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Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder
(NDD) characterized by significant impairments in social, communicative, and
behavioral abilities. However, only a limited number of studies address the
genetic basis of ASD in the African population. This study aims to document
the genes associated with ASD in Africa and the techniques used to identify them.
Additionally, genes identified elsewhere but not yet in Africa are also noted.

Methods: Online databases such as Wiley Online Library, PubMed, and Africa
Journal Online were used. The review was conducted using the keyword related
to genetic and genomic ASD study in the African population.

Result: In this scoping review, 40 genetic studies on ASD in Africa were reviewed.
The Egyptian and South African populations were the most studied, with 25 and
5 studies, respectively. Countries with fewer studies included Tunisia (4), East
African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes
responsible for ASD were identified in the African population: 26 were
identified using a polymerase chain reaction (PCR)-based method, 22 were
identified using sequencing technologies, and 12 genes and one de novo
chromosomal aberration were identified through other techniques. No African
study identified any ASD gene with genome-wide association studies (GWAS).
Notably, at least 20 ASD risk genes reported in non-African countries were yet to
be confirmed in Africa’s population.

Conclusion: There are insufficient genetic studies on ASD in the African
population, with sample size being a major limitation in most genetic
association studies, leading to inconclusive results. Thus, there is a need to
conduct more studies with large sample sizes to identify other genes
associated with ASD in Africa’s population using high-throughput sequencing
technology.
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1 Introduction

Autism spectrum disorder (ASD), a widespread and clinically
heterogeneous neurodevelopmental disease (NDD), is defined by
irregularities in social interactions and repetitive or limited
behavioral patterns (Hodges et al., 2020) that manifest in early
postnatal life. ASD shows various symptoms and severities which
significantly burden affected individuals, caregivers, and families
(van Heijst and Geurts, 2015). The World Health Organization
(WHO) reported ASD as a major worldwide public health issue in
underdeveloped nations (World Health Organization, 2013), being
among the leading causes of disability in children (Salari et al., 2022).
Globally, one in a hundred children have ASD, indicating an
increase in the disorder’s prevalence (Zeidan et al., 2022).
Although the prevalence of ASD in low- or middle-income
countries, including in Africa, is controversial, this disease
burden has recently been found to be underestimated (Fombonne
et al., 2021; Aderinto et al., 2023). According to a recent global
systematic review and meta-analysis, the prevalence of ASD was
0.4% (95% CI: 0.1–1) in Asia, 1% (95% CI: 0.8–1.1) in America, 0.5%
(95% CI: 0.2–1) in Europe, 1% (95% CI: 0.3–3.1) in Africa, and 1.7%
(95% CI: 0.5–6.1) in Australia (Salari et al., 2022).

With a 50%–90% heritability estimate, ASD is a
neuropsychiatric condition that is complicated and genetically
heterogeneous (Kainer et al., 2023), although de novo gene
variations also have an outstanding contribution. To date, over
200 susceptible genes have been identified as being linked to ASD.
Many genes have been found to be the most prevalent risk factors for
the development of ASD, including MTHFR, RELN, CACNA1C,
SHANK, and VDR (Wiśniowiecka-Kowalnik and Nowakowska,
2019; Wei et al., 2021). Study findings have shown several
chromosome regions, including one or more with susceptible
genes for autism (Monaco and Bailey, 2001). Moreover, several
studies have shown that prenatal, perinatal, and postnatal
environmental factors are associated with ASD (Gardener et al.,
2011). According to some reports, factors such as medications,
chemical exposures, parental age, nutrition, and prenatal
environment can account for up to 40%–50% of the variation in
ASD liability (Gaugler et al., 2014; Deng et al., 2015). ASD
development, however, may also be influenced by the interplay of
genetic and environmental factors, as suggested by Tordjman et al.
(2014) and Santos et al. (2022). For instance, oxidative stress may be
a potential mechanism in genetic disorders linked to ASD that
connect genetic and environmental factors. Fragile X messenger
ribonucleoprotein (FMRP), primarily involved in mRNA binding, is
absent in FXS due to a loss of FMR1 expression. As demonstrated in
FMR1-knockout mice, the lack of FMRP increases oxidative stress
(De Diego-Otero et al., 2009). Any chromosome or gene changes
that lead to an increase in oxidative stress could potentially be a
factor in the manifestation of a behavioral autistic phenotype. In
addition, the association of particulate matter with an aerodynamic
diameter of 10 μm or less (PM10) and cognitive neurodevelopment
has been found to be significantly mediated by DNAm; CpG sites
mapped several genes, including DYRK1A, which has shown lower
expression in South African ASD patients (Feil et al., 2023).

