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Background: Lung squamous cell carcinoma (LSCC) is a major subtype of lung
cancer with poor prognosis and low survival rate. Compared with lung
adenocarcinoma, yet no FDA-approved targeted-therapy has been found for
lung squamous cell carcinoma.

Methods: To identify potential drug targets for LSCC, Summary-data-based
Mendelian randomization (SMR) analysis was used to examine the potential
association between 4,543 druggable genes and LSCC, followed by
colocalization analysis and HEIDI tests to confirm the robustness of the result.
Phenome-wide association study (PheWAS) explored potential side effects of
candidate drug targets. Enrichment analysis and protein-protein interaction
networks revealed the function and significance of therapeutic targets. Single-
cell expression analysis was used to examine cell types with enrichment
expression of druggable genes in LSCC tissue. Drug prediction included
screening potential drug candidates and evaluating their interactions with
targets through molecular docking.

Results: This research has identified ten significant drug targets for LSCC through
a comprehensive SMR analysis. These targets included (COPA, PKD2L1, CCR1, C2,
CYP21A2, and NCSTN as risk factors, and CCNA2, C4A, APOM, and LPAR2 as
protective factors). PheWAS demonstrated that C2, CCNA2, LPAR2, and NCSTN
exhibited associations with other phenotypes at the genetic level. Then, we found
four potentially effective drugs with the Dsigdb database. Subsequently,
molecular docking indicated that favorable binding interactions between drug
candidates and potential target molecules. In the druggability evaluation, five out
of ten drug target genes have been used in drug development (APOM, C4A,
CCNA2, COPA, and PKD2L1). Six out of ten druggable genes showed significant
expression in LSCC tissues (COPA, PKD2L1, CCR1, C2, NCSTN, LPAR2). Besides,
Single-cell expression analysis revealed that C2 and CCNA2 were primarily
enriched in macrophages, while COPA and NCSTN were enriched in both
macrophages and epithelial cells.
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Conclusion: Our research revealed ten potential druggable genes for LSCC
treatment, which might help to advance the precise and efficient therapeutic
approaches of LSCC.
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1 Introduction

Lung cancer accounts for the highest proportion of total cancer
cases (11.6%) and remains the primary cause of mortality
associated with cancer (18.4%) (Bray et al., 2018). Traditionally,
lung cancer is categorized into two main subtypes: small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC
constitutes the majority (80%) of all lung cancers, with lung
squamous cell cancer (LSCC) accounting for 20%–30% within
this subgroup (Barta et al., 2019). In contrast to lung
adenocarcinoma, targeted therapy offers limited benefits for
patients with lung squamous cell carcinoma (Lau et al., 2022).
The utilization of targeted therapy in patients with LSCC has been
associated with unfavorable outcomes in previous investigations
(Niu et al., 2022). Hence, there is necessary to find novel
therapeutic targets to facilitate the development of LSCC
targeted therapy.

The increasingly abundant human genetic data is now
extensively utilized to explore innovative drugs for various
diseases (Trajanoska et al., 2023). It is a useful way to find drug
targets to improve the treatments of diseases through analyzing
human genetic data (Nelson et al., 2015). Mendelian randomization
(MR) is a genetics-based statistical approach that enables the
assessment of causal relationships between modifiable exposure
or risk factors and clinically relevant outcomes (Sekula et al.,
2016). The Summary-based MR (SMR) analysis simulates
randomized controlled trials by integrating aggregated data from
disease genome-wide association studies (GWAS) and expression
quantitative trait locus (eQTL) studies, enabling the prediction of
drug efficacy (Cao et al., 2023). In the analysis of drug target MR, cis-
expressed quantitative trait loci (cis-eQTLs) located within the
genomic region of the drug target gene are commonly regarded
as proxies that function as regulatory factors influencing gene
expressions (Gaziano et al., 2021).

This study identified potential drug targets associated with
LSCC by multi-omic analysis. First, SMR analysis was employed
to investigated the potential association between druggable genes
and LSCC. Since SMR alone may not be adequate for identication
of reliable drug targets, additional colocalization analysis and
heterogeneity in dependent instruments (HEIDI) tests were
performed. These analyses further established a causal link
between therapeutic targets and LSCC while mitigating
potential confounding variables. The enriched cell types in
LSCC tissues were determined through single-cell type
expression analysis. Furthermore, our phenome-wide
association study (PheWAS) delves into the relationships
between potential therapeutic targets and additional
characteristics, offering significant insights for future research
and the formulation of pertinent therapeutic approaches.

