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The objective of this study is to analyze environmental genetic selection signals in
large-scale sheep populations with conflicting environmental adaptations,
aiming to identify and isolate genes associated with environmental
adaptations in sheep populations. Kirghiz sheep, which inhabit high-altitude
environments year-round, demonstrate the ability to adapt to extreme
conditions. In this study, 42 Kirghiz sheep, 24 Tien-Shan in Kyrgyzstan sheep,
189 Qira black sheep, and 160 Chinese Merino sheep were genotyped using
IlluminaOvine SNP50K chip. Regions exhibiting a selection signal threshold of 5%,
as well as PI analysis and haplotype statistical scanning gene data were annotated,
and intersecting genes were identified as candidate genes. Through Fst and
haplotype statistical analysis revealed the key gene PDGFD and its vicinity’s
impact on fat deposition in sheep tails. Additionally, Fst and PI analysis
uncovered genes related to high-altitude adaptation as well as those linked to
animal growth and reproduction.Further GO and KEGG enrichment pathway
analyses unveiled pathways associated with high-altitude adaptation such as
negative regulation of peptidyl-tyrosine phosphorylation and xenobiotic
metabolism processes.This investigation into the adaptability of Kirghiz sheep
provides theoretical support and practical guidance for the conservation and
genetic enhancement of Kirghiz sheep germplasm resources.
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1 Introduction

The varying altitude gradient on Earth leads to complex and diverse climates, and
China’s topography exhibits a terraced structure due to these differences in altitude (Wu
et al., 2023). Atushi City in Kezhou, Xinjiang, located in the southwest of the Tarim
Basin, lies at the southern foot of the Tianshan Mountains with altitudes ranging from
about 1,500 to 2,000 m. This area is characterized by undulating hills and peaks, with the
highest point reaching 7,719 m (Qi et al., 2021). Kirghiz sheep, native to high-altitude
regions, exhibit strong environmental adaptability and stable growth traits.
Predominantly found in Wuqia County, Kezilesu Autonomous Prefecture, in the
southern Tianshan Mountains of Xinjiang, these sheep are known for their tolerance
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to rough feeding, disease resistance, strong stress resistance, and
rapid weight gain. They have adapted well to the cold high-altitude
environment of the Pamirs in southern Xinjiang. Animals in high-
altitude regions undergo complex physiological and behavioral
adjustments to adapt to their harsh environment (Guo et al.,
2021). These animals need to cope with extreme climatic
conditions such as cold, hypoxia, and intense ultraviolet
radiation to ensure their survival and reproduction (Castiglione
et al., 2017).Adaptations to high-altitude environments were
analyzed by genome-wide scanning of natural selection traits in
each species. Kirghiz sheep as one of Xinjiang’s meat sheep,In the
1970s,Kirghiz sheep were endangered until 1974 when China
restored the Kirghiz Autonomous Prefecture sheep farm,
allowing for the protection of this breed.Currently, there are
approximately 640,000 Kirghiz sheep in the Kirghiz
Autonomous Prefecture. Although breeding efforts for Kirghiz
sheep have been ongoing, there have been relatively few studies on
their genetic structure and genetic diversity, resulting in
incomplete population genetic structures and significant
degradation of breed characteristics. Through in-depth research
and identification of the gene types adapted to the environment
(Porcelli et al., 2015), new breeds that can adapt to extreme
environment and have excellent production performance can
be effectively screened and developed (Williams et al., 2007),
and the genetic potential of individual animals can be more
accurately assessed (Wearing and Scott, 2022).