African populations are the most genetically varied in the world,
having three times more uncommon variants than in Europe and
East Asia (1,000 Genomes Project Consortium et al., 2012); they are

exploited to find genes linked to diseases (Gomez et al., 2014).
African genomes offer a unique resource for identifying new genetic
loci and for very effective genetic fine-mapping due to their extensive
genetic diversity and low linkage disequilibrium (Tishkoff and
Verrelli, 2003; Campbell and Tishkoff, 2008). Despite Africa’s
high human genome diversity, few genes or single nucleotide
polymorphisms (SNPs) of potential ASD risk genes have been
discovered in that population. This results from (i) no validated
tools available for the diagnosis of ASD in the African population,
(ii) genetic studies previously conducted in African countries used a
small sample size, or (iii) most studies not using high throughput
sequence technology for analysis like in the two Egyptian studies
(Salem et al., 2013; Abdelrahman et al., 2015).

The present scoping review aims to identify risk genes associated
with ASD in the African population, while other ASD-associated
genes reported from other populations but not yet identified in
Africa will also be discussed.

2 Methodology

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)
checklist was followed in this scoping review (Tricco et al., 2018).
The selection included studies conducted in Africa that reported
gene(s) or genetic variants associated with ASD, performed only on
human beings or human cells, published from 1 January 2000 to
29 February 2024 and published in English. In addition, we excluded
papers published as letters, in books, in gray literature, and reviews,
as well as papers for research conducted using data from online
databases. This scoping review followed Arksey and O’Malley’s
scoping framework that proposed six stages of conduct: 1)
specify the research question, 2) identify relevant literature, 3)
select studies, 4) map out the data, 5) summarize, synthesize, and
report the results, and 6) include expert consultation (Arksey and
O’Malley, 2005). Electronic research was performed to identify
relevant peer-reviewed articles mainly using the Wiley Online
Library and PubMed databases. In order to identify genetic
variants linked to ASD in Africa, the search approach included
multiple sets of broad search terms with “AND” in each database.
The search terms: “autism OR autistic OR Asperger Syndrome OR
pervasive developmental disorder” were first used. Second, a group
of search terms that combined important key terms, including
“genetic study OR sequencing OR genomic study OR case/
control study OR family-based study”, were employed. Lastly, a
search specified the region as “Africa” and the names of individual
African countries. We downloaded the details of all articles in the
data collection sheet and categorized studies into research themes
(genomic association studies, sequencing technology, and PCR-
based methodology) and countries where the studies
were conducted.

2.1 Article selection

Every research paper identified through the search strategy was
exported into collections. Two authors independently examined the
titles and abstracts of every article and then sequentially reviewed the
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full texts of all the articles identified for pertinent publications. The
data-charting involved two authors: using a standardized form, the
first author charted data from the selected publications, and the
second verified the charted data. Study features such as first author,
year of publication, country of study, population, sample size, age,
genes or genetic variants identified, study design, body tissue type for
sampling, and main findings were carefully extracted from every
selected paper. Consistent with the scoping review process, the
authors did not assess the selected publications for
methodological quality or risk of bias. However, some excluded
studies from the African continent were project theses. The
abstracted data are presented in Supplementary File S1.

3 Result

We initially found 605 papers, including 558 articles from the
Wiley Online Library and 47 articles from PubMed. Subsequently, we
removed 528 articles: five were duplicates, and the remaining
523 lacked the necessary information for being a genetic study
conducted in Africa, which is a key variable for this scoping
review. Among the 77 articles screened, 67 were deemed irrelevant

after screening their titles, abstracts, and full texts; they thus were
excluded from the study. Ten relevant articles from the Wiley Online
Library and PubMed were eventually included in this scoping review.

Additionally, 30 relevant articles identified by searching other
journals in the Africa Journal Online (AJOL) were included in the
study. There were no methodological issues that necessitated
excluding any related ASD genetic study from Africa in this
review. The 40 most pertinent articles (Supplementary File S1)
used as source documents for this review were selected through
these meticulous selection procedures, summarized in an adapted
PRISMA-ScR model shown in Figure 1.