Subsequent enrichment analysis and the construction of a
protein-protein interaction (PPI) network unveiled functional
attributes and biological associations of potential therapeutic
targets, enhancing our comprehensions of the mechanisms in
the development and treatment of LSCC. Ultimately, drug
prediction was conducted for the identified targets, followed
by screening of potential drug candidates and assessment of
their binding affinity and interaction mode with the targets
using molecular docking.

2 Methods and materials

The flowchart of the study is depicted in Figure 1, and more
information of the methods and materials are presented below.
All data used in this research were sourced from publicly
available databases, so no additional ethical review
was necessary.

2.1 Data source for drug targets

The druggable genes selected for this study were identified
based on a recent research on druggable genome conducted by
Finan et al. (Finan et al., 2017), as well as the inclusion of
1,263 actionable drug targets provided by Gaziano et al
(Gaziano et al., 2021). Finan et al.’s study developed a new
computational approach and integrated data from multiple
GWAS to reveal druggable proteins and link them to existing
drugs, resulting in 4,463 genes with potential for therapeutic
targets. To identify potential drug targets against COVID-19,
Gaziano et al. collected 1,263 druggable proteins from the
ChEMBL database. Among these proteins, 531 have been
validated as therapeutic targets for approved drugs, while
381 were in clinical trials and 351 proteins exhibited promising
potential as targets for approved medications. For more detailed
information on the aforementioned druggable genes, please refer
to the original publication and Supplementary Material
(Supplementary Tables S2, S3).

2.2 Exposure data

We merged two list of drug targets, resulting in a total of
4,543 druggable genes named by the Human Genome
Organization Gene Nomenclature Committee (Supplementary
Table S4). Given that cis-eQTL demonstrated a higher degree of
proximity to genes that possess potential for drug target in the
drug development research, we selected cis-eQTL linked with
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gene expression within 2000 kb of the corresponding available
druggable genes from the eQTLGen Consortium (Vosa et al.,
2021). The eQTLGen Consortium contains cis-eQTLs of
16,987 genes sourced from 31,684 individuals of healthy
European ancestry. We employed the standard threshold of
5e-8 for genome-wide significant p-value to identify the most
significant eQTL as instrumental variables in SMR analysis. In
the final, we identified eQTLs for 2,504 druggable genes.

2.3 Outcome data

In the discovery cohort, the GWAS data for LSCC was obtained
from a meta-analysis conducted by McKay et al. (McKay et al.,
2017). This meta-analysis involved a total of 7,426 patients and
55,627 controls. Additionally, the GWAS data for LSCC from the
Interdisciplinary Research in Lung Cancer (TRICL) consortium,
which consisted of 7,704 patients and 54,763 controls, was utilized as

FIGURE 1
Outline of the study design. GWAS, genome-wide association studies; SMR, summary-data-based Mendelian Randomization; HEIDI, heterogeneity
in dependent instruments; PPH4, the posterior probability of hypothesis 4; PheWAS, Phenome-Wide Association Study.
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the replication cohort. The patients of the discovery and replication
cohorts were diagnosed with squamous cell lung carcinoma
according to the histopathological and immunohistochemical
methods. More details about the eQTL and GWAS data are
available in Supplementary Table S1.

2.4 SMR analysis

SMR analysis was used to evaluate the pleiotropic association
between druggable genes expression and squamous cell lung
cancer, as it has higher statistical power than traditional two-
sample MR analysis when data from two independent
populations with large sample sizes are available (Zhu et al.,
2016). To further examine the heterogeneity in causal inference,
we employed the HEIDI test and excluded results with
P-HEIDI < 0.05 (Zhu et al., 2016). The SMR software tool
(version 1.3.1) was used to perform SMR and HEIDI tests
(Wu et al., 2018). To address the bias from multiple test we
adjusted the p-value using the Benjamini–Hochberg method to
control for a false discovery rate (FDR) of 0.05 (Korthauer et al.).
We then selected genes with FDR of p-value <0.05 and P-HEIDI >
0.05 in replication cohorts for further co-localization analysis.

