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Background: TheWFS1 gene encodes the protein wolframin, which is crucial for
maintaining endoplasmic reticulum homeostasis. Variants in this gene are
predominantly associated with Wolfram syndrome and have been implicated
in other disorders such as diabetes mellitus and psychiatric diseases, which
increases the rate of clinical misdiagnosis.

Methods: Patients were diagnosed with early-onset unclassified diabetes
according to their clinical and laboratory data. We performed whole-exome
sequencing (WES) in 165 patients, interpreting variants according to the American
College of Medical Genetics/Association for Molecular Pathology (ACMG/AMP)
2015 guidelines. Variant verification was done by Sanger sequencing. In vitro
experiments were conducted to evaluate the effects of WFS1 compound
heterozygous variants.

Results: We identified WFS1 compound heterozygous variants (p.A214fs*74/
p.F329I and p.I427S/p.I304T) in two patients with Wolfram Syndrome-Like
disorders (WSLD). Both WFS1 compound heterozygous variants were
associated with increased ER stress, reduced cell viability, and decreased
SERCA2b mRNA levels. Additionally, pathogenic or likely pathogenic WFS1
heterozygous variants were identified in the other three patients.

Conclusion: Our results underscore the importance of early genetic testing for
diagnosing young-onset diabetes and highlight the clinical relevance of WFS1
variants in increasing ER stress and reducing cell viability. Incorporating these
genetic insights into clinical practice can reduce misdiagnoses and improve
treatment strategies for related disorders.
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Introduction

Wolfram syndrome (WS) is a rare autosomal recessive
disorder, caused by variants in WFS1, which encodes the
wolframin protein (Rigoli et al., 2011). The primary phenotypes
of WS are diabetes insipidus (DI), diabetes mellitus (DM), optic
atrophy (OA), and deafness (D), also known as DIDMOAD
syndrome (Barrett et al., 1995). Over 98% of these patients
develop diabetes, which is often the first symptom in nearly
80% of cases (Lusk et al., 2020). The clinical diagnosis of WS
typically requires the coexistence of diabetes and bilateral optic
atrophy (Cano et al., 2007). However, only about half of the cases
have the complete DIDMOAD phenotype (de Heredia et al., 2013).
Some reports are suggesting that WFS1 can also cause diabetes in
an autosomal dominant mode (Bonnycastle et al., 2013), that
WFS1 heterozygous variants can also cause WS (Gong et al.,
2021; Morikawa et al., 2017), and that WFS1 compound
heterozygous variants can also cause diabetes only (Li M. et al.,
2020), complicating genotype-phenotype correlations and risking
misdiagnosis. Therefore, these heterozygous variants often present
with a diverse range of clinical manifestations, from traditional WS
symptoms to subtler diabetic features, complicating their diagnosis
and subsequent management.

The WFS1 gene is located on chromosome 4p16.1 and spans
a length of 33.4 kb, encoding wolframin protein comprising of
890 amino acids. It consists 8 exons, of which exon 1 is non-
coding, and exons 2 to 7 are responsible for encoding the
protein, with exon 8 mainly encoding the transmembrane
region and the carboxyl terminus (Li L. et al., 2020). Islet β-
cells are the primary expression site for WFS1 (Morikawa et al.,
2017). Wolframin is a resident protein in the endoplasmic
reticulum (ER) that maintains Ca2+ homeostasis and regulates
ER stress (Fonseca et al., 2010). The development of diabetes in
WS is associated with elevated ER stress in β-cells. The ER is
responsible for proper protein folding and degradation of
misfolded proteins.

In our study of 165 patients with early-onset unclassified
diabetes, we identified two individuals with compound
heterozygous WFS1 variants. We conducted in vitro experiments
to evaluate the functional impact of compound heterozygous WFS1
variants. We also found three patients with WFS1 heterozygous
variants considered pathogenic or likely pathogenic (P/LP). This
research broadens our understanding of the WFS1 gene and its
phenotypes.