Gene chip technology plays an important role in gene selection
and mapping, genome breeding, breed identification,and parentage
testing (Li Y. et al., 2014).The 50 K SNP chip for sheep can evenly
cover the entire sheep genome and includes important trait loci.Wu
(Han and Xiong, 2001) discovered candidate genes related to growth
traits and high-altitude adaptability in Cashmere goats from two
different regions using the Fst and PI methods.Wang (Guo et al.,
2019)compared and analyzed Tibetan sheep, Altay sheep, Duolang
sheep,Hu sheep,and Mongolian sheep using sheep genome re-
sequencing and found genes related to hemoglobin levels and red
blood cell counts in certain selection regions, such as the
CYP17 gene on chromosome 22 and the DNAJB5 gene on
chromosome 2 of Duolang sheep.Caiye Zhu (Wang et al., 2019)
studied seven sheep breeds from different regions using the 50 K
SNP chip technology and identified candidate genes associated with
high-altitude adaptability through Fst and XP-EHH analysis, such as
EPAS1,CRYAA, LONP1,NF1,DPP4,SOD1,PPARG, SOCS2 and
detected 31 significant SNPs associated with tail type traits in
indigenous Chinese sheep and identified BMP2 and PDGFD as
candidate genes for tail type traits.Based on the identified candidate
genes for tail type traits.Baazaouil (Caiye et al., 2023) conducted
whole-genome sequencing of semi-arid sheep using this chip and
identified candidate genes PROKR1 and BMP2 related to tail fat.
Caiye Zhu (Baazaoui et al., 2021) use a total of 31 significant SNPs
related to tail type traits were detected in Chinese native sheep, and
BMP2 and PDGFD were identified as tail type trait candidate genes.
Based on the above identified tail type trait candidate genes,
BMP2 and PDGFD genes were selected to study the relationship
between tail SNPs of Altay sheep and Tibetan sheep. (Wei et al.,
2016) conducted genome selection on 140 individuals of indigenous
Chinese sheep breeds and determined that PDGFD may affect fat
deposition in fat-type sheep.

Population genetic diversity and selection signature are among
the fundamental methods for studying sheep genomes and can
reveal how genes respond to environmental selection.
Therefore,the aim of this study was to use genome selection and
haplotype statistics to study the population structure and genetic
diversity of Kirghiz sheep, identify genetic markers associated with
production traits,and provide theoretical basis for the conservation
of sheep germplasm resources in southern Xinjiang,to promote
animal husbandry sustainable development.

2 Materials and methods

2.1 Animal care

The study followed the guidelines of the Ethics Committee of
Tarim University of Science and Technology (SYXK 2020-009) for
animal experiments.

2.2 Experimental animals

In this study, 189 blood samples from adult Qira black sheep
(QR) and 42 venous blood samples from adult Kirghiz sheep (KE)
were randomly collected from Jinken Aoqun Agriculture and
Animal Husbandry Technology Limited in Qira County, Hotan
District and Bozheng Sheep Industry Technology Limited in
Wuqia County, Kezhou. In addition, data from 160 Chinese
merino sheep (CM) and 24 Tien-Shan in Kyrgyzstan (TNSH)
were used.The data are from:https://doi.org/10.5061/dryad.
37pvmcvff (Deniskova et al., 2019a).

2.3 DNA extraction and identification

The remaining samples of genomes DNA (gDNA) underwent
agarose gel electrophoresis and nanodrop ND-2000 (Thermo
Scientific) concentration analysis to ensure their quality and
concentration.After adjusting the gDNA concentration to 50 ng/
L,whole-genome amplification was performed. Subsequently,the
gDNA was fragmented and precipitated before being re-
suspended in hybridization buffer. The re-suspended DNA
fragments were then applied to the chip for
hybridization.Following hybridization,non-specifically bound
DNA was removed, leaving behind specifically bound sites. These
specific binding sites were then subjected to single-base extension
and staining, followed by scanning using the Illumina iScan Reader.
After completing the scan,the extracted DNA underwent quality
control to obtain detailed quality control reports. Finally,the raw
data scanned by the iScan system were imported into the Illumina
official data analysis pipeline to generate PLINK files.

2.4 Genetic diversity and
population structure

We utilized liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver)
to convert the genome coordinates of 37 Tien-Shan sheep, then
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merged the files and performed quality control on the SNP data using
PLINK software (version 1.90). We used the following criteria:
inclusion detection rate less than 90% and hardy-Weinberg
balance test p-value less than 10–5 (Zhang et al., 2022).