2.5 Colocalization analysis

To determine whether druggable genes and LSCC shared the
same genetic variant, we used Bayesian colocalization analysis
using eQTL and LSCC GWAS summary statistics with coloc R
package (Giambartolomei et al., 2014). Colocalization analysis
consists of five exclusive hypotheses (H0-H4): H0, no causal
variants are associated with either traits; H1, a causal variant
associated with gene expression but not with LSCC risk; H2, a
causal variant associated with LSCC risk but not with gene
expression; H3, associated with LSCC risk and gene expression
but driven by distinct causal variants; H4, associated with LSCC
risk and gene expression, driven by the same genetic variation.
The degree of colocalization was quantified by posterior
probability of hypothesis 4 (PPH4). A PPH4 value exceeding
0.8 suggests strong co-localization support, whereas values falling
within the range of 0.5–0.8 suggests moderate co-localization
support, with PPH4 values of 0.5 or lower suggesting weak co-
localization support.

2.6 Phenome-wide association study

In this research, the AstraZeneca PheWAS Portal (https://
azphewas.com/) was employed to conduct PheWAS analysis,
aiming to deduce potential side effects of prospective drug
targets. The PheWAS used data from United Kingdom Biobank,
including around 15.5 k binary phenotypes and 1.5 k continuous
phenotypic data from about 450,000 exome sequencing participants
(Wang et al., 2021). A p-value < 1e-6 was considered significant
for PheWAS.

2.7 Enrichment analysis and protein-protein
interaction

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of these ten drug
target genes were performed to explore their potential biological
functions and pathways using R package clusterprofiler. GO was
categorized into three groups: biological process (BP), molecular
function (MF), and cellular component (CC). KEGG can provide
information for signaling pathway. In addition, a PPI network was
generated by utilizing the STRING database (https://string-db.org/)
to explore potential interactions among ten drug target genes. The
obtained outcome was then imported into Cytoscape for
visualization.

2.8 Single cell type expression analysis

To investigate the cell-population specific expression of target
genes and study their potential causal effect on LSCC, scRNA-seq
data for human LSCC tissues were further obtained from Zilionis R
et al. (Zilionis et al., 2019). The datasets were deposited in the Gene
Expression Omnibus (GEO) database (GSE127465). Purified LSCC
samples in batches were firstly integrated and corrected using
“IntegrateData” function. Quality control standards are as
follows: 500 < nFeature_RNA < 5,000; 200 < nCount_RNA <
35,000; and percentage. mt < 10%. Then, annotation of cell
clusters was carried out using “SingleR” package and CellMarker
databases (Aran et al., 2019).

2.9 Candidate drug prediction and
druggability prediction

We used DSigDB database to further investigate whether the
identified drug target genes can become potential effective
intervention drugs by studying the interactions between these
proteins and drugs (Yoo et al., 2015). In order to further study
the drug potential of existing drug target genes, we used PDB,
ChEMBL and DrugBank databases (Berman et al., 2000; Wishart
et al., 2018; Mendez et al., 2019), which containing comprehensive
molecular information about drugs, their mechanisms, their
interactions and their targets. We then collected the information
on drug names and the development process of drugs that targeted
identified proteins.

2.10 Molecular docking

The 3D structure (.pdb format file) of the core common target was
downloaded using the PDB database (https://www.rcsb.org/), and the
small molecule drug structure (sdf format file) was collected using the
PubChem database (https://pubchem. ncbi. nlm.nih.gov/). Molecular
docking was performed by online docking tool CB-Dock2 (Liu et al.,
2022). The ligand molecule can spontaneously bind to the receptor
protein when its binding energy is less than 0, whereas a lower binding
energy indicates a tighter binding between the two. The specific

Frontiers in Genetics frontiersin.org04

Wu et al. 10.3389/fgene.2024.1431684

https://azphewas.com/
https://azphewas.com/
https://string-db.org/
https://www.rcsb.org/
https://pubchem
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1431684


parameter setting principle is based on the coordinate corresponding
to the compound originally bound on the target pocket of the protein
as the center, so as to carry out lattice construction.

3 Result

3.1 SMR analysis and HEIDI test found
10 druggable genes associated with LSCC

During the discovery stage, the expression of 23 genes was
identified significantly linked with the risk of LSCC (P-FDR < 0.05),
as illustrated in Figure 2. However, after conducting the HEIDI test,
13 of these genes did not meet the required criteria (P-HEIDI < 0.05)
(Figure 3). Therefore, they were excluded from subsequent
replication analyses (Supplementary Table S5). In the final, we
obtained 10 druggable genes for further analysis.