A total of 61 genes were identified in the African population as
being responsible for ASD (Table 1). Among the 40 relevant studies,
Egyptian and South African ethnicities were the most studied
populations, appearing in 25 and 5 articles which represented 62.5%
and 12.5%, respectively. Additionally, Tunisia (four articles; 10%), the
East African population (Ethiopia, Eritrea, Kenya, and Somalia) (three
articles; 7.5%), and the populations of Libya, Nigeria, andMorocco (one
article each; 2.5%) (Table 2) were also studied. No other suitable
publications were found dealing with the remaining African
countries. Furthermore, 20 ASD risk genes identified in non-African
populations have not been confirmed/reported in Africa (Table 3).

FIGURE 1
Diagram of the study selection process.
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TABLE 1 List of ASD genes identified so far in Africa’s population.

NO Gene Country Study
design

Author Genetic implication

1 AADAT Egypt PCR method Higazi et al., 2021 Graves’ disease and thyroid disease

2 CACNA1C East Africa (Ethiopian,
Eritrea, and Kenya)

WGS Tuncay et al., 2023 Timothy syndrome features

3 CHD7 CHARGE syndrome

4 COMT Egypt PCR method Karam et al., 2013 Schizophrenia and ADHD

5 C4B Egypt PCR method Mostafa and Shehab
(2010)

Chronic hypertension, thromboses, and schizophrenia

6 DRD1 Egypt PCR method Azzam et al., 2018 Psychosis and schizophrenia

7 DRD2 A1+ Egypt PCR method Salem et al., 2013 Type 2 diabetes

8 DRD4 Egypt PCR-RFLP Kamal et al., 2015 ADHD

9 FEZF2 Morocco WES Bensaid et al., 2019 Uterine inversion and thymic dysplasia

10 FMR1 East Africa (Ethiopia,
Eritrea, and Kenya)

WEG Tuncay et al., 2023 ID and fragile X syndrome

11 GABA Egypt PCR method El-Ansary et al., 2021 Neurodevelopmental disorders and epilepsy

12 GSTM1 Egypt PCR method Said et al., 2021 Urinary system cancer and metastatic breast cancer

13 GSTT1 Egypt PCR method Said et al., 2021 Metastatic breast cancer and sickle cell disease

14 HAAO Egypt PCR method Higazi et al., 2021 Hypospadias

15 HLA-DRB1 Egypt PCR method Mostafa et al., 2012 Rheumatoid arthritis (RA)

16 HLA-DR4 Egypt PCR method El-Hossiny et al.
(2023)

Rheumatoid arthritis (RA)

17 HTR1A Egypt PCR method Yahya et al., 2019 Bipolar disorder

18 5-HTTLPR South Africa PCR method Arieff et al., 2010 Anxiety and depression

19 5-HTTLPRS Egypt PCR method Meguid et al., 2015 Anxiety and depression

20 5-HT2A Egypt PCR-RFLP Abdelrahman et al.
(2015)

Anxiety, depression, drug addiction, and schizophrenia

21 IL-1β-511 and IL-1RA Egypt PCR method Saad et al., 2020 Gastric cancer and osteoporotic fractures

22 IL-12 Egypt PCR method Ibrahim et al., 2015 Atherosclerosis and coronary artery disease

23 MAOA Egypt PCR method Higazi et al., 2021 Bipolar disorder, depression, and paranoid schizophrenia

24 PCDHAC1 East Africa (Ethiopia,
Eritrea, and Kenya)

WES Tuncay et al., 2023 Higher birth weight percentiles and larger newborn head
circumferences

25 Q6NUR6 Tunisia PCR method Bayou et al., 2010 ASD

26 RELN South Africa and Egypt PCR method Sharma et al., 2013,
Abdelhady
et al., 2022

Bipolar disease, schizophrenia, and autism

27 SATB2 Morocco WES Mounia et al., 2019 SAS

28 SBCADD East Africa (Somalia,
Eritrea, and Ethiopia

Sanger
sequencing

Oivind et al., 2007 Developmental delay

29 SHANK2 Ethiopia NGS Lu et al., 2018 Mild-to-moderate ID

30 SHANK3 Egypt PCR-RFLP Meguid et al., 2020 Moderate-to-severe ID, severely impaired speech,
schizophrenia, and mild dysmorphic features

31 TAMRTKs Egypt PCR method Mostafa et al., 2022 Glioblastoma multiforme

32 TBC1D8 Libya WES Zeglam and
Alhmadi, 2020

Independent prognosis factor for ovarian cancer

(Continued on following page)
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TABLE 1 (Continued) List of ASD genes identified so far in Africa’s population.