2.5 Genetic diversity and selection signature

The PLINK (V1.90) software was used to perform principal
component analysis based on the variance-standardized relationship
matrix of the quality-controlled data. The NJ matrix was calculated
using VCF2Dis (https://github.com/BGI-shenzhen/VCF2Dis) to
draw the evolutionary tree, and the sparse non-negative matrix
factorization algorithm sNMF (http://membres-timc.imag) was
employed to generate estimates of ancestral proportions.

2.6 Fixation index

Fst is a statistical test used to measure the degree of
differentiation between populations, mainly used to study the
extent of genetic variation between different populations,as well
as population structure and genetic diversity.The calculation
formula is as follows:

Fst � MSP −MSG

MSP + nc − 1( )MSG

In this formula,MSG rep resents the mean square error of the
detected intra-group sites, while MSP stands for the mean square
variance of the inter-group sites, indicating the corrected average
sample size between groups (Zhang W. et al., 2023). In this
study,SNP sites retained were calculated using the unbiased
estimation Fst method, yielding comparisons between Kirghiz
sheep and Qira black sheep, as well as Kirghiz sheep and Chinese
Merino sheep.

2.7 Haplotype analysis

We conducted haplotype statistics and inference on the PDGFD
gene region genotype data of Kirghiz sheep and Tien-Shan sheep
using the genehap R package in R scripts (Zhang R. et al., 2023).With
this software, we combined continuous SNP data into individual
haplotypes and generated corresponding haplotype information for
each individual. We employed the genehap R software for
phenotype-associated haplotype statistics in the vicinity of the
PDGFD gene region.

2.8 Nucleotide diversity (PI)

Nucleotide diversity (PI) refers to the average number of
different nucleotide at the same position of a random sequence
taken from the DNA of multiple samples in a population,
representing the degree of nucleotide polymorphisms within the
population (Brouillette et al., 2000). The calculation formula is
as follows:

PI � ∑
S

j�i
hj

In the above formula, S represents the number of segregating
sites, and hj represents the heterozygosity of the j segregating site.
We utilized the vcftools software to compute population
nucleotide diversity.

2.9 Enrichment analysis of candidate genes

We conducted statistical analysis of the p-values for Fst and PI
calculated for the Kirghiz sheep (KE), Chinese Merino sheep (CM),
and Qira black sheep (QR) populations,and plotted Manhattan
distribution graphs. The top 5% of selected sites were referenced
against two databases: the sheep genome Ovis Oar_v4.0 for
annotation and the NCBI database (http://www.ncbi.nlm.nih.
gov/gene) for enrichment analysis using cluster profile (Yu
et al., 2012). The KEGG and GO enrichment analyses covered
three aspects:Biological Process, Cellular Component, and
Molecular Function.

3 Results

3.1 Population structure

Cluster analysis and principal component analysis (PCA) were
conducted on SNP data from 415 sheep. The four populations were
clustered into four groups, and significant differentiation among
themwas observed using PC1, PC2, and, PC3. TNSH showed slight
differentiation compared to other populations, while QR exhibited
closer proximity to TNSH in terms of principal components,
consistent with the results of the evolutionary tree. The four
sheep breeds QR, KE, CM, and TNSH formed separate
branches, with KE being distantly separated from the other
three sheep breeds.QR and TNSH populations showed closer
structural proximity, with QR extending outward, indicating the
separation of KE from the other three sheep breeds (Figure 1B).
Considering the different evolutionary processes among the four
sheep breeds, we further inferred the ancestral proportions of the
four distinct sheep populations using the sNMF software
(Figure 1C). When K = 5, each of the four sheep breeds
exhibited distinct ancestral components, consistent with the
separation observed in the PCA results for TNSH.The
evolutionary tree results revealed a close genetic relationship
between TNSH and QR, while KE and CM were situated on the
same evolutionary branch (Figure 1A).

3.2 Selective sweeps

3.2.1 Fixation index
Initially, we ranked the Fst values of TNSH in descending order

and selected the top 5% as selection regions. After Fst filtering, we
identified a total of 3048 genes. When examining the degree of
differentiation between KE and TNSH populations using Fst, we
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discovered the gene PDGFD, which influences tail fat deposition. Fst
tests for QR, CM, and KE revealed 2723,3264 candidate genes,
respectively. (Supplementary Data 1).