During the replication stage, SMR analysis successfully validated
10 genes for another independent LSCC cohort. The expression of
10 genes still exhibited a significant association with the risk of LSCC
(P-FDR <0.05), as illustrated in Figure 4. Furthermore, all of these
genes successfully passed the HEIDI test, thereby indicating the
robustness of the results (Supplementary Table S6).

3.2 Colocalization analysis

The results of the colocalization analysis were presented in
Supplementary Table S7. Among the 10 potential drug targets,
COPA, CCNA2, PKD2L1 shown high support evidence of
colocalization. Four genes (CCR1, C2, C4A, and CYP21A2)
demonstrated medium support evidence of colocalization. The

remaining three genes including NCST, APOM, and LPAR2,
indicated low support evidence of colocalization.

3.3 PheWAS

The PheWAS findings can provide information on the correlation
between identified drug target gene expression and certain diseases or
traits. In Supplementary Figures S1−S12, at the gene level, there was no
significant association between five drug targets and other traits
(genomic association p-value < 1e-6), with the exception of CCNA2,
C2, andNCSTN,while C4Awas not found in the database. CCNA2was
associated with factors influencing health status and contact with health
services while C2 was associated with proteomics in cardiometabolic.
NCSTN was associated with diseases of the skin and subcutaneous
tissue. Additionally, LPAR2was associated with lipoproteinmetabolism
and oncology at the variant level. The correlation between the above
three genes and other phenotypes were shown in Supplementary Table
S8, suggesting that the lung squamous cell carcinoma drugs acting on
the three genes may affect these traits at the same time while the MR
results of the three genes may have a pleiotropic effect.

3.4 Enrichment analysis and PPI network

According to GO enrichment analysis, the druggable genes were
enriched in the BP of immunoglobulin mediated immune response
and B cell mediated immunity, and were related to the CC category
of external side of plasma membrane and transport vesicle. In class
MF, those target drug genes were enriched in T cell receptor binding
and histone H3 kinase activity (Figure 5A). As shown in Figure 5B,
KEGG enrichment analysis revealed that target drug genes were

FIGURE 2
Volcano plot displaying the SMR results from the discovery phase for 23 significant genes. Dashed line on the horizontal axis represents FDR 0.05.
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involved in complement and coagulation cascades, staphylococcus
aureus infection, systemic lupus erythematosus, cellular senescence
and cell cycle. The infection caused by Staphylococcus aureus can
result in extensive inflammation of the dermis and subcutaneous
tissue, while systemic lupus erythematosus is an autoimmune
disease. Figure 6 indicates that the ten drug targets interact with
other related proteins in a network with 29-node, 63-edge. C4A was
significantly associated with a variety of proteins including
CYP21A2, APOM, and C2.

3.5 Druggability evaluation on the potentials
of therapeutic targets

Using the Dsigdb database, Table 1 shows the top four potential
effective intervention drugs with threshold adjusted p < 0.05. The

results showed that CCNA2 was significantly associated with most
drugs, including ciglitazone (CTD 00001835), simvastatin (CTD
00007319) and irinotecan hydrochloride (CTD 00002224). In
addition, irinotecan hydrochloride (CTD 00002224) interacts
with most genes, indicating its potential serving as an effective
drug. In druggability evaluation, we found that five of the ten drug
target genes have been used for drug development (APOM, C4A,
CCNA2, COPA, and PKD2L1) (Supplementary Table S9). Among
them, drugs developed for C4A, COPA, and PKD2L1 targets have
been approved. Drug (Human immunoglobulin G) targeting C4A is
used in the treatment of immunodeficiencies, as well as autoimmune
and inflammatory disorders. Drug (Artenimol) targeting COPA is
an artemisinin derivative and antimalarial agent used in the
treatment of uncomplicated plasmodium falciparum infections.
Drug (Calcium citrate) targeting PKD2L1 is an ingredient found
in a variety of supplements and vitamins.