NO Gene Country Study
design

Author Genetic implication

33 TBR1 Morocco WES Mounia et al., 2019 NDD combining features of ASD, ID, and speech delay

34 TCF7L2 East Africa (Ethiopia,
Eritrea, and Kenya)

WGS Tuncay et al., 2023 Type 2 diabetes

35 TSHZ3 Morocco WES Mounia et al., 2019 Autism, cognitive disabilities, and language disturbance

36 VDR Egypt PCR-RFLP Arafa et al., 2021 Severity of autoimmune thyroid diseases; HT and GD

37 ERICH1 Tunisia aCGH
technology

Fethia et al., 2022> Adenoma risk

38 CELF4 Seizures and neuroticism

39 CHRFAM7A Schizophrenia and bipolar disease

40 FTHL17 Tumorigenesis

41 NEXMIF X-linked intellectual disability, ASD, and epilepsy

42 NLGN4X Intellectual disability, ASD, anxiety, and ADHD

43 PRKN Parkinson’s disease

44 SPN Tumor progression

45 SYCE3 Human infertility

46 UQCRC2 Lactic acidosis

Differential methylated genes

47 PGC-1α South Africa NGS Bam et al., 2021 Obesity, diabetes, neurodegeneration, and cardiomyopathy

48 STOML2 Pancreatic cancer

49 MFN2 Charcot–Marie–Tooth disease type 2A

50 FIS1 Diabetes

51 OPA1 Optic atrophy

52 GABPA Hepatocellular carcinoma and bladder cancer

53 AHI1 South Africa WG-
Methylation

Stathopoulos et al.
(2018)

Joubert syndrome and schizophrenia

54 GLRA2 X-linked neurodevelopmental disorders and high myopia

55 SETD5 ID, ASD, and KBG syndrome

56 MTR Cardiovascular diseases, breast and prostate cancer, birth
defects, and congenital anomalies

57 RTL Egypt PCR method Salem et al., 2023 KOS14 and TS14

58 LINE-1 Schizophrenia, bipolar disorder, and major depressive
disorder

59 PCCB South Africa Methylation
analysis

Stathopoulos et al.
(2020)

Propionic acidemia and biotinidase deficiency

60 PCDHA12 Developmental delay, movement disorder, epilepsy,
microcephaly, and visual impairment

61 De novo balanced (7; 16)
(p22.1; p16.2) translocation

Tunisia Cytogenetics and
FISH

Bayou et al. (2008) Numerous genomic tests for autism have found chromosome
16p, most likely home to an autism-susceptibility variation

aCGH, micro-array-based comparative genomic hybridization; NGS, next-generation sequencing; WG, whole genome; WES, whole-exome sequencing; ADHD; attention-deficit hyperactivity

disorder; ID, intellectual disability; KOS14, Kagami–Ogata syndrome; TS14, temple syndrome; HT, Hashimoto’s thyroiditis; GD, Graves’ disease; SAS, SATB2-associated syndrome.
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3.1 Genetic techniques adopted for
identifying genetic variants linked to ASD
in Africa

We categorized the research into three main themes based on
study design: GWAS (n = 0), sequencing-based technology (n = 7),
and PCR-based methods (n = 29) (Figure 2. However, the remaining

studies used other molecular biology techniques such as methylation
analysis (n = 1), hydride generation technique (n = 1), microarray-
based comparative genomic hybridization (aCGH) technology (n =
1), and cytogenetics and fluorescent in situ hybridization (FISH)
analysis (n = 1). It was shown that different genetic techniques were
performed for various studies, and numerous ASD-associated genes
were identified. In the African population, no gene was found that

TABLE 2 National distribution of identified genes associated with ASD in Africa.

Countries No. of studies % N0 of genes associated with ASD

Egypt 25 62.5% 24

South Africa 5 12.5% 14

Tunisia 4 10% 12

East Africa (Ethiopia, Eritrea, Kenya, and Somalia) 3 7.5% 6

Morocco 1 2.5% 4

Libya 1 2.5% 1

Nigeria 1 2.5% 0

TABLE 3 List of ASD genes identified in non-African populations yet to be confirmed/reported in Africa.

No. Gene Country Study design Author

1 ASMT China and Sweden WES