyclopedia of Genes andGenomes (KEGG) (Kanehisa
andGoto, 2000) are instrumental in elucidating the biological processes,
cellular components, molecular functions, and pathway interactions of
genes. We used the clusterProfiler software package (Engebretsen and
Bohlin, 2019) to conduct a comprehensive enrichment analysis of the
hub genes associated with cryptotanshinone. Criteria for significant
enrichment included a p-value of less than 0.05 and an FDR (q value) of
less than 0.25. Results were visualized using Cytoscape, creating a
network map that integrates cryptotanshinone, its related hub genes,
significant GO terms, and enriched KEGG pathways. Furthermore,
pathway illustrations based on KEGG analysis were generated using the
Pathview package (Luo and Brouwer, 2013), providing a visual
representation of the pathways involved.

2.6 Differential expression verification and
receiver operating characteristic (ROC)
curve analysis of cryptotanshinone-related
hub genes

We investigated the expression differences of genes responsive
to cryptotanshinone between cervical cancer samples (CESC) and
normal controls across both the TCGA-CESC and Combined GEO
datasets. Use the Mann-Whitney U test to analyze expression
discrepancies, resulting in a visual comparison of gene expression
levels between groups. Subsequent analysis of the diagnostic
capabilities of these genes was performed using the pROC
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package in R to plot ROC curves and determine the Area Under
Curve (AUC) values for each gene. The diagnostic performance was
interpreted based on AUC values, where an AUC close to 1 indicates
excellent diagnostic accuracy. Specifically, AUC values ranging from
0.5 to 0.7 indicates a low diagnostic accuracy, while those ranging
from 0.7 to 0.9 suggest a moderate level of accuracy, and values
exceeding 0.9 reflect high levels of accuracy.

2.7 Construction of prognostic risk model
and prognostic analysis of cervical cancer

In TCGA-CESC dataset, a prognostic risk model was developed
using the survival package in R (Therneau, 2023). Initial univariate Cox
regression analyses identified cryptotanshinone-sensitive DEGs
(CTSRDEGs) with a significant impact on prognosis (p < 0.10).
These genes underwent additional Least Absolute Shrinkage and
Selection Operator (LASSO) regression, utilizing the glmnet package
in R with a Cox family parameter, to refine the model and enhance its
predictive robustness (Engebretsen and Bohlin, 2019). The LASSO
regression, which penalizes the regression model by incorporating a
lambda parameter to reduce overfitting, generated a RiskScore
computed as the summation of gene coefficients multiplied by their
corresponding mRNA expressions. The LASSO RiskScore was
calculated as follows:

riskScore � ∑
i

Coefficient genei( )pmRNAExpression genei( )

The prognostic model underwent further validation through
multivariate Cox regression analysis, incorporating the identified
CTSRDEGs from the LASSO model. The impact of these genes on
survival was graphically represented in a Forest Plot. Utilizing the
median LASSO RiskScore, cervical cancer samples were categorized
into high- and low-risk groups.

The comparison of survival between these groups was conducted
using the Kaplan-Meier curve analysis with the survival package
(Rich et al., 2010), and a time-dependent ROC curve was generated
with the Surviroc package to assess the precision of the prognostic
model in forecasting 1-, 3-, and 5-year survival rates (Park et al.,
2004). The AUC values derived from the ROC analysis provided a
quantitative measure of the model’s predictive accuracy, where
higher values indicate superior prognostic performance.

2.8 Validation of cervical cancer prognostic
risk models

The relationship between the LASSO RiskScore expression and
clinical outcomes was investigated through univariate Cox
regression analysis, incorporating the LASSO RiskScore alongside
age and three clinical staging parameters (T stage, N stage, and M
stage). The outcomes of both univariate and multivariate Cox
regression analyses were graphically depicted using forest plots to
elucidate the impact of LASSO RiskScore and other clinical factors.
A nomogram (Wu et al., 2020), constructed with the rms package,
represented the multifactorial relationships and predicted the 1-, 3-,
and 5-year survival probabilities based on variables included in the
multivariate Cox regression model.

The model’s predictive performance was evaluated using a
calibration curve, which compares the actual outcomes with
those predicted by the model across various scenarios. This curve
was crucial for assessing the precision and reliability of the
prognostic model over 1-, 3-, and 5-year periods, as indicated by
the nomogram. Additionally, the decision curve analysis (DCA),
implemented with the ggDCA package, was utilized to assess the
clinical utility of the nomogram predictions for these time frames.

2.9 Analysis of differential expression and
correlation in risk groups

The TCGA-CESC dataset was divided into high-risk and low-
risk groups based on the median LASSO RiskScore. The risk
stratification was similarly utilized for the combined GEO dataset
using the LASSO RiskScore calculated from the risk coefficients.
Further investigation was performed to examine the variation in
gene expression related to the prognostic risk model within both
high and low-risk groups of TCGA-CESC and combined GEO
datasets. Expression comparison graphs were created to visualize
these differences. Correlations among the genes related to the
prognostic risk model in the TCGA-CESC and combined GEO
datasets were analyzed using the Spearman correlation method. The
correlation chord graphs produced by the igraph and ggraph
packages were used to depict the associations among gene
expression levels. The strength of the correlation was classified
based on the correlation coefficient (r value): values below
0.3 indicated negligible to weak correlation, between 0.3 and
0.5 indicated weak correlation, between 0.5 and 0.8 suggested
moderate correlation, and above 0.8 indicated strong correlation.

2.10 Immuno-infiltration analysis of
cervical cancer

Utilizing the CIBERSORT algorithm (Newman et al., 2015), which
is grounded in linear support vector regression, we decomposed the
transcriptomic data to assess immune cell compositions and
abundances within mixed cellular contexts. Applying the LM22 gene
signature, we processed the data to retain only samples with nonzero
immune cell fractions, leading to the derivation of the immune cell
infiltration matrix for the TCGA-CESC dataset. The ggplot2 package in
R was utilized to visualize variations in immune cell profiles between
CESC and normal samples, highlighting significant variances in LM22-
defined immune cell types. Spearman’s rank correlation was employed
to both assess inter-immune cell correlations and link these cells with
model genes, identifying statistically significant relationships (p < 0.05).
Visualization of these correlations was achieved through correlation
heatmaps and bubble plots, generated with the pheatmap and
ggplot2 packages, respectively.

2.11 Analysis of immune profiles in high vs.
low-risk cervical cancer groups

Through Single-Sample Gene-Set Enrichment Analysis
(ssGSEA) (Xiao et al., 2020), we quantified the degree of immune
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cell infiltration, encompassing activated CD8 T cells, dendritic cells,
and other immune subsets, within the CESC samples of the TCGA-
CESC dataset. These measurements provided a relative abundance
score for each immune type, forming the basis for constructing an
immune cell invasion matrix. Comparative analyses of immune cell
abundance between high and low-risk groups were illustrated
utilizing ggplot2, with significant immune cell variances noted for
further analysis. Spearman’s correlation was again utilized to explore
both intra-immune cell relationships and their associations with
model genes. The findings were presented through heatmaps and
bubble maps, crafted using pheatmap and ggplot2.

2.12 Statistical analysis

All analytical procedures were executed in R software (Version
4.2.2). Statistical significance for data with a normal distribution was
assessed by employing the Student’s t-test to compare two
continuous variables. For data not following normal distribution,
the Mann-Whitney U test, or the Wilcoxon Rank Sum Test, was
applied. Multiple group comparisons were conducted using the
Kruskal–Wallis test. Spearman’s correlation coefficient was
computed to determine the relationships among diverse
biomolecules. Statistical significance was set at a bilateral p-value
of less than 0.05, unless specified otherwise.

3 Results

3.1 Technology roadmap and target
prediction of cryptotanshinone

Bioinformatics analysis of cryptotanshinone is shown in
Figure 1A. Cryptotanshinone (CTS) was used as a keyword to
search the PubChem and DGIdb databases to identify the CTS-
related targets. The target of CTS was predicted by
SwissTargetPrediction website, and CTS-related targets identified
by the three methods were combined to obtain 133 CTSRGs. The
Cytoscape network diagram of CTS- and PPPPC-related genes
(CTSRGs) is shown in Figure 1B. Detailed information is
presented in Supplementary Table S2.

3.2 Differentially expressed genes associated
with cryptotanshinone in cervical cancer

The dataset from The Cancer Genome Atlas (TCGA-CESC) was
segregated into two groups: cases of cervical endocervical
adenocarcinoma and squamous cell carcinoma (CESC) and
normal controls. We conducted an analysis of differential gene
expression between these groups utilizing the limma package in
R.This analysis identified 3,024 differentially expressed genes,
adhering to the criteria of an absolute log fold change (|logFC|)
greater than 3.0 and an adjusted p-value (adj.P) below 0.05.
Specifically, there was an upregulation of 2,114 genes and a
downregulation of 911 genes under these conditions. We
illustrated these findings in a volcano plot (Figure 2A).

FIGURE 1
Comprehensive Analysis and Interaction Network of
Cryptotanshinone-Related Differentially Expressed Genes
(CTSRDEGs). (A) Flow Chart for analysis of CTSRDEGs. This panel
presents the systematic workflow for analyzing CTSRDEGs in
cervical endocervical adenocarcinoma and squamous cell carcinoma
(CESC) using The Cancer Genome Atlas (TCGA) data. It covers the
steps to identify differentially expressed genes (DEGs) upon
Cryptotanshinone (CTS) treatment, followed by subsequent
functional enrichment analysis (Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways), differential
expression profiling (Exp Diff), and validation through Receiver
Operating Characteristic (ROC) analysis and LASSO regression. Also
shown are the methods for constructing the protein–protein
interaction (PPI) network. (B) Cryptotanshinone and Targets
Interaction Network. This panel illustrates the interaction network of
CTS (yellow oval) with its predicted targets: DGIdb prediction targets
(red circles), PubChem predicted targets (orange circles), and
SwissTargetPrediction targets (purple circles). This network provides
insights into the potential mechanisms of action of CTS in targeting
gene expressions in CESC.
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FIGURE 2
Integrated Analysis of Cryptotanshinone-Associated Gene Expression and Protein Interactions in Cervical Cancer. (A) Volcano plot illustrating the differential gene
expressionbetween thecervical cancer (CESC) groupand thecontrol (Normal) group inTCGA-CESCdataset. (B)Venndiagramshowing the intersectionof differentially
expressed genes (DEGs) and cryptotanshinone-associated genes (CTSRGs) in cervical cancer. (C) Heat map of cryptotanshinone-associated differentially expressed
genes (CTSRDEGs) showing gene expression levels in the cervical cancer dataset (TCGA-CESC), with high expression denoted by red and low expression by blue.
(D)Protein–protein interaction (PPI) networkofCTSRDEGs,analyzedutilizing theSTRINGdatabaseandvisualized tohighlight the top10hubgenesasdeterminedbyfive
CytoHubba algorithms: MCC, MNC, Degree, EPC, and Closeness. (E–I) The PPI networks of the top 10 cryptotanshinone-related differentially expressed genes
(CTSRDEGs) were constructed using five different algorithms from the CytoHubba plugin, revealing unique interactions among the genes. (J) The Venn diagram
illustrates the overlap among the top genes identified by these algorithms in the context of cervical cancer. Color coding: orange represents the cervical cancer (CESC)
group and green the control (Normal) group.
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In order to detect Cryptotanshinone-Related Differentially
Expressed Genes (CTSRDEGs), we intersected the genes meeting
the differential expression criteria with known Cryptotanshinone-
Sensitive/Responsive Genes (CTSRGs). This intersection yielded
17 significant CTSRDEGs, including TOP2A, PLK1, KIF11,
CDH1, CTSV, ADAMTS5, S1PR1, KDR, CA2, BCHE, PTGER2,
TNF, ABCB11, MMP13, NPY5R, CA4, and IDO1. To visualize the
expression patterns of these CTSRDEGs across the diverse groups
within the TCGA-CESC dataset, we employed the pheatmap
package in R to generate heat maps highlighting the differential
expression (Figures 2B,C).

3.3 Construction of PPI networks and
screening of hub genes

Initially, an analysis to discern protein protein interactions
(PPI) was conducted, leading to the creation of a PPI network for
17 core CTSRDEGs utilizing the STRING database, as depicted in
Figure 2D. This analysis led to the retention of key interacting
CTSRDEGs. The PPI network revealed 14 connected CTSRDEGs:
MMP13, TNF, CA4, KDR, TOP2A, S1PR1, PLK1, ADAMTS5,
BCHE, CA2, CDH1, CTSV, IDO1, and KIF11. The relevance of
these genes was further quantified using five distinct algorithms
provided by the CytoHubba plugin in Cytoscape, ranking the
genes based on their interaction scores. The algorithms employed
were MCC, Degree, MNC, EPC, and Closeness. The PPI networks

of the top 10 cryptotanshinone-related differentially expressed
genes (CTSRDEGs) were constructed using five different
algorithms from the CytoHubba plugin, revealing unique
interactions among the genes (Figures 2E–I), where the
gradation from red to yellow in the nodes denotes scores from
high to low. A synthesis of the results from the five algorithms
highlighted in Figure 2J identified seven hub genes critical to
CESC: TNF, MMP13, KDR, CDH1, TOP2A, ADAMTS5,
and S1PR1.

3.4 Enrichment analysis of GO and
KEGG pathway

Subsequent GO and KEGG pathway analyses were employed
to delineate the biological processes (BP), cellular components
(CC), molecular functions (MF), and pathway involvements of
the seven identified hub genes linked to cryptotanshinone. As
illustrated in Table 2, these analyses elucidated significant
enrichment of the hub genes across diverse biological
processes, including endothelial cell differentiation,
endothelium development, and vascular wound healing;
cellular components including membrane raft and external
side of plasma membrane; and molecular functions like
metalloendopeptidase activity and integrin binding. Key
pathways identified included the IL-17 signaling pathway,
sphingolipid signaling pathway, and fluid shear stress and

TABLE 2 Results of GO and KEGG enrichment analysis for CTSRDEGs.

Ontology ID Description BgRatio p-value p.adjust qvalue

BP GO:0045446 endothelial cell differentiation 121/18903 8.79E-06 4.75E-03 1.69E-03

BP GO:0003158 endothelium development 139/18903 1.33E-05 4.75E-03 1.69E-03

BP GO:0022411 cellular component disassembly 483/18903 1.39E-05 4.75E-03 1.69E-03

BP GO:0061042 vascular wound healing 22/18903 2.71E-05 6.52E-03 2.32E-03

BP GO:0050927 positive regulation of positive chemotaxis 25/18903 3.51E-05 6.52E-03 2.32E-03

CC GO:0045121 membrane raft 326/19869 2.40E-06 4.12E-05 2.81E-05

CC GO:0098857 membrane microdomain 327/19869 2.42E-06 4.12E-05 2.81E-05

CC GO:0009897 external side of plasma membrane 462/19869 4.08E-04 4.62E-03 3.15E-03

MF GO:0004222 metalloendopeptidase activity 112/18432 7.53E-04 3.09E-02 1.27E-02

MF GO:0005178 integrin binding 156/18432 1.45E-03 3.09E-02 1.27E-02

MF GO:0008237 metallopeptidase activity 184/18432 2.01E-03 3.09E-02 1.27E-02

MF GO:0045295 gamma-catenin binding 13/18432 4.93E-03 3.68E-02 1.51E-02

MF GO:0032794 GTPase activating protein binding 15/18432 5.68E-03 3.68E-02 1.51E-02

KEGG hsa04657 IL-17 signaling pathway 94/8644 1.71E-03 1.10E-01 8.29E-02

KEGG hsa04071 Sphingolipid signaling pathway 121/8644 2.81E-03 1.10E-01 8.29E-02

KEGG hsa05418 Fluid shear stress and atherosclerosis 139/8644 3.69E-03 1.10E-01 8.29E-02

KEGG hsa05205 Proteoglycans in cancer 205/8644 7.88E-03 1.44E-01 1.09E-01

KEGG hsa04015 Rap1 signaling pathway 210/8644 8.26E-03 1.44E-01 1.09E-01

GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes; CTSRDEGs, Cryptotanshinone-Related

Differentially Expressed Genes.
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FIGURE 3
Comprehensive Analysis of Cryptotanshinone-Induced Gene Expression and Batch Effects Correction in Cervical Cancer Data Sets. (A) Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of cryptotanshinone-related differentially
expressed genes (CTSRDEGs) depicted via bubble maps for Biological Process (BP), Cellular Component (CC), Molecular Function (MF), and biological
pathways (KEGG). The horizontal axes represent GO and KEGG terms. (B) Drug-target-pathway network illustrating interactions among
cryptotanshinone (CTS), hub genes, GO entries, and KEGG pathways. The network uses yellow ovals for drugs, purple circles for genes, light brown for
KEGG pathways, light green for CC entries, dark green for BP entries, and dark brown for MF entries. (C) Boxplot distribution of combined GEO datasets
GSE7803 and GSE9750, illustrating batch effects before and after correction. (D) Principal Component Analysis (PCA) plots of the integrated GEO
datasets, comparing data clustering before and after batch effect removal, with the cervical endocervical adenocarcinoma and squamous cell carcinoma

(Continued )
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atherosclerosis, among others detailed in the Rap1 signaling
pathway and proteoglycans in cancer. These results were
visually represented in a bubble chart (Figure 3A) and further
supported by a drug-target-pathway network diagram
(Figure 3B). Additional comparisons in the KEGG enrichment
analysis were made for the sphingolipid signaling pathway, as
well as the fluid shear stress and atherosclerosis pathway, as
shown in Supplementary Figures S1A, B. The visualization of
these pathways was enhanced with the use of the R package
Pathview for Supplementary Figures S1C–E.

3.5 Consolidation of cervical cancer datasets

Initially, the sva package in R was utilized to combine the
datasets GSE7803 and GSE9750, aiming to rectify batch effects
present within the CESC samples. The consistency of expression
values pre- and post-adjustment was visually inspected using box
plots (Figure 3C). Additionally, the dimensional reduction achieved
through this correction was depicted using PCA, validating the
effective alleviation of batch effects., as illustrated in Figure 3D.

3.6 Differential expression verification and
ROC curve analysis of cryptotanshinone-
related hub genes

We conducted an analysis to identify expression discrepancies of
seven cryptotanshinone-sensitive hub genes within the CESC and
control cohorts within the TCGA-CESC dataset, employing the
Mann-Whitney U test. This analysis revealed statistically significant
disparities (p < 0.05) for six of these genes: TNF, KDR, CDH1, TOP2A,
ADAMTS5, and S1PR1, as shown in the comparative plot (Figure 4A).
We then evaluated the diagnostic potential of these genes using ROC
curve analyses, which demonstrated a high level of diagnostic accuracy
(AUC > 0.9) in discriminating between the groups. (Figures 4B–D).

Following this, expression variances of the same hub genes were
examined in the integrated GEO dataset, identifying significant
differences for four genes: MMP13, CDH1, TOP2A, and ADAMTS5
(p < 0.05), as documented in Figure 4E. ROC curves based on these
genes demonstrated substantial diagnostic utility, with TOP2A showing
high accuracy (AUC > 0.9) and MMP13, CDH1, and ADAMTS5
exhibiting moderate accuracy (0.7 < AUC <0.9) for classifying
CESC and normal samples (Figures 4F–H).

TABLE 3 Results of cox analysis.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

M Stage 256

M0 116 Reference Reference

M1 11 3.651 (1.226–10.872) 0.020 1.370 (0.393–4.775) 0.621

MX 129 1.973 (1.112–3.501) 0.020 1.544 (0.816–2.922) 0.182

N Stage 256

N0 131 Reference Reference

N1 60 2.872 (1.461–5.648) 0.002 2.818 (1.382–5.744) 0.004

NX 65 3.850 (1.971–7.517) <0.001 1.288 (0.501–3.313) 0.600

T Stage 256

T1 137 Reference Reference

T2 72 1.145 (0.559–2.345) 0.711 0.788 (0.366–1.697) 0.543

T3 21 2.687 (1.158–6.239) 0.021 2.182 (0.818–5.820) 0.119

T4 10 8.174 (3.459–19.317) <0.001 4.566 (1.432–14.558) 0.010

TX 16 3.471 (1.395–8.637) 0.007 2.194 (0.729–6.610) 0.162

Age 256 1.011 (0.990–1.032) 0.323

LASSO RiskScore 256 4.111 (2.283–7.403) <0.001 3.604 (1.815–7.156) <0.001

HR, hazard ratio, general HR > 1 indicates that the variable is a risk factor and HR < 1 is a protective factor. A single factor p-value <0.1 was included in the analysis.

FIGURE 3 (Continued)

(CESC) dataset GSE7803 in green and GSE9750 in orange. The screening criteria for GO and KEGG pathway enrichment analysis were
p-value <0.05 and FDR value (q value) <0.25. In the network diagram, yellow ovals represent drugs, purple circles represent genes, light brown represents
KEGG pathways, light green circles represent CC entries, dark green represents BP entries, and dark brown represents MF entries.
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FIGURE 4
Differential Expression Validation and ROC Curve Analysis. (A) Grouping comparison diagram of cryptotanshinone-associated hub genes in cervical
cancer (CESC) group and control (Normal) group in the Cervical cancer dataset (TCGA-CESC). (B–D) ROC curves of cryptotanshinone-associated hub genes
TNF and KDR (B), CDH1 and TOP2A (C), ADAMTS5 and S1PR1 (D) in TCGA-CESC dataset. (E) Grouping comparison diagram of cryptotanshinone-associated
hub genes in cervical cancer (CESC) group and control (Normal) group in the integrated GEO dataset (Combined Datasets). (F-H) ROC curves of
cryptotanshinone-associated hub genesMMP13 (F), CDH1 (G), TOP2A, and ADAMTS5 (H) in an integrated GEO dataset (Combined Datasets). CESC, Cervical
Endocervical Adenocarcinoma and Squamous Cell Carcinoma; CTSRDEGs, Cryptotanshinone-Related Differentially Expressed Genes; DCA, Decision Curve
Analysis; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve. ns indicates p-values ≥0.05, which were not statistically significant. *p < 0.05,
statistical significance; **p < 0.01, highly statistically significant; ***p < 0.001, highly statistically significant. The AUChas high accuracy above 0.9, and the AUC
has some accuracy between 0.7 and 0.9. Orange represents cervical cancer (CESC) group and green represents control (Normal) group.
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3.7 Construction and prognostic analysis of
cervical cancer prognostic model

We utilized univariate Cox regression analysis, incorporating
17 CTSRDEGs, to devise a prognostic model specifically tailored for
cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC).

Variables exhibiting a p-value less than 0.10 were
subsequently illustrated in forest plots (Figure 5A). This
analysis identified three significant CTSRDEGs: CA2, TNF,
and IDO1. To refine our prognostic model, we applied LASSO
regression to these genes, visualized using both a model diagram

and a variable trace plot (Figures 5B,C). This step confirmed the
inclusion of CA2, TNF, and IDO1 in our LASSO model.
Subsequent multivariate Cox regression analysis, focused on
these genes, was conducted to explore their relationship with
clinical outcomes and their prognostic efficacy. Results were
depicted in another Forest Plot (Figure 5D). The formula for
the LASSO RiskScore was established as:

riskScore � CA2* 0.0895( ) + TNF* 0.3250( ) + IDO1* -0.1470( )
Using this score, we constructed a risk factor map (Figure 5E),

employing the ggplot2 package, and stratified the CESC samples
from TCGA-CESC dataset into high and low-risk categories based

FIGURE 5
LASSO and Cox Regression Analysis. (A) Forest Plot of three cryptotanshinone-related differentially expressed genes (CTSRDEGs) in a univariate Cox
regressionmodel. The prognostic risk model plot (B) and variable locus plot (C) of the (B, C). LASSO regressionmodel. (D) Forest Plot of three prognostic
risk model-associated genes in multifactor Cox regression model. (E) Risk factor plot of LASSO RiskScore (F) Prognostic KM curve between high and low
groups of the LASSO risk Score (RiskScore) and overall survival (OS) of cervical cancer (CESC). G-I. 1 year (G), 3 years (H), and 5 years (I) LASSO risk
scores depend on the ROC curve. TCGA, The Cancer Genome Atlas; CESC, Cervical Endocervical Adenocarcinoma and Squamous Cell Carcinoma;
CTSRDEGs, Cryptotanshinone-Related Differentially Expressed Genes; LASSO, Least Absolute Shrinkage and Selection Operator; OS, Overall Survival;
KM, Kaplan-Meier; ROC, Receiver Operating Characteristic Curve; AUC, Area Under the Curve. AUC has some accuracy at 0.7 to 0.9. The color green is
employed to denote the low-risk group, whereas orange is utilized to signify the high-risk group.

Frontiers in Genetics frontiersin.org11

Lu et al. 10.3389/fgene.2024.1435132

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1435132


FIGURE 6
Validation of Prognostic Model. (A) Forest Plot of three clinical stage variables (T stage, N stage, M stage), Age, and LASSO RiskScore in univariate Cox
regression model. (B) Forest Plot of three clinical stage variables (T stage, N stage, M stage), LASSO risk score (RiskScore) in multivariate Cox regression
model. (C)Nomogram of three clinical stage variables (T stage, N stage, M stage) and LASSO RiskScore in a single multifactor Cox regressionmodel. (D-F)
1-year (D), 3-year (E), and 5-year (F) calibration curves of CESC prognostic risk model; G-I. 1-year (G), 3-year (H), and 5-year (I) decision curve
analysis (DCA) graph of cervical cancer (CESC) prognostic risk model. TCGA, The Cancer Genome Atlas; CESC, Cervical Endocervical Adenocarcinoma
and Squamous Cell Carcinoma; LASSO, Least Absolute Shrinkage and Selection Operator; OS, Overall Survival.
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on the median RiskScore. The impact of this stratification on overall
survival (OS) was assessed through the analysis of Kaplan-Meier
(KM) curves, using the survival package (Figure 5F), and revealed
significant differentiation in prognostic outcomes (p < 0.05). Time-
dependent ROC curves for 1-, 3-, and 5-year forecasts were
generated to assess the predictive accuracy of the RiskScore
(Figures 5G–I), with the 1-year AUC reaching 0.753, indicating
strong predictive power.

3.8 Validation of cervical cancer
prognostic model

The prognostic model’s reliability was further examined through
calculations involving the LASSO RiskScore, based on gene
expression levels and coefficients from the CESC dataset.
Univariate Cox regression analyses were conducted utilizing the

RiskScore, alongside age and stages (T, N, M), where all factors with
p-values below 0.10 advanced to multivariate analysis (Table 3). The
results, shown in forest plots (Figures 6A,B), affirmed the
significance of the clinical stage variables and the RiskScore in
predicting clinical outcomes. A nomogram integrating the
RiskScore with T, N, and M stages was crafted to depict their
prognostic relationships (Figure 6C), underscoring the superior
prognostic value of the RiskScore over other variables.
Calibration of the prognostic model at 1-, 3-, and 5-year intervals
was performed, with calibration curves demonstrating close
alignment with ideal predictions, especially at the 1-year mark
(Figures 6D–F). Finally, the clinical usefulness of the model was
assessed across different time frames through decision curve analysis
(DCA). (Figures 6G–I). The analysis showed the model’s net benefit
to be most substantial for predictions at 3 years, followed by 1 year,
and 5 years, highlighting its effective prognostic capability across
these intervals.

FIGURE 7
Differential Expression Validation and Correlation Analysis. (A, B) High risk of prognostic risk model-associated genes in cervical cancer (CESC)
samples (A) from the cervical cancer dataset (TCGA-CESC) and cervical cancer (CESC) samples (B) from the Combined GEO Datasets (High) Subgroup
comparison graph in the High-Risk group and the Low-Risk group. (C, D) Prognostic risk model-associated genes in cervical cancer (CESC) samples (C)
from the Cervical cancer dataset (TCGA-CESC) and cervical cancer (CESC) samples (D) from the integrated GEO dataset (Combined Datasets).
TCGA, The Cancer Genome Atlas; CESC, Cervical Endocervical Adenocarcinoma and Squamous Cell Carcinoma. *p < 0.05, which has statistical
significance; ***p < 0.001, which is highly statistically significant. A correlation coefficient (r value) with an absolute value below 0.3 suggests weak or no
correlation, while values between 0.3 and 0.5 indicate a weak correlation, those between 0.5 and 0.8 suggest moderate correlation, and those above
0.8 indicate strong correlation. Red and blue represent positive and negative correlation, respectively. Orange and green represent the cervical cancer
(CESC) and control (Normal) groups, respectively.
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3.9 Differential expression validation and
correlation analysis in high- and low-
risk groups

CESC specimens from TCGA-CESC dataset were segregated
into high and low-risk categories based onmedian LASSO RiskScore
derived from the prognostic risk model for CESC. To investigate
differential gene expression linked to the prognostic risk model, a
comparison chart (Figure 7A) displayed variations in expression of
three key genes associated with risk in both high- and low-risk CESC
groups. Analysis revealed statistically significant differential
expression for genes CA2, TNF, and IDO1 across high- and low-
risk groups (p < 0.001). Furthermore, CESC samples from the
combined GEO dataset were categorized similarly using LASSO
RiskScore. Differential expression of the same three genes in these
groups was illustrated in a comparison figure (Figure 7B), indicating
a highly significant variation in IDO1 expression between high- and
low-risk groups (p < 0.001), with CA2 and TNF also showing
significant differences (p < 0.05). A correlation analysis of these
genes was conducted across samples from both TCGA-CESC and
combined GEO datasets, visualized in a correlation chord diagram
(Figures 7C,D). The analysis demonstrated a positive correlation
between IDO1 and TNF, and CA2 and TNF, with no significant
correlation observed between IDO1 and CA2.

3.10 Immuno-infiltration analysis of
cervical cancer

The TCGA-CESC dataset served as a basis for evaluating the
correlation between 22 immune cell types and the classification of
samples into CESC and normal groups utilizing the CIBERSORT
algorithm. An immuno-infiltration histogram (Supplementary Figure
S2A) depicted the proportions of immune cells, and differences in
immune cell abundance between CESC and normal groups were
highlighted in a subgroup comparison graph (Supplementary Figure
S2B). Significant differences (p < 0.05) were found in 10 types of
immune cells, including plasma cells, CD4+ T cells, resting memory
CD4+ T cells, resting NK cells, monocytes, and various macrophage
subsets among others. Correlation strengths among these immune cells
were depicted in a heatmap (Supplementary Figure S2C), showing a
strong positive correlation between resting dendritic cells and resting
memory CD4+ T cells (r = 0.44), and a notable negative correlation
between resting memory CD4+ T cells and macrophages
M1 (r = −0.46).

Additionally, a correlation bubble map (Supplementary Figure
S2D) detailed was employed to delve into the intricate relationships
existing between critical prognostic genes and immune cell
infiltration. The gene IDO1 was positively correlated with
macrophage M1 (r > 0.0, p-value < 0.05) and negatively
correlated with resting memory CD4+ T cells (r < 0.0, p < 0.05).

3.11 Analysis of immune infiltration in high-
and low-risk groups

We evaluated the immune cell infiltration in the cervical
endocervical adenocarcinoma and squamous cell carcinoma

(CESC) samples from TCGA-CESC dataset, employing the
ssGSEA algorithm to quantify the presence of 28 distinct
immune cell types within high- and low-risk CESC cohorts.
Initial analyses demonstrated notable differences in the
infiltration levels of 15 distinct immune cell types between these
groups, as evidenced by a group comparison plot (Supplementary
Figure S3A). This plot highlighted significant variances (p < 0.05)
across several immune cells, including activated B cells, both
CD4 and CD8 T cells (activated, central memory, and effector
memory), activated dendritic cells, eosinophils, immature cells
(B cells and dendritic cells), macrophages, myeloid-derived
suppressor cells (MDSC), monocytes, natural killer cells, natural
killer T cells, and neutrophils.

To further analyze these differences, we constructed correlation
heat maps (Supplementary Figures S3B, C) to display the
relationships among the immune cells within the defined risk
groups. These maps showed predominantly strong positive
correlations among the immune cell populations in both risk
categories. Additionally, correlation bubble maps (Supplementary
Figures S3D, E) were used to clarify the intricate connections
between prognostic risk model genes and the abundance of
immune cells in the CESC samples, segregated by risk group.

Moreover, to clarify the intricate connections between
prognostic risk model genes and the varying abundances of
immune cells in the CESC samples, segregated by risk category,
correlation bubble maps (Supplementary Figures S3D, E)
were utilized.

Notably, in the high-risk group, IDO1 exhibited a substantial
positive correlation with effector memory CD8+ T cells (r = 0.618;
p < 0.05), whereas in the low-risk group, the strongest positive
correlation was between IDO1 and activated CD4+ T cells (r = 0.696,
p < 0.05). These findings underscore the intricate associations
between immune cell dynamics and the molecular underpinnings
of risk stratification in CESC.

4 Discussion

This study analyzed cervical cancer network drugs, focusing on
cryptotanshinone and its related genes. Data from TCGA and GEO
databases were used to identify cryptotanshinone-related gene
expression changes in cervical cancer samples. Using various
bioinformatics tools and methods, such as DESeq2 for examining
differential expression, the STRING database for protein–protein
interaction networks, and Cox regression analysis for prognostic
modeling, this study identified key genes and pathways associated
with cervical cancer. We additionally explored the prognostic
significance of these genes in cervical cancer and validated our
findings through immuno-infiltration and survival analyses.

Comparative analysis with the existing literature reveals that our
research offers unique perspectives on the anticancer effects of
cryptotanshinone on cervical cancer. While previous research has
primarily focused on the cytotoxic effects of cryptotanshinone
against various cancer cell lines, our work focuses on the
underlying molecular dynamics, uncovering specific gene
expression and protein–protein interaction networks influenced
by cryptotanshinone (Yen et al., 2019). Notably, our discovery of
essential genes and pathways offers a more detailed mechanistic
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understanding of the anticancer activity of cryptotanshinone and
establishes a foundation for future therapeutic strategies for cervical
cancer treatment.

The mechanistic insights derived from our study highlight the
biological significance of the identified hub genes and pathways,
providing a deeper understanding of the anticancer effects of
cryptotanshinone in cervical cancer. These hub genes and
pathways are intricately involved in cellular processes,
encompassing apoptosis, cell cycle regulation, and immune
response modulation (Kim et al., 2018; Su et al., 2021; Luo et al.,
2019). The influence of cryptotanshinone on these genes and
pathways suggests a multi-targeted approach that disrupts cancer
cell proliferation and survival, while enhancing immune surveillance
against tumor cells. This comprehensive analysis revealed the
potential molecular mechanisms by which cryptotanshinone
exerts its therapeutic effects, offering promising directions for
targeted cancer therapy development.

The IL-17 signaling pathway plays a key role in immune
modulation within the tumor microenvironment, promoting
inflammation, tumor cell survival, and immune evasion (PMID:
39219271, PMID: 36053326, PMID: 35376994). In cervical cancer,
IL-17 upregulation may drive immune escape and tumor
proliferation, making it a critical target in our study. Our
findings suggest that cryptotanshinone may exert anti-tumor
effects by modulating the IL-17 pathway, potentially inhibiting
cancer cell growth and metastasis through the regulation of IL-17
expression and its downstream signals. Further exploration of these
mechanisms may clarify cryptotanshinone’s therapeutic potential in
targeting IL-17 in cervical cancer. Our findings highlight the
promise of cryptotanshinone as a new and effective therapeutic
choice for treating cervical cancer. By demonstrating the influence of
cryptotanshinone on key molecular pathways and hub genes
associated with tumor progression and immune evasion, our
study suggests new approaches for more effective and targeted
treatment (Shin et al., 2009; Wang et al., 2020). In addition, the
identified biomarkers offer valuable prognostic tools, potentially
enabling the development of personalized medical approaches that
optimize treatment outcomes for patients with cervical cancer. This
study paves the way for future clinical trials exploring the efficacy
and safety of cryptotanshinone-based therapies in clinical settings.

Cryptotanshinone’s demonstrated efficacy in modulating key
molecular pathways highlights its translational potential as an
adjunctive or alternative therapy for cervical cancer. Current
therapeutic approaches, primarily based on chemoradiotherapy, often
face limitations such as adverse side effects, resistance, and limited efficacy
in advanced-stage or recurrent cervical cancer. Compared to
conventional therapies, cryptotanshinone offers a multi-targeted
approach by simultaneously influencing apoptotic, proliferative, and
immune-modulatory pathways, as observed in our study. These
advantages underscore cryptotanshinone’s potential to enhance
treatment outcomes while reducing the burden of side effects. Future
research should prioritize clinical trials to validate cryptotanshinone’s
safety and efficacy in clinical settings, with particular attention to its role
in multi-drug regimens. Additionally, exploring optimal dosing strategies
and delivery mechanisms for cryptotanshinone may further establish its
position within cervical cancer treatment paradigms, potentially
improving patient outcomes and offering a valuable tool in
oncologic care.

However, certain limitations warrant further investigation.
The small sample size in the TCGA-CESC dataset, which
includes only three normal samples, may limit the
generalizability of our findings. This constraint highlights the
need for validation using larger and more diverse cohorts to
enhance the robustness and applicability of the results in
broader clinical settings. Future studies should aim to address
this limitation by incorporating multi-center data or additional
high-throughput datasets. Additionally, Our bioinformatics
analysis suggests that cryptotanshinone may interact with
multiple signaling pathways related to the inhibition of cancer
cell proliferation and induction of apoptosis. However, as these
conclusions are primarily based on computational data, further
experimental studies are necessary to explore and validate the
specific mechanisms of cryptotanshinone’s action. These
limitations highlight the need for further research involving
larger, more diverse cohorts, and the application of more
comprehensive analytical methods to validate and extend our
findings. Future studies should clarify the detailed molecular
mechanisms through which cryptotanshinone acts on cancer
cells, particularly by exploring its interaction with the novel
targets identified in our study. Expanding our understanding of
the pharmacodynamics of this drug and optimizing its delivery
mechanisms could significantly enhance its clinical application
and pave the way for novel targeted treatments for cervical cancer.

5 Conclusion

This report presents a comprehensive analysis of cervical
cancer and its associated genes, with a specific focus on the
impact of cryptosalvianols. Using TCGA and GEO databases, we
identified DEGs in cervical cancer and employed bioinformatic
tools to analyze their roles and prognostic value. The objective of
this study was to lay the foundation for the advancement of
targeted therapeutic approaches in the treatment of
cervical cancer.
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SUPPLEMENTARY FIGURE S1
Pathway of Cryptotanshinone-associated hub genes (KEGG) enrichment
analysis and Pathway visualization. Sphingolipid signaling pathway (A), Fluid
shear stress and atherosclerosis (B), IL-17 signaling pathway (C),
Proteoglycans in cancer (D) and Rap1 signaling pathway (E). KEGG, Kyoto
Encyclopedia of Genes and Genomes.

SUPPLEMENTARY FIGURE S2
TCGA-CESC Immune Infiltration Analysis using the CIBERSORT
Algorithm. (A, B) Histogram (A) and group comparison graph (B) of
immune infiltration in cervical cancer data set (TCGA-CESC). (C)
Correlation heatmap depicting the levels of immune cell infiltration in the
TCGA-CESC cervical cancer dataset (TCGA-CESC). (D) Bubble map of
correlation between prognostic risk model genes and abundance of
immune cell infiltration in the cervical cancer dataset (TCGA-CESC).
TCGA, The Cancer Genome Atlas; CESC, Cervical Endocervical
Adenocarcinoma and Squamous Cell Carcinoma. ns indicates
P-values ≥0.05, which were not statistically significant. *P < 0.05,
statistical significance; **P < 0.01, highly statistically significant; ***P <
0.001, highly statistically significant. The absolute value of the
correlation coefficient (r value) between 0.3 and 0.5 indicates a weak
correlation, and between 0.5 and 0.8 indicates a moderate correlation.
Orange is the cervical cancer (CESC) group, green is the control
(Normal) group. Blue is negatively correlated, and green is positively
correlated.

SUPPLEMENTARY FIGURE S3
Risk Group Immune Infiltration Analysis using the ssGSEA Algorithm. (A) A
comparative analysis of immune cells in High-Risk and Low-Risk groups
of cervical cancer (CESC) samples. (B, C) Results of correlation analysis
of the abundance of immune cell infiltration in the High-Risk group (B)
and Low-Risk group (C) samples of cervical cancer (CESC). (D, E) Bubble
chart depicting the relationship between immune cell infiltration levels
and prognostic risk model genes in the High-Risk (D) and Low-Risk (E)
groups of cervical cancer (CESC). ssGSEA, single-sample Gene-Set
Enrichment Analysis; CESC, Cervical Endocervical Adenocarcinoma
and Squamous Cell Carcinoma. ns indicates P-values ≥0.05, which were
not statistically significant. *P < 0.05, statistical significance; **P < 0.01,
highly statistically significant; ***P < 0.001, highly statistically
significant. The absolute value of the correlation coefficient (r value)
between 0.3 and 0.5 indicates a weak level of correlation, while values
between 0.5 and 0.8 suggest a moderate degree of correlation. Orange
is the High-Risk group, green is the Low-Risk group. Red is positively
correlated, and blue is negatively correlated.
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