FIGURE 3
Forest plots displaying the SMR results from the discovery phase for 23 significant genes.
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3.6 Cell-type specificity expression in the
LSCC tissues

In order to further explore whether there were cell type-specific
enrichment of 10 drug target genes, we applied single-cell RNA-seq
data to perform single-cell expression analysis in lung squamous cell
carcinoma tissues. All cells were divided into 22 clusters, and were

identified into 14 major cellular subsets: alveolar macrophage, B cell,
CD4+ T cell, CD8+ T cell, ciliated cell, endothelial cell, epithelial cell,
fibroblasts, macrophage, mast cell, NK cell, neutrophils, plasma cell
and pDC (Figure 7A). The single-cell expression of these genes is
presented as a bubble chart in Figure 7B. Five of the ten target drug
genes are detected in lung squamous cell carcinoma tissues, whereas
the expression of CCNA2, APOM, C4A, PKD2L1, and

FIGURE 4
Forest plots displaying the SMR results from the replication phase for 10 significant genes.

FIGURE 5
Enrichment results of 10 drug target genes. (A) Go enrichment results. (B) KEGG enrichment results.
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CYP21A2 was not very significant. Notably, C2 and CCR1 were
primarily enriched in the macrophage population (Figure 7C), while
COPA and NCSTN were mainly enriched in both macrophage and
epithelial cells.

3.7 Molecular docking

CB-Dock2 was used to simulate the interaction between the
top four candidate drugs and the corresponding gene-encoded
proteins, and the binding energy of each binding site interaction
was generated. The effective docking results of the top eight
proteins with drugs were shown in Figure 8 and Table 2.
CCNA2 showed the lowest binding energy (−11.00 kcal/mol)
with irinotecan hydrochloride, indicating that the binding was
extremely stable.

4 Discussion

In this research, a comprehensive SMR analysis was conducted
to investigate the druggable gene linked to LSCC, utilizing a
combination of GWAS datasets, pharmacogenomic information,
and gene expression data (eQTL). We identified ten important drug
target genes of LSCC. Among them, COPA, PKD2L1, CCR1, C2,
CYP21A2, and NCSTN were risk factors, while CCNA2, C4A,
APOM, and LPAR2 were protective factors.

The etiology of LSCC is intricate, encompassing dysregulation of
multiple genes and signaling pathways as well as aberrant
modulation of cellular processes. Among the risk factors, the
tumor-promoting gene COPA (coatomer protein subunit alpha)
plays a crucial role in vesicle trafficking within the Golgi apparatus
and retrograde transport of cargo proteins between the endoplasmic
reticulum (ER) and Golgi, potentially influencing the

FIGURE 6
PPI network.

TABLE 1 Candidate drug predicted using DSigDB.

Drug names Overlap p-Value Adjusted p-value Genes

Isotretinoin PC3 UP 2/24 6.17E-05 0.01 C4A; CYP21A2

ciglitazone CTD 00001835 3/190 9.64E-05 0.01 CCNA2; COPA; APOM

Irinotecan hydrochloride CTD 00002224 4/565 0 0.01 CCR1; CCNA2; COPA; NCSTN

simvastatin CTD 00007319 3/304 0 0.03 CCR1; CCNA2; APOM
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autoinflammatory process by modulating type I interferon signaling,
which has been involved in the pathophysiology of lung cancer
(Lepelley et al., 2020; Bao et al., 2022). Furthermore, APOM plays a
key role in lipid transport and is implicated in the pathogenesis of
emphysema through its association with HDL cholesterol, which has
also been linked to lung cancer (Burkart et al., 2014). Additionally,
NCSTN acts as an upstream regulator of beta-catenin, facilitating its

nuclear translocation and subsequently inducing the ZEB1-
mediated epithelial-mesenchymal transition (EMT) process. This
EMT process contributes to the acquisition of a malignant
phenotype and influences tumor progression (Li et al., 2020).
The CC chemokine receptor 1 (CCR1) is crucial in facilitating
the recruitment of leukocytes to sites of inflammation
(Broxmeyer et al., 1999). The process of tumor invasion and

FIGURE 7
Single-cell type expression in lung squamous cell carcinoma tissue for the drug target genes identified by SMR. (A) 22 cell clusters and 14 cell types
were identified. (B) and (C) show the expression of drug target genes in each cluster.
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metastasis exhibits numerous similarities with leukocyte trafficking,
a phenomenon that is tightly regulated by chemokines and their
corresponding receptors. Previous studies have demonstrated a
positive correlation between the expression of CCR1 and the

aggressive phenotype of NSCLC cells (Wang et al., 2009).
Knockdown of CCR1 significantly attenuated the invasive
potential of NSCLC cells. The APOM has been identified as a
protective factor against the occurrence and progression of

FIGURE 8
Docking results of available proteins with small molecule ligands. (A) CCNA2 docking Irinotecan hydrochloride, (B) PKD2L1 docking Irinotecan
hydrochloride, (C) CYP21A2 docking simvastatin, (D) NCSTN docking isotretinoin, (E) APOM docking Irinotecan hydrochloride, (F) PKD2L1 docking
isotretinoin, (G) CCR1 docking simvastatin, (H) APOM docking ciglitazone.
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various cancers, exhibiting inhibitory actions on cancer cell
proliferation, migration, and invasion (Wang et al., 2009; Hu
et al., 2015; Zhou et al., 2022; Xu et al., 2023). Lower expression
of the C4A gene might be involved in the lung cancer development
because of abnormal inflammatory response (Rosenberger
et al., 2017).

In order to enhance understanding of the potential pleiotropic
effects of the target genes and the potential side effects of the LSCC
associated drug, we conducted a comprehensive pharmacability
assessment of the therapeutic target potential. Remarkably, five out
of ten of the drug target genes investigated in this study have
already been analyzed in previous drug development studies
(APOM, C4A, CCNA2, COPA, and PKD2L1). However, few
research was performed to analyze the adverse reactions of
these drug target genes in LSCC treatment, which was adverse
to their clinical utilizations. For this reason, we employed a
PheWAS analysis to infer potential adverse reactions linked to
the intended drug target. Furthermore, enrichment analysis and
PPI networks were performed to gain insights into the biological
significance underlying these promising drug targets. Finally, drug
prediction and molecular docking studies were carried out to
further investigate these targets, revealing that a total of four
drugs investigated in this study may hold potential clinical
significance for the treatment of LSCC by targeting different
genes. This further validates the therapeutic value of these
target genes as potential drug candidates. Notably, we observed
a pronounced affinity of irinotecan towards some genes (CCNA2,
PKD2L1, and APOM). Previous studies have reported the
therapeutic potential of irinotecan in treating LSCC (Oshita
et al., 2011; Wu et al., 2013). Our study provides microscopic
evidence to validate the efficacy of irinotecan, thereby offering a
theoretical foundation for further elucidation of its
underlying mechanism.

The present study has several notable strengths. Initially, owing
to the substantial sample sizes in both the MR analysis and
population-based studies, our study possesses exceptional
statistical power and yields significant findings that may
contribute to a deeper understanding of causality. Additionally,
we employed HEIDI tests and co-localization methods to
mitigate the potential influence of pleiotropy, thereby reducing
the likelihood of false positive results. Furthermore, five out of
ten identified drug targets have been used in drug development,

but the remaining genes still show promise for treating LSCC. The
findings suggest that the ten drug target genes identified in the study
had significant potential for clinical applications. Nonetheless, we
provide a comprehensive list of potential drugs for further testing
and research. Finally, insights into the potential causative role of
drug target genes on LSCC are provided through additional evidence
from single-cell type expression analysis, PPI network, and
chemogenic evaluation, thereby further prioritizing potential
drug targets.

The present study is subject to certain limitations. Firstly,
although MR provides insights into causality, it may not fully
replicate real-world clinical trial conditions due to its
assumptions about low-dose drug exposure and linear exposure-
outcome relationships. This could lead to findings that do not
accurately reflect the effects of a drug in a clinical setting (Wu
et al., 2013). Future research should aim to connect MR analysis with
real-world clinical trials by combining high-dose short-term
exposure experiments with MR analysis. In addition, despite
efforts to reduce bias, the MR analysis is still susceptible to
unmeasured confounding factors or pleiotropy that could affect
outcomes (Sanderson, 2021). Thirdly, the lack of direct evidence for
the links between certain genes and lung cancer suggests further
research is needed to understand how these genes contribute to the
development and progression of the disease. Including more omics
data and environmental factors in future studies could improve our
understanding of the mechanisms of LSCC. Besides, the
generalizability of the study is limited by its mostly European
sample, requiring more research for broader applicability across
ethnicities. Ultimately, the precision of molecular docking analysis
depends on the quality of the protein structure and ligand,
impacting its ability to identify drug targets but not necessarily
their clinical effectiveness (Ballante et al., 2021). Therefore, further
investigation and clinical trials are needed to validate the therapeutic
viability of these targets and assess their efficacy and safety in
practical clinical scenarios.
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