3.2.2 Haplotype statistics
Subsequently,we generated tail trait phenotype-associated

haplotypes in the PDGFD gene region,and the results showed
that the H001 and H003 haplotypes were positively correlated
with tail fat deposition in the PDGFD gene (Figure 2,
Supplementary Data 2).

3.2.3 Nucleotide diversity
We sorted the PI values of KE in ascending order and selected

the top 5% as the selection region, revealing a total of 3484 genes
(Supplementary Data 3). Following the cross-analysis of genes
filtered by both Fst and PI, we identified 639 intersecting candidate
genes (Figure 3B, Supplementary Data 3).

Through Fst and PI analysis of KE, CM, and QR, we identified
several genes associated with Kirghiz sheep. These genes are related
to the high-altitude adaptation of organisms, such as ASIP, FMO1,
FMO2, FMO4, as well as genes related to animal growth and
reproduction, such as PTK6, PAG11, and CDC16.

3.2.4 Candidate gene enrichment analysis
The GO enrichment pathway analysis was performed on

590 candidate genes selected by QR and KE. There were
12 significant p-value<0.05 pathways, among which the
following were related to high altitude adaptation:GO:
0050732~negative regulation of peptidyl-tyrosine
phosphorylation,GO:0006805~xenobiotic metabolic process,
KEGG enrichment pathways showed 18 significant
p-value<0.05 pathways, among which OAS00430-Taurine and
hypotaurine metabolism were associated with high altitude
adaptation.oas04610~Complement and coagulation cascades;

FIGURE 1
(A) NJ evolutionary tree. (B) Principal Component Analysis of Four Sheep Breeds (X-axis represents PC1, Y-axis represents PC2, Z-axis represents
PC3. (C) sNMF Ancestral Proportion Estimation (minimized CV_error when K = 5).

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2024.1432105

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1432105


oas04672~Intestinal immune network for IgA production
(Supplementary Data 4, Figure 4).

4 Discussion

4.1 Genetic diversity and
population structure

Principal component analysis of Kirghiz sheep, Tien-shan
sheep, Qira black and Merino sheep showed no significant
aggregation in these four populations. However, Qira black and
Tien-shan sheep exhibited closer proximity, suggesting a potential
shared ancestry, possibly influenced by historical breeding
practices.Notably, despite inhabiting the Naryn region of
Kyrgyzstan (Deniskova et al., 2019b), Tien-shan sheep
demonstrated unstable population structure, likely influenced by
human-mediated selection over recent decades (Eydivandi et al.,
2021).Conversely, Qira black sheep from Hotan cele County
displayed greater ancestral resemblance to Tien-shan sheep,
possibly attributable to trade dynamics in livestock (Valerio
et al., 2020).

The phylogenetic tree reconstructed analysis indicated no
significant kinship among these populations, corroborating the
PCA findings and suggesting independent evolutionary
trajectories in relatively isolated environments.

However, ancestral proportion analysis revealed a close
genetic affinity between Kirghiz and Tien-shan sheep, as well
as Qira black sheep. This likely stems from shared ancestral
components and genetic distances, potentially shaped by
prolonged cohabitation in similar environments and the
introduction of foreign breeds, contributing to genetic
homogeneity among these populations.

4.2 Adaptation mechanism in plateau
environment

ASIP (agouti signaling protein) located on chromosome 13 of
sheep, from physical distance 63063228 to 63063230 bp, ASIP,
which is an autosomal gene, is directly related to a pathway that
regulates melanin production (Goutte et al., 2022).ASIP plays a
crucial role in regulating changes in the color of the animal’s
back skin, It not only affects the muscle tone of the back, but also

FIGURE 2
(A) Fst results of KE and TNSH, the red line in the figure represents the 0.05 threshold (B) Haplotype analysis of the region near PDGFD (chr15:
3800010-4200000) based on the genehap R package. (C, D) Phenotypic correlation analyses of the fat tail of Kirghiz sheep with the thin tail of TNSH).
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directly controls the production of melanin in the ventral skin
area. It can regulate the process of protein formation in animal
skin pigment, by precisely regulating the distribution and
activity of melanocytes. Thus, it can be said that ASIP has a
decisive influence in shaping the color pattern of the animal’s
back and the absence or overexpression of melanin in the ventral
skin (Li MH. et al., 2014). ASIP leads to the synthesis of
eumelanin in hair follicle melanocytes, rather than the black
or brown pigment true melanin, Gene switching events at ASIP
sites in sheep may play an important role in the evolution of
pigmentation in sheep (Norris andWhan, 2008). The pleiotropic
effects expressed in animal models include obesity (Kempf et al.,
2022),increased susceptibility to tumors, and premature
infertility (Lima et al., 2015). Therefore,we can infer that the
formation of ASIP is closely related to environmental factors. At
higher altitudes, Ultraviolet radiation levels increase
significantly, and sheep in these areas may adapt to this
change by developing specific physiological mechanisms to
reduce Ultraviolet radiation damage to them, which can help
sheep better withstand Ultraviolet radiation stress in high-
altitude environments. FMO1 (flavin containing
dimethylaniline monoxygenase 1) is an enzyme containing
flavin, located on chromosome 12 of sheep, with a physical
position between 36894203 and 36894334 bp. Together with
P450 enzymes, FMO1 participates in the reduction of TNO
(N-oxidized dimethylaniline) to TAM (dimethylaniline), and
the oxidation of TAM to TNO (Parte and Kupfer, 2005).
FMO is the primary enzyme oxidant in this process,it binds
to NADPH and exerts its catalytic activity (Eswaramoorthy et al.,
2006). FMO can regulate cellular stress resistance through

various cellular energy metabolism activities such as
mitochondrial respiration pathway and glycolysis (Huang
et al., 2021). When the levels of mean erythrocyte
hemoglobin and mean erythrocyte hemoglobin concentration
in the blood are elevated, it may indicate that sheep exhibit
enhanced oxygen carrying capacity. FMO1 as a regulator of
energy homeostasis (Veeravalli et al., 2014), is highly
expressed in the liver and kidney of rats (Lattard et al., 2002)
but can cause dysregulation of lipid metabolism (Zou et al.,
2023), suggesting improved adaptation to high altitude hypoxia
(Zhang Y. et al., 2021). This helps the Kirghiz adapt to the low
oxygen and cold conditions at high altitudes. FMO2 (flavin
containing dimethylaniline monoxygenase 2) gene, located on
chromosome 12 of sheep, has a physical position between
36833449 and 36833580 bp.The human FMO2 gene has been
confirmed to regulate oxidative stress levels (Henderson et al.,
2008), thus playing a role in innate immunity against microbial
infections, including tuberculosis (Mekonnen and Bekele, 2017).
the FMO2 gene as an immune regulatory factor, may play a role
in their resistance to tuberculosis. In addition,the transcription
of this gene is more than 50% expressed in the lung (Siddens
et al., 2008), but not in the liver or kidney (Yueh et al., 1997). The
lung pressure, blood oxygen-carrying capacity and lipid
metabolism of Kirghiz sheep living in high altitude have
important effects on their adaptation to high altitude
environment. These results suggest that FMO1 and FMO2
genes may play an important role in the cold anoxic
environment and immune response mechanism under the
plateau, and further studies may reveal their specific
functions and mechanisms in Kirghiz sheep population.

FIGURE 3
(A) Plot of Fst and PI results for KE vs. QR and CM,with different colored dots representing whether the locus is under selection, using a significance
threshold of 0.05. (B) Intersection of genes annotated from nucleotide diversity in KE and the top 5% Fst loci from KE. QR and CM comparisons).
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4.3 Tail fat-related genes

Tail fat plays an important role in the adaptability of the
Kirghiz sheep, not only being economically valuable (Zhao et al.,
2022), but also storing energy and acting as a buffer to help the
sheep survive extremely cold and arid environments (Wang et al.,
2021). The deposition of fat in the tail can store energy and act as a
buffer, thereby protecting the organism from the effects of
extreme environments (Moradi et al., 2022). Additionally, fat is
involved in regulating key physiological and biochemical
responses in the organism (Zhang W. et al., 2021), crucial for
the adaptation of Kirghiz sheep to high-altitude
environments.Through selection signal analysis, we discovered
candidate genes related to sheep tail fat, located in the CDS region

of the PDGFD gene area, from chr15:3800010 to
4200000 bp. Three haplotypes were identified: H001 (chr15:
3972342) with a frequency of 14, H002 with a frequency of 2,
and H003 (chr15:4131705) with a frequency of 1 (Figure 2). The
expression of the PDGFD region is related to the maturation of
adipocytes (Luo et al., 2021). Members of the PDGF
(prostaglandin-related factors) family have been shown to
promote the proliferation of certain types of preadipocytes and
effectively inhibit differentiation into mature adipocytes (Ma
et al., 2018) (Pan et al., 2019), playing a key role in the process
of body fat adipogenesis in humans and mice, and controlling the
shape of the fat-tailed sheep to a certain extent (Dong et al., 2020).
This gene is important in regulating fat deposition in the thin-
tailed sheep (Li et al., 2020). We identified functional genes and

A:GO enrichment pathway

Category Function Pathway

1 Negative cytoskeleton protein depolymerizatio regulation of cytoskeleton organization
actin cytoskeleton reorganization

biological process involved in interaction with host
lysosomal transport

negative regulation of protein depolymerization

2 Fatty hexose acid oxidative organic acid metabolic process
monosaccharide metabolic process

hexose metabolic process

3 ATP diphosphate ADP phhosphorylation nucleoside diphosphate phosphorylation
glycolytic process

ATP generation from ADP nucleotide phosphorylation

4 Adaptive activation immune differentiation lymphocyte activation
positive regulation of immune system process

5 Leukocyte lymphocyte apoptotic process regulation of leukocyte apoptotic process
regulation of lymphocyte apoptotic process

lymphocyte apoptotic process

B:KEGG enrichment pathway

category function Pathway

1 Nucleotide absorption scytokine Protein digestion and absorption
Taste transduction

Complement and coagulation cascades
Viral protein interaction with cytokine and cytokine receptor

Intestinal immune network for IgA production
Fructose and mannose metabolism

Insulin resistance
Biosynthesis of nucleotide sugars

Amino sugar and nucleotide sugar metabolism

2 Giycolysis amino gluconeogenesis acids Glycolysis/ Gluconeogenesis
HIF-1 signaling pathway

3 Drup hypotaurine cytoc P450 Drug metabolism - cytochrome P450
Taurine and hypotaurine metabolism

4 C-type glucagon herpe infection Kaposi sarcoma-associated herpesvirus infection
C-type lectin receptor signaling pathway

5 Aldosterone-regulated expression checkpoint Neurotrophin signaling pathway
PD-L1 expression and PD-1 checkpoint pathway in cancer

T cell receptor signaling pathway
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selective gene regions associated with fat deposition in Kirghiz
sheep breeds, specifically in the PDGFD region.

5 Conclusion

In conclusion,we employed the Illumina Ovine SNP50K Bead Chip
for targeted signal analysis of Kirghiz sheep thriving in high-altitude
environments.Our investigation unveiled candidate genes such asASIP,
FMO1, FMO2, implicated in the growth and development of Kirghiz
sheep and their adaptation to elevated altitudes, along with PDGFD,a
pivotal gene governing fat deposition in sheep tails. Our research
outcomes are instrumental for pinpointing candidate genes
associated with crucial traits across diverse sheep breeds, addressing
the challenges posed by global climate change, cultivating novel sheep
varieties endowed with robust cold tolerance,and offering insights into
the development of new sheep breeds boasting desirable tail
characteristics. This study establishes a solid groundwork for
breeding superior new sheep germplasm.
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