Materials and methods

Patients

Between January 2021 and December 2022, we enrolled
225 patients with young-onset diabetes at Ruijin Hospital,
affiliated with Shanghai Jiao Tong University School of
Medicine. Inclusion criteria were an onset age of ≤30 years and
the absence of pancreatic exocrine diseases or other conditions
inducing diabetes. Patients were diagnosed using the 2019 WHO
guidelines (World Health Organization, 2019). 225 patients were
aged 20 [15, 16] and the youngest age of onset was 8 years. All

patients were tested for GADA and GADA <7 IU/mL was
considered negative. Subsequently, 39 patients with T1DM and
21 with T2DM were excluded. Among the remaining 165 patients
with unclassified diabetes, all tested negative for GADA and
exhibited no typical T1DM or T2DM phenotypes. Clinical data
were collected from the medical records. HbA1c and glucose levels
were measured in the central laboratory of Ruijin Hospital using
high-performance liquid chromatography and an autoanalyzer,
respectively. The study received approval from the Ethics
Committee of Ruijin Hospital, and informed consent was
obtained from all participants and their relatives.

Genetic analysis

We used the QIAamp DNA Blood Mini Kit (Qiagen, Germany)
to extract genomic DNA according to the manufacturer’s protocol.
The integrity and concentration of the extracted DNA were assessed
using a NanoDrop spectrophotometer and agarose gel
electrophoresis. Library capture was performed using custom
probes from Integrated DNA Technologies, Inc. (Integrated DNA
Technologies, United States), which were biotinylated to allow for
sequence enrichment using the xGenTM Hybridization and Wash
Kit (Integrated DNA Technologies, United States). We used the
Illumina NextSeq 500 system (Illumina, United States) to sequence
captured libraries, and 150 bp paired-end reads were generated,
aiming for a minimum average coverage depth of 100x to ensure
adequate coverage of exonic regions. We only focused on 52 genes
(Supplementary Table S1) and interpreted those genes (Caruso et al.,
2014; Hosoe et al., 2017; Guillín-Amarelle et al., 2018; Rutkowska
et al., 2022; Bonnefond et al., 2023). Uncommon coding or splicing
variants (MAF<1%) in those genes were analyzed according to the
ACMG/AMP 2015 guidelines (Richards et al., 2015). All patients
and their family members were verified by Sanger sequencing.

Cell culture

The medium for HEK-293T cells was Dulbecco’s Modified
Eagle’s Medium (DMEM) (Meilunbio, China) supplemented with
10% fetal bovine serum (FBS) (Gibco, Canada). HEK-293T cells
were cultured at 37°C, under 95% air and 5% CO2. We used
Lipofectamine 2000 (Invitrogen, United States) to transfect cells
with indicated plasmids according to the manufacturer’s
instructions.

Plasmids and luciferase reporter assay

Wild type (WT), p.A214fs*74, p.F329I, p.I427S, p.I304T,
p.W690fs*706 and p.E385K were constructed and cloned into
pCMV vector (Promega, United States), respectively. Variants of
p.W690fs*706 and p.E385K were from two unrelated individuals
with WS (Gong et al., 2021; Hu et al., 2022). We used QuickChange
Site-Directed Mutagenesis Kit (Stratagene, United States) to
generate all WFS1 variants and Sanger sequencing to verify the
full-length coding sequences of all plasmids. HEK-293T cells were
seeded in 48-well plates, and 100 ng of ERSE luciferase plasmid and
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20 ng of PRL-SV40 plasmid (expressing Renilla luciferase for
normalization) were transfected. HEK-293T cells were also co-
transfected with 0.2 μg each of WT, p.A214fs*74, p.F329I,
p.I427S, p.I304T, p.W690fs*706, p.E385K, and 0.1 μg each of
p.A214fs*74, p.F329I, p.I427S, p.I304T. Twenty-4 hours after
transfection, cells were stimulated with thapsigargin (TG, ER
stress inducer) (10 nM) for 6 h and then harvested. We used the
dual-luciferase reporter assay system (Promega, United States) to
measure luciferase activity according to the manufacturer’s protocol.

RNA extraction and real-time PCR

HEK-293T cells were seeded in 48-well plates, transfected with
350 ng of the indicated plasmids (WT, p.A214fs*74, p.F329I,
p.I427S, p.I304T, p.W690fs*706, p.E385K) and 175 ng each of
p.A214fs*74, p.F329I, p.I427S, p.I304T. RNA was extracted using
the EZ-press RNA Purification Kit (EZBioscience, United States)
according to the manufacturer’s protocol, and was transcribed into
cDNA using the Reverse Transcription System (Promega,
United States). An ABI system (Life Technology, United States)
and SYBR Green Supermix (Takara, Japan) were used to perform
real-time PCR. Primers are shown in the table
(Supplementary Table S2).

Protein extraction and Western blotting

HEK-293T cells were seeded in 24-well plates, transfected with
500 ng each of the indicated plasmids (WT, p.A214fs*74, p.F329I,
p.I427S, p.I304T, p.W690fs*706, p.E385K) and 250 ng each of
p.A214fs*74, p.F329I, p.I427S, p.I304T. After 48 h, protein
samples were isolated with radioimmuno-precipitation assay
(RIPA) buffer plus a protease inhibitor cocktail (Thermo
Scientific, United States). The primary antibodies were incubated
overnight at 4°C and the secondary antibody was incubated for 1 h at
room temperature. We used eBlot Touch Imager (eBlot,
United States) to visualize bands. The antibodies used are shown
in the table (Supplementary Table S3).

Cell proliferation analysis

HEK-293T cells were seeded in 96-well plates, transfected with
50 ng each of the indicated plasmids (WT, p.A214fs*74, p.F329I,
p.I427S, p.I304T, p.W690fs*706, p.E385K) and 25 ng each of
p.A214fs*74, p.F329I, p.I427S, p.I304T. After 24 h, we used Cell
Counting Kit-8 (CCK-8) (MCE, United States) to measure cell
viability. A microplate reader (Bio-Rad, United States) was used
to measure OD values at 450 nm wavelength.

Flow cytometric

HEK-293T cells were seeded in 12-well plates, transfected with
1 μg each of the indicated plasmids (WT, p.A214fs*74, p.F329I,
p.I427S, p.I304T, p.W690fs*706, p.E385K) and 500 ng each of
p.A214fs*74, p.F329I, p.I427S, p.I304T. We used Annexin

V-FITC/PI apoptosis detection kit (YEASEN, China) to stain the
cells according to the manufacturer’s protocols. A FACSCalibur™
flow cytometry (BD Biosciences, United States) was used to measure
the fluorescent intensity and data were analyzed using FlowJo X
10.0.7 software.

Bisulfite treatment of DNA and PCR analysis

We used the QIAamp DNA Blood Mini Kit (Qiagen,
Germany) to extract genomic DNA according to the
manufacturer’s protocol. Isolated genomic DNA was treated
with an EZ DNA methylation kit (Zymo Research,
United States), and then analyzed by ddPCR. We used ddPCR
Supermix for Probes (Bio-Rad, United States) to perform ddPCR,
cycling conditions were as follows: 95°C for 10 min, 94°C for 30 s,
and 57.5°C for 1 min for 40 cycles. The PCR-amplified 96-well
plate was placed into the microtiter analyzer of the
QX200 Droplet Reader (Bio-Rad, United States) to detect the
fluorescence signals of FAM and VIC (HEX). Then, QuantaSoft
Software (Bio-Rad, United States) automatically processed the
data to obtain a concentration of methylated and unmethylated
INS DNA (copies/μL). Then we calculated the ratio of
unmethylated to methylated INS DNA.

Statistical analysis

Data are expressed as mean ± SEM. Comparisons between two
groups were made by Student’s t -test and one-way ANOVA was
used to compare three or more groups. Statistics were analyzed by
Student’s t-test. We used GraphPad Prism V9.0 to analyze all
statistics. P-value < 0.05 was statistically different.

Results

In our study, we performed WES on 165 patients with young-
onset unclassified diabetes (Figure 1). We identified pathogenic/
likely pathogenic (P/LP)WFS1 variants in five patients (Table 1) and
other P/LP genes linked to MODY, insulin resistance, or
lipoatrophic diabetes in seven patients (Supplementary Table S4).
We then focused on WFS1. Among these, three patients (2%)
exhibited heterozygous variants, while the remaining two patients
(1%) had compound heterozygous variants in WFS1. Notably, five
variants were localized to exon 8, with the remaining two found in
exon 6 (Figure 2A). Our analysis classified five variants as P/LP, and
two were classified as variants of uncertain significance
(VUS) (Table 1).

Clinical characteristics of patients withWFS1
compound heterozygous variants

Diagnosed with diabetes at 25, patient one has never experienced
ketoacidosis since onset, with GADA negative. Managed effectively
with oral medication, she maintains satisfactory HbA1c and
C-peptide levels (Table 2). Notably, she exhibits none of the
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symptoms typically associated with WS, such as DI, OA, or D, and
has had no diabetes-related complications to date. Her family
history reveals a prominent pattern of diabetes mellitus, with all
members developing diabetes at age 35 or older (Figure 2B). Genetic
testing showed that this patient carries the WFS1 compound
heterozygous variants (Figure 2D). Sanger sequencing identified
heterozygous variants p.A214fs*74 in her father and uncle, and
p.F329I in her mother, while her grandmother, aunt, and maternal

aunt showed no variants (Supplementary Figure S1). Patient two
was first diagnosed with diabetes at 13, presenting with ketoacidosis.
At 14, a hospital evaluation indicated average islet function and
negative insulin autoantibodies (Table 2). Her clinical profile
includes normal urine output and no neurological, psychiatric, or
high-frequency hearing issues, or optic nerve atrophy. However, she
has a refractive error in her left eye and difficulty distinguishing
blue-violet colors. Her medical history includes hydronephrosis,

FIGURE 1
Flowchart of the study.

TABLE 1 A summary of WFS1 compound heterozygous and P/LP WFS1 heterozygous variants identified in this study.

Patient Family Exon CDS change AA
change

Types of
variants

Status Novel/
Reported

Classification

P1 S1 6 c.639_640dupGG p.A214fs*74 Frameshift Het Novel LP (PVS1, PM2)

8 c.985T>A p.F329I Missense Het (Li et al., 2020a) VUS (PM2, PM3, PP3)

P2 S2 8 c.1280T>G p.I427S Missense Het (Cano et al., 2007) P (PS1, PM1, PM2, PP3, PP5)

8 c.911T>C p.I304T Missense Het Novel VUS (PM2, PM3, PP3)

P3 S3 8 c.1289C>T p.S430L Missense Het (Rohayem et al., 2011) LP (PM2, PM5, PP3,
PP4, PP5)

P4 S4 8 c.1552A>G p.M518V Missense Het (Matsunaga et al.,
2014)

LP (PM1, PM2, PP3,
PP4, PP5)

P5 S5 6 c.676C>T p.Q226* Nonsense Het (Strom et al., 1998) P (PVS1, PM2, PP4, PP5)

CDS, coding sequence; AA, amino acid. Het, Heterozygous.

PVS, very strong evidence of pathogenicity; PVS1, null variant. PS, strong evidence of pathogenicity; PS1, same amino acid change as previously reported pathogenic variant. PM, moderate

evidence of pathogenicity; PM1, mutational hot spot; PM2, variants are absent or at very low frequency in controls; PM3, detected in trans with a pathogenic variant; PM5, same amino acid

positions as previously reported pathogenic missense variants. PP, supporting evidence of pathogenicity; PP3, multiple computational predictions suggest that deleterious; PP4, patient’s

phenotype or family history is highly correlated with disease; PP5, previously reported as pathogenic; P, pathogenic; LP, likely pathogenic; VUS, variants of uncertain significance.
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revealed by abdominal ultrasound as bilateral ureteral dilatation, but
pancreatic MR scans showed no occupying lesions. Her maternal
grandfather, diagnosed with diabetes at age 40, was treated with
insulin and medication (Figure 2C). Genetic analysis identified
WFS1 compound heterozygous variants in the patient
(Figure 2E). Sanger sequencing in her family revealed
heterozygous variants: p.I427S in her father and p.I304T in her
mother and brother (Supplementary Figure S2). Other family
members were unavailable for genetic testing. According to the
guidelines from EURO-WABB (http://euro-wabb.org/guidelines/
guidelines/), we can diagnose these patients as WSLD at this
moment. Recent findings indicate that certain adolescents
exhibiting WSLD present solely with diabetes, leading to frequent
misdiagnoses as either T1DM or T2DM (Zalloua et al., 2008;
Bonnycastle et al., 2013; Li M. et al., 2020).

Functional analysis of WFS1 compound
heterozygous variants

Protein expression of wolframin
We evaluated wolframin protein expression in HEK cells

transfected with WFS1 variant-carrying plasmids. All four
variants, particularly the frameshift variant p.A214fs*74 and the
missense variant p.I427S, significantly reduced wolframin levels,
with p.A214fs*74 causing complete absence and p.I427S showing
near absence of the protein. Combinations of p.A214fs*74 with
p.F329I and p.I304T with p.I427S also notably decreased wolframin
expression compared to WT (Figure 3). These results suggest that
these variants disrupt wolframin protein production, potentially
contributing to the development of the associated
disease phenotype.

FIGURE 2
Pedigrees and Sanger sequencing of the two patients (P1 and P2) and locations of variants. (A) Locations of variants. (B) Pedigree of the S1 family. (C)
Pedigree of the S2 family. (D) Sanger sequencing peak map of the patient 1. (E) Sanger sequencing peak map of the patient two.
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Effects on ER stress and UPR
Wolframin protein is mainly located in the ER, and variants in

the WFS1 gene cause an imbalance in ER homeostasis, which
activates the unfolded protein response (UPR) (Wu and
Kaufman, 2006). We performed a dual luciferase reporter gene
assay to determine whether WFS1 variants increase ER stress.
The p.I427S and the compound heterozygous p.I427S/p.I304T
variants significantly activated the ERSE reporter, both with and

without TG stimulation, indicating increased ER stress (Figure 4A).
However, the p.I304T variant did not change ERSE activity from the
WT. The p.A214fs74 variant significantly increased ER stress
enhancer (ERSE) activity under thapsigargin (TG) stimulation, in
contrast to the compound heterozygous p.A214fs74/p.F329I and the
p.F329I variants (Figure 4A).

Further, protein levels of ER stress markers BiP/GRP78 and
XBP-1 were markedly increased in cells with compound

TABLE 2 Clinical manifestations of patients with P/LP WFS1 variants.

Patient P1 P2 P3 P4 P5

Sex (M/F) F F M F M

Age of onset (years) 25 13 25 25 25

Age at time of recruitment (years) 30 14 33 25 26

Family history Yes Yes Yes Yes Yes

BMI (kg/m2) 18.60 20.06 28.20 23.18 22.80

GADA Neg Neg Neg Neg Neg

HbA1c (%) 5.6 13.2 11.5 6.4 6.4

FBG (mmol/L) 6.94 11.2 13.27 9.64 7.36

FCP (ng/ml 1.47 1.19 1.42 2.94 2.22

TC (mg/dL) 4.44 4.46 4.93 6.11 5.80

TG (mg/dL) 0.59 0.36 2.04 0.51 3.97

HDL (mg/dL) 1.52 1.76 0.95 2.12 0.90

LDL (mg/dL) 2.74 2.50 2.91 3.82 3.80

DI — — — — —

OA — — — — —

D — — — — —

Renal tract abnormalities — Bilateral ureteral dilatation with pelvic separation — — —

Neurological abnormalities — — — — —

Current therapy OAD Insulin OAD OAD OAD

P/LP, pathogenic/likely pathogenic; F, female; M, male; BMI, body mass index; HbA1c, Hemoglobin A1cOA; FBG, fasting blood glucose; FCP, fasting C-peptide; TC, total cholesterol; TG,

triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; optic atrophy; D, deafness; DI, diabetes insipidus; OAD, oral antidiabetic drugs.

FIGURE 3
Protein expression levels of Wolframin. (MOCK: transfected with pCMV vector; WT: wild type).
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heterozygous variants (Figure 4B). Specifically, the p.I427S/p.I304T
variant also slightly raised CHOP protein levels (Figure 4C). The
single p.I427S and p.I304T variants each upregulated BiP/
GRP78 and XBP-1 proteins, with p.I427S additionally boosting
CHOP levels (Figures 4B, C). Correspondingly, mRNA
expressions of CHOP, BiP/GRP78, and XBP-1 were higher in
cells with the compound heterozygous variants (Figure 4D).
These results suggest that WFS1 compound heterozygous variants
increase ER stress and activate the UPR pathway.

Evaluation of calcium homeostasis and
cell apoptosis

ER stress is triggered by increased Ca2+ efflux from the ER, which
leads to an increase in the cytoplasmic Ca2+ concentration and
consequent activation of calpain-2, resulting in β-cell death (Hara
et al., 2014). Wolframin protein is mainly located in the ER and is
responsible formaintaining intracellular Ca2+ homeostasis by repressing
the expression of sarcoendoplasmic reticulum Ca2+-ATPase 2b
(SERCA2b) (Takei et al., 2006). We examined the impact of WFS1
compound heterozygous variants (p.A214fs*74/p.F329I and p.I304T/
p.I427S) on ER calcium homeostasis. WFS1 compound heterozygous
variants significantly lowered SERCA2b mRNA levels (Figure 5A),
disrupting ER calcium balance. Cell viability, measured by CCK-8
assays, was reduced in cells with WFS1 compound heterozygous

variants compared to WT (Figure 5B). Flow cytometry showed no
significant increase in apoptosis in cells with WFS1 compound
heterozygous variants compared to WT (Figure 5C). Previous
studies have shown that the extent of β-cell death in pancreatic islet
cells can be analyzed indirectly using droplet digital PCR (ddPCR).
Non-methylated INSDNA/methylated INSDNA is significantly higher
in the diabetic population compared to the normal population
(Usmani-Brown et al., 2014). We then analyzed β cell death by
ddPCR, it showed no significant increase in β cell death
(Figure 5D). This suggests that while WFS1 compound heterozygous
variants impair ER calcium stability and cell viability, they do not
significantly heighten β-cell death, providing insights into the cellular
effects of WFS1 variants in diabetes.

Clinical characteristics of patients with
heterozygous WFS1 variants

In addition to the compound heterozygous variants, we identified
three different heterozygous WFS1 variants in three patients, each
classified as P/LP (Table 1). Bonnefond et al. (2023) included the
WFS1 gene in the MODY. Notably, these patients had a significant
family history of diabetes, all were diagnosed with diabetes at 25 years
old (Supplementary Figure S3; Table 2). They were treated with oral

FIGURE 4
Effects of WFS1 variants on ER stress and UPR. (A) Luciferase reporter assay in HEK-293T cells (n = 4). (B) HEK-293T cells transfected with mutant
plasmids upregulated ER stress-related molecules. (C) Protein expression of CHOP. (D) Quantitative PCR for mRNA levels of XBP-1, ATF4α, BiP/
GRP78 and CHOP in HEK-293T cells (n = 4). (MOCK/Empty: transfected with pCMV vector; WT: wild type; TG: thapsigargin, ER stress inducer). All
statistics were represented as mean ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001.
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antidiabetic drugs and showed no symptoms of WS. Therefore, these
patients were clinically suspected ofMODY. The implications of these
variants warrant further genetic screening and detailed evaluation of
additional family members.

Discussion

Approximately half of WFS1 variants are homozygous, but
autosomal dominant pathogenic WFS1 variants have also been

identified (Astuti et al., 2017), recessive WFS1 variants can also
lead to syndromic and nonsyndromic diabetes. In patients with WS,
homozygous loss-of-function variants are the most common, with
fewer missense homozygous variants observed (Bansal et al., 2018).
This variation in variant types can lead to clinical misdiagnosis or
underdiagnosis due to their varying features.

WS is a rare autosomal recessive neurodegenerative disorder
that presents with diabetes insipidus, insulin-deficient diabetes
mellitus, optic atrophy, and deafness (Khanim et al., 2001). The
most typical manifestation in WS patients is diabetes, but

FIGURE 5
Evaluation of calcium flux and cell proliferation. (A)Quantitative PCR analysis of SERCA2b (n = 4). (B)Cell proliferation wasmeasured by CCK-8 assay
(n = 5). (C) Flow cytometry to assess cell apoptosis. (D) The extent of pancreatic β cell damagewasmeasured through ddPCR. (Vector/Empty: transfected
with pCMV vector. WT: wild type). All data were expressed as mean ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001.
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neurological diseases and urinary complications are major
contributors to morbidity and mortality in these individuals
(Kinsley et al., 1995). Diabetes is commonly diagnosed in the
first decade of life, while optic atrophy often becomes evident in
the second decade. Urinary and neurological abnormalities generally
emerge between the ages of 10 and 30 years (Sherif et al., 2021).
Traditionally, the concurrent presence of DM and OA has been
considered essential for WS diagnosis, some cases lack early optic
atrophy, leading to misdiagnosis as T1DM or T2DM (Zmyslowska
et al., 2014; Li et al., 2023). In this research, we detected two patients
with compound heterozygous variants in WFS1 (P1: p.A214fs*74/
p.F329I, P2: p.I427S/p.I304T). The p.A214fs*74 and p.I427S variants
were classified as LP and P respectively, the other two were classified
as VUS, and computational evidences predicted deleterious impacts
from these variants. Both patients presented with diabetes mellitus
but without optic atrophy. Considering their family history and
patient two showed bilateral ureteral dilatation with pelvic
separation, it underscored the necessity for comprehensive
clinical evaluations in WS and functional analysis to verify the
impacts of the two compound heterozygous variants.

Variants in the WFS1 gene are known to disrupt ER function,
linked to β-cell death in permanent neonatal diabetes (Fonseca et al.,
2005; Edghill et al., 2008; Bonfanti et al., 2009; Fonseca et al., 2010).
The UPR is activated when ER stress occurs, which involves the
upregulation of CHOP and transactivation of ATF6α to maintain
homeostasis within the ER. As a critical transcription factor, ATF6α
activates target genes of the UPR and facilitates the expression of
protein-coding genes such as Bip/GRP78, thereby restoring protein
folding within the ER lumen (Ye et al., 2000; Wu and Kaufman,
2006). However, WFS1, a component of the UPR, negatively
regulates the ER stress signaling network by recruiting ATF6α to
HRD1, which leads to the degradation of ATF6α and suppression of
the UPR. This ultimately leads to a reduction in CHOP, BiP/GRP78,
and XBP-1 (Fonseca et al., 2010; Guo et al., 2011). CHOP, a
transcriptional repressor, is typically low under homeostatic
conditions and is triggered by ER stress (Mv et al., 1994;
McCullough et al., 2001; Kwok and Daskal, 2008). Loss-of-
function of the WFS1 gene may result in Ca2+ deletion in the ER
(Hara et al., 2014), Ca2+ homeostasis is essential for maintaining
cellular function. SERCA2b is an important gene for maintaining
Ca2+ balance in the ER, studies have shown that exogenous
supplementation of SERCA2b reversed ER Ca2+ efflux and
prevented cell death (Hara et al., 2014). Thus, SERCA2b
downregulation may be detrimental to maintaining ER Ca2+

homeostasis. Subsequently, elevated cytosolic Ca2+ induced cell
death. Our in vitro studies showed that protein expression of
WFS1 compound heterozygous variants (p.A214fs*74/p.F329I
and p.I304T/p.I427S) significantly decreased compared to WT.
The apparent decrease in wolframin protein in the double
p.I304T/p.I427S transfection versus the single p.I304T
transfection may include a dominant negative effect of the
p.I427S variant when co-expressed with p.I304T, potentially
through misfolding and subsequent degradation of the protein,
or by interference with the translation machinery. WFS1
compound heterozygous variants (p.A214fs*74/p.F329I and
p.I304T/p.I427S) upregulated the UPR pathway and decreased
SERCA2b mRNA levels, indicating increased calcium efflux. This
led to reduced cell viability, while flow cytometry and INS DNA

methylation analyses showed no significant differences in apoptosis
or β-cell death. Reduced cell viability, in the absence of a noticeable
increase in apoptosis or beta-cell death, may be attributed to
mitochondrial dysfunction. This dysfunction can diminish
cellular viability by impairing ATP production and elevating
oxidative stress. Additionally, alterations in the cell cycle can
induce a quiescent state that inhibits cell proliferation without
leading to cell death. In addition, p.I304T/p.I427S resulted in
more severe functional impairment than p.A214fs*74/p.F329I,
which may explain why patient two showed a more severe
phenotype than patient one.

The pathogenicity of WFS1 variants correlates with their
location in the gene. Variants in the luminal domain often lead
to early-onset diabetes and typical WS symptoms, while those in the
transmembrane and cytoplasmic domains are associated with
milder, later-onset forms (Qian et al., 2015). Patient one, with
the p.A214fs*74 variant in the cytoplasmic domain and the
p.F329I variant in the transmembrane domain (Supplementary
Figure S4), was diagnosed with diabetes at 25 but showed no WS
symptoms for 7 years. Patient two, carried the p.I304T variant in the
cytoplasmic domain and the p.I427S in the luminal domain
(Supplementary Figure S4), which may explain why she had an
earlier onset and a heavier phenotype than patient one. One report
indicated delayed onset of optic atrophy at age 53 in a patient first
diagnosed with diabetes at age 33 (Lieber et al., 2012), suggesting the
potential for later emergence of WS symptoms. Another study
demonstrated that an individual diagnosed with early-onset
diabetes was found to be homozygous for the WFS1 gene, yet did
not exhibit the additional clinical features typically associated with
WS (Bansal et al., 2017). Therefore, we verified the two WFS1
compound heterozygous variants indeed lead to impaired
function. We still cannot diagnose them as WS, but now as
WSLD. Until now, no studies have shown that isolated diabetes
progresses to WS, so this needs to be followed up closely with our
patients later.

We also identified three patients with P/LP heterozygous
variants in WFS1. Notably, these patients had a strong family
history of diabetes and were managed with oral antidiabetic
drugs. We, therefore, suspected them with MODY, follow-up is
needed as well as family line validation. The demographic and
clinical analysis of the five patients with P/LP WFS1 variants in
our study has uncovered significant patterns that contribute to the
understanding of diabetes phenotypes associated with WFS1
variants. Heterozygous variants in the WFS1 gene present
considerable diagnostic challenges in WS, mainly because their
clinical manifestations are often milder and less distinct than
those seen in homozygous cases. This variability complicates
clinical identification and timely diagnosis of WS, potentially
delaying appropriate management and counseling, which could
impact patient outcomes. Therefore, a deeper understanding of
the impact of these heterozygous variants is essential for refining
diagnostic criteria and developing targeted therapeutic strategies.

Wolfram syndrome is also associated with optic atrophy,
hearing loss, and neurodegeneration, among other issues. Early
genetic diagnosis could facilitate the monitoring of these
comorbidities and the initiation of supportive therapies. Several
classes of drugs have been reported for the treatment of WS,
including dantrolene sodium (Nguyen et al., 2020), 4-
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phenylbutyric acid (4-PBA) and tauroursodeoxycholic acid
(TUDCA) (Kitamura et al., 2022), glucagon-like peptide (GLP)-
1 receptor agonists (Sedman et al., 2016; Kondo et al., 2018), and
valproic acid (Kakiuchi et al., 2009). We are going to closely follow
up on the two patients identified as harboring WFS1 compound
heterozygous variants with targeted examinations as well as targeted
medications.

However, the study’s limitations include a small sample size and
a lack of ethnic diversity, which may affect the generalizability of the
findings. Future studies involving larger and more diverse cohorts
are essential to further validate and enhance our understanding of
the role of WFS1 variants in diabetes.

In conclusion, we identified twoWFS1 compound heterozygous
variants in patients with WSLD. The functional analysis verified the
impaired function of the WFS1 compound heterozygous variants.
TheWFS1 gene is associated with diverse phenotypes, ranging from
nonsyndromic diabetes to syndromic conditions. Early genetic
screening is crucial for optimal patient management and timely
intervention as the disease progresses.
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