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Introduction: Structural Variants (SVs) are a type of variation that can significantly
influence phenotypes and cause diseases. Thus, the accurate detection of SVs is a
vital part of modern genetic analysis. The advent of long-read sequencing
technology ushers in a new era of more accurate and comprehensive SV
calling, and many tools have been developed to call SVs using long-read data.
Haplotype-tagging is a procedure that can tag haplotype information on reads
and can thus potentially improve the SV detection; nevertheless, few methods
make use of this information. In this article, we introduce HapKled, a new SV
detection tool that can accurately detect SVs from Oxford Nanopore
Technologies (ONT) long-read alignment data.

Methods: HapKled utilizes haplotype information underlying alignment data by
conducting haplotype-tagging using Whatshap on the reads to improve the
detection performance, with three unique calling mechanics including altering
clustering conditions according to haplotype information of signatures,
determination of similar SVs based on haplotype information, and slack
filtering conditions based on haplotype quality.

Results: In our evaluations, HapKled outperformed state-of-the-art tools and can
deliver better SV detection results on both simulated and real sequencing data.
The code and experiments of HapKled can be obtained from https://github.com/
CoREse/HapKled.

Discussion:With the superb SV detection performance that HapKled can deliver,
HapKled could be useful in bioinformatics research, clinical diagnosis, and
medical research and development.
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1 Introduction

Variants are a type of genetic mechanism that greatly influence the phenotypes of
humans and can cause many genetic diseases. Thus, accurate detection of variants
bears great significance to genetic research, clinical diagnosis, and medical research
(Kim and Misra, 2007; Conrad et al., 2010; Auton et al., 2015; Chiang et al., 2017;
Bennett et al., 2020). Among all types of variants, i.e., single-nucleotide variants
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(SNVs), small insertions/deletions (indels), and structural
variants (SVs), SVs are variants that influence genetic areas of
no less than 50 base pairs (bp) (Kidd et al., 2010; Sudmant et al.,
2015; Chiang et al., 2017; Ahsan et al., 2023) and have a more
significant influence on the phenotypes and diseases due to their
large sizes and largest influenced genomic areas (Weischenfeldt
et al., 2013; Macintyre et al., 2016; Chiang et al., 2017;
Dennenmoser et al., 2017; Jeffares et al., 2017). Furthermore,
the large size and varied types (typically including deletions,
insertions, duplications, and inversions) of SVs make them
harder to discover than SNVs and indels (Kosugi et al., 2019;
Kosugi and Terao, 2024). As a result, the detection of SVs is both
important and challenging.

The advent of next-generation sequencing (NGS) has made
rapid and affordable detection of SVs possible (Hu et al., 2021),
and many tools (Layer et al., 2014; Chen et al., 2016; Li et al.,
2021; Liu et al., 2021; Zhang et al., 2021) have been developed to
detect indels or SVs on NGS data. However, due to the limited
read length, detecting SVs on NGS data remains a formidable
task, especially for those SVs longer than the read length of NGS
data (English et al., 2015). The long-read sequencing
technologies, including Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT), have partially solved
this problem due to their significantly longer read lengths
(Roberts et al., 2013; Jain et al., 2016). The longer read length
makes it more likely that the SVs are included in a single read,
thus leaving intact signatures within the read that can be more
easily identified by SV detection tools, and also makes reads that
include large altered areas caused by SVs to be more easily
mapped to the reference genome (Goodwin et al., 2016;
Sedlazeck et al., 2018a). Many tools have been created to
detect SVs on long-read data, including kled (Zhang et al.,
2024), cuteSV (Jiang et al., 2020), and Sniffles (Sedlazeck
et al., 2018b; Smolka et al., 2024), among others (Heller and
Vingron, 2019; Jiang et al., 2019a, 2019b).

Although these SV detecting tools can quickly and accurately
detect SVs from long-read alignment data, there is still room for
improvements. Currently, there are several haplotype-tagging
tools available (Martin et al., 2016; Fu et al., 2023). These
tools can haplotype-tag alignment files and output haplotype-
tagged reads, providing haplotype information to SV calling
tools, potentially resulting in more precise and comprehensive
SV detection. Using the haplotype information of reads, we can
improve the results of SV calling in the following aspects: when
clustering signatures extracted from reads, the haplotype
information can be used to either cluster the signatures from
each haplotype separately or apply different conditions for
signatures from the same haplotype or different haplotypes;
before reporting the results, we can use the haplotype
information of the cluster to improve the filtering process.
Duet (Zhou et al., 2022) is an SV calling tool that first
haplotype-tags the reads, then calls SVs using cuteSV, and
subsequently uses haplotype information generated using
Clair3 (Zheng et al., 2022) and WhatsHap to phase and
filter the SVs.

In this article, we introduce HapKled, an SV detection tool
that accurately detects SVs on ONT sequencing data based on
haplotype-aware strategies. Unlike traditional SV detection tools,

HapKled first haplotype-tags the reads in the input alignment file
and then detects SVs from these haplotype-tagged alignments
utilizing three innovative features: applying different conditions
for signatures from the same or different haplotypes when
clustering, distinguishing between similar and near SVs from
different haplotypes, and adjusting the filtering parameters
according to different haplotype-tagging qualities. During
rigorous experiments, HapKled demonstrated superior
performance compared to state-of-the-art SV detection tools.
We believe that, with the excellent SV detection performance
delivered by HapKled, it could be useful in bioinformatics
research, clinical diagnosis, and medical research and
development.

2 Materials and methods

As shown in Figure 1, HapKled takes an alignment BAM file as
input and outputs a variant call format (VCF) file containing the
detected SVs. The procedures mainly contain two parts: the
haplotype-tagging part and the SV calling part. In the haplotype-
tagging part, HapKled takes the alignment BAM file as input, uses
Clair3 and WhatsHap to add haplotype information to the reads,
and generates a new BAM file that contains the reads with haplotype
information; and in the following SV calling part, HapKled utilizes a
haplotype-aware kled to call SVs from the haplotype-tagged BAM
file and outputs the final VCF file.

2.1 Haplotype-tagging

The procedures of haplotype-tagging consist of two steps:
SNV calling using Clair3 (v1.0.5), and haplotype-tagging using
WhatsHap (v1.7). HapKled first uses Clair3 to call SNVs from
the input alignment file with parameters platform = “ont”
--model_path = “r941_prom_hac_g360 + g422” and generates
a VCF file containing the SNVs. After that, HapKled uses
WhatsHap to haplotype-tag the input alignment file by
utilizing the SNV information with parameters “--ignore-
read-groups--indels,” and generates a BAM file that contains
the haplotype-tagged reads, which are used in the haplotype-
aware SV calling.

2.2 Haplotype-aware kled

The SV calling part of HapKled takes the haplotype-tagged BAM
file generated in the haplotype-tagging part and uses a modified
version of kled, which is haplotype-aware, with three unique
improvements.

2.2.1 Different clustering conditions
When clustering, as in the original kled, HapKled first clusters

every SV signature extracted from reads andmerges any two clusters
if there are two signatures from these two clusters that are similar
enough. Formally, for clusters C1 and C2, if there exist S1 ∈ C1 and
S2 ∈ C2, where any condition in Eqs 1, 2 is satisfied, HapKled merges
C1 and C2. Here, SiLeft, SiRight, and SiLength represent the leftmost
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position, rightmost position, and length of Si, i � 1, 2. F and CR are
predefined SV type specific parameters, respectively.

max S1Lef t − S2Lef t
∣∣∣∣

∣∣∣∣, S1Right − S2Right
∣∣∣∣

∣∣∣∣( )< F, (1)
max S1Lef t − S2Lef t

∣∣∣∣
∣∣∣∣, S1Right − S2Right
∣∣∣∣

∣∣∣∣, S1Length − S2Length
∣∣∣∣

∣∣∣∣( )
min S1Length, S2Length( )

<CR.

(2)
HapKled further improves this procedure when haplotype

information is available: if two signatures are from the same
haplotype, it faces no inter-haplotype interferences; thus, it
should have stricter conditions when considering merging and
vice versa. Formally, when comparing (1) and (2), F and CR are
multiplied by SR, if S1 and S2 are from the same haplotype, or
multiplied with DR, if S1 and S2 are from different haplotypes.
SR ∈ [0, 1] and DR ∈ [1,+ ∞) are SV type specific parameters.

2.2.2 Similar nearby SV distinction
There are some circumstances in which two nearby SVs reside in

different haplotypes, coincidentally having the same SV type and
similar SV lengths. In the traditional method of SV detection, these
SVs are very likely to be clustered into the same cluster in the
clustering procedure because they share similar locations and
lengths, and it is hard to distinguish them from each other.
However, with haplotype information, we can determine them by
the following method: assuming within a certain cluster, the average
lengths of SV signatures from haplotype 1 are significantly different
from those from haplotype 2, HapKled disunites the cluster into two
clusters containing signatures from each haplotype, along with those
signatures from reads that have unknown haplotypes. Two lengths
are considered significantly different if the condition in (3) is met,
where Mi and SDi, i � 1, 2 are the mean value and standard
deviation of the lengths of the signatures from haplotype 1 and
haplotype 2, respectively.

M1 −M2| |> max SD1, SD2( ). (3)

2.2.3 Filtering adjustments based on haplotype-
tagging quality

After clustering, HapKled refines and filters the clusters to get the
final VCF containing called SVs based on the methods of kled.
HapKled sets the POS and SVLEN fields in the VCF records as
the mean of the positions and lengths of the signatures in the cluster,
respectively, and filters out clusters that have fewer supported reads
than FF + FR p Cov and a less consistent score of lengths than FS,
where the consistent score is defined as
1 − standard deviation of signature lengths

max length of signatures ; Cov is the average read depth of
the chromosome; and FF,FR, andFS are SV type specific parameters.
There are two sets of FF, FR, and FS clusters that fail if both sets are
filtered out.

The quality of a cluster can be influenced by many factors: the
complexity of this genomic area, sequencing quality, mapping quality,
etc. It is natural to think that haplotype-tagging quality can represent
the overall quality of the cluster to a certain degree. Thus, we relax the
parameters in the filtering step if the haplotype-tagging quality is high.
Specifically, if most signatures that constitute the cluster are from
successfully haplotype-tagged reads, HapKled considers this cluster as
a high haplotype-tagging quality cluster, and if the cluster’s most
haplotype-tagged reads come from the same haplotype, we relax the
parameters in the refining step accordingly; when the haplotype-
tagged reads come from different haplotypes, the circumstance is
more complicated: on one hand, this area has a high haplotype-tagged
ratio, potentially representing a high sequencing andmapping quality;
on the other hand, the signatures of this cluster come from different
haplotypes, potentially inducingmore interferences; consequently, for
these clusters, we will relax or shrink the parameters in the filtering
step according to the actual situation, and for those that do not have
enough haplotype-tagged ratio, HapKled shrinks the parameters.

Formally, for a certain cluster, note the number of signatures from
successfully haplotype-tagged reads asM, the total number of signatures
asN, and the numbers of signatures from haplotype 1 and 2 asH1 and
H2, respectively. Define H � M

N and HR � max (H1 ,H2)
M . For parameters

FIGURE 1
Overview of HapKled procedures. Part 1: the input alignment file is first used to call SNVs using Clair3, and then HapKled uses the detection result to
haplotype-tag the alignment file usingWhatsHap. Part 2: with the haplotype-tagged reads generated in Part 1, HapKled uses a haplotype-aware version of
kled with three improvements, i.e., applying different conditions when clustering, distinguishing similar nearby SVs based on per-haplotype statistics, and
adjusting filtering parameters based on haplotype-tagging quality, to generate the final VCF.
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H0,HR0,HomoR, HomoSF,HomoSR, LowHRF,LowHRR ∈ [0, 1],
NonHomoSF, NonHomoSR ∈ [−1, 1], if H>H0 and HR>HR0,
the filtering conditions for this cluster are multiplied by

SCHomo � 1 − (HomoSF +HomoSR p (H −H0)). If H>H0 and
HR>HR0, the filtering conditions for this cluster are multiplied by
SCNonHomo � 1 − (HomoSF +HomoSR p (H −H0)). If H<H0, the

FIGURE 2
Benchmark experiment results on the simulated dataset. The vertical axes denote the F1 scores for presence or genotype. The subfigures include (A)
the overall comparisons of presence F1 and GT-F1 of the tools and the comparisons of presence F1 and GT-F1 for (B) deletion, (C) insertion, (D)
duplication, and (E) inversion.

FIGURE 3
Benchmark experiment results on the HG002ONT data. The vertical axes denote the F1 scores for presence or genotype. The subfigures include (A)
the overall comparisons of presence F1; the comparisons of presence F1 for (B) deletion and (C) insertion; (D) the overall comparisons of GT-F1; the
comparisons of GT-F1 for (E) deletion and (F) insertion.
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filtering conditions for this cluster are multiplied by SCLowHR � 1 +
(LowHRF + LowHRR p (H0 −H)).

2.3 Implementation of experiments

To evaluate the results of HapKled, we implemented
experiments on simulated data and real ONT data of HG002.
Along with HapKled (v1.0), we also tested four state-of-the-art
tools, e.g., kled (v1.2.9), cuteSV (v2.1.0), Sniffles2 (v2.2), and
Duet (v1.0), for comparison.

We simulated 24,919 SVs including 12,365 deletions,
12,176 insertions, 185 duplications, and 193 inversions, alongside
SNVs from HG403 and generated indels, and added them to the
GRCh38 reference using VISOR (v1.1.2) (Bolognini et al., 2020) to
get two haplotypes of the simulated genome. We then used lrsim
(v0.2) (https://github.com/CoREse/lrsim) to simulate ONT-like 30x
long-read reads and subsequently aligned those reads to the
GRCh38 reference using Minimap2 (v2.17-r941) (Li, 2018) to get
the alignment file.

For real data, we obtained ONT ultra long sequencing data of the
HG002 sample from https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_
son/UCSC_Ultralong_OxfordNanopore_Promethion/HG002_
GRCh37_ONT-UL_UCSC_20200508.phased.bam and downsampled
it to 5×, 10×, 20×, and 30× using SAMtools (v1.19) (Danecek
et al., 2021). To benchmark the results, we used GIAB
HG002 SV v0.6 VCF and corresponding BED (Zook et al., 2020)
as the gold standard.

All tested tools were run by default calling parameters, except
cuteSV, which was run by applying “-s 2/3/4/5” for 5×/10×/20×/30×
data. We used truvari (v4.1.0) (English et al., 2022) with parameters
“-p 0.0” to benchmark the results. The calculations of precision,
recall, and F1 are listed in Eqs 4–6:

precision � TPcall

TPcall + FPcall
, (4)

recall � TPbase

TPbase + FNbase
, (5)

F1 � 2 × precision × recall

precision + recall
, (6)

where TPcall and FPcall are the number of correct and incorrect
detections, respectively, and TPbase and FNbase are the number of
correctly covered and not covered records in the ground truth set,
respectively. The precision, recall, and F1 are calculated on presence
and genotyping metrics, denoted as presence precision, presence
recall, presence F1, GT-precision, GT-recall, and GT-F1. All scripts
for experiments, including the scripts to generate the simulated data,
are available at https://github.com/CoREse/HapKled/experiments.

3 Results

3.1 Results on the simulated dataset

To evaluate the performance of HapKled, we conducted an SV
benchmark experiment on simulated 30x ONT-like data. Along with

the HapKled, we also tested kled, cuteSV, Sniffles2, and Duet for
comparison. In the benchmark experiment, HapKled achieved the
best results in both presence F1 and GT-F1 in the overall experiment
and the per-SV type experiments. For the overall experiment,
HapKled achieved 95.48% presence F1 and 94.16% GT-F1, which
are 0.03%–6.95% and 0.23%–7.83% higher than in other methods
(Figure 2; Supplementary Table S1). As for the per-SV type
benchmark, HapKled also obtained the highest presence F1s
(95.4% for deletion, 95.76% for insertion, 79.75% for duplication,
and 96.28% for inversion) and GT-F1s (94.46% for deletion, 94.42%
for insertion, 58.86% for duplication, and 88.83% for inversion),
which outperformed runner-up methods for each SV type by
0.01%–2.51% and 0.1%–2.11% (Figure 2; Supplementary Table
S1). The fact that in all experiments HapKled achieved better
performance compared to the original kled on both presence
F1 and GT-F1 aspects validates the effectiveness of the
haplotype-aware mechanics.

3.2 Results on real datasets of the
HG002 sample

Experiments performed on the simulated dataset proved the
excellent SV detection capability of HapKled. To further test the
real-world performance of HapKled, we conducted benchmark
experiments on 30x HG002 ONT data, using the GIAB
HG002 SV v0.6 VCF as the gold standard. Similar to the
simulated experiments, in the real data experiments, HapKled
delivered the best overall SV detection performance (presence F1:
94.54% and GT-F1: 92.39%), leading by 0.33%–4.36% for presence
F1 and 0.64%–6.23% for GT-F1, compared to other tools (Figure 3;
Supplementary Table S2). As for per-SV type performance, HapKled
also managed to achieve the best presence F1 and GT-F1 for both
deletion and insertion (presence F1: 95.94%, GT-F1: 93.99% for
deletion and presence F1: 93.45%, GT-F1: 91.15% for insertion) and
outperformed other tools by a minimum of 0.23% for presence
F1 and 0.12% for GT-F1 (Figure 3; Supplementary Table S2).

To evaluate the performance of HapKled on lower sequencing
depths, we down-sampled the real data to 5×, 10×, and 20×. In the
20× data, HapKled maintained the best presence F1s and GT-F1s
(presence F1: 93.3%, GT-F1: 90.13% overall; presence F1: 94.62%,
GT-F1: 92.29% for deletion; and presence F1: 92.27%, GT-F1:
88.45% for insertion), with 0.13–5.69% leads for presence F1 and
0.57–8.51% leads for GT-F1, compared to other tools (Figure 3;
Supplementary Table S2). In the 5× and 10× data, HapKled
continued to provide the highest F1s in most categories except
for a few exceptions. In the 5× data, HapKled showed slightly lower
overall presence F1 (78.74%) than vanilla kled (78.9%), and
1.56–3.36% higher than other tools (Figure 3; Supplementary
Table S2). This is probably caused by the low haplotype-tagging
quality of lower sequencing depth data. And in the 5× and 10× data,
HapKled showed 0.31 and 1.65% lower GT-F1s for deletion
compared to Duet, which also applies phase-aware mechanisms,
but still delivered the best overall GT-F1s with 0.35–5.61% leads
compared to other methods including Duet (Figure 3;
Supplementary Table S2). The real data experiments conducted
on HG002 ONT data show HapKled has the ability to solve real-
world problems.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2024.1435087

https://github.com/CoREse/lrsim
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/HG002_GRCh37_ONT-UL_UCSC_20200508.phased.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/HG002_GRCh37_ONT-UL_UCSC_20200508.phased.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/HG002_GRCh37_ONT-UL_UCSC_20200508.phased.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/HG002_GRCh37_ONT-UL_UCSC_20200508.phased.bam
https://github.com/CoREse/PhasedKled/experiments
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1435087


4 Discussion

In this article, we propose an SV detection tool HapKled, which
utilizes the haplotype information underlying aligned sequencing
data and delivers superior detection results.

Overall, HapKled can yield superior SVdetection results compared to
state-of-the-art tools, especially for genotyping performance. This is
achieved by the combination of the extra haplotype information with
the three haplotype-aware strategies applied in the calling processes. As
shown in the Results section, HapKled delivered the best genotyping F1s
across all tests on simulated and real data and best presence F1s on most
tests, except for 5× data on HG002. Compared to the vanilla kled,
HapKled shows a clear improvement, especially on genotyping
performance,making the efforts of the haplotype-aware strategies evident.

While HapKled can achieve superior SV detection performance, its
time consumption is significantly increased as well due to the
introduction of the haplotype-tagging procedures, which include
SNV detection and haplotype-tagging, both of which are time-
consuming tasks. In other words, the haplotype-tagging procedures
come with a price: they consume substantial time to improve the final
SV detection. Nevertheless, we believe the price is worthwhile under
many circumstances because the bottleneck of SV detection is usually
not limited by the analysis speed, but by the accuracy and recall of the
detection results; thus, sacrificing acceptable time for more reliable
results is reasonable; furthermore, haplotype information can not only
be used by SV detection during the whole procedure of genetic analysis,
but it might be required by other analysis purposes, for example, de
novo assembly of genomes; thus, in these projects, HapKled actually
does not induce extra effort since the haplotype-tagged BAM file can be
used in other procedures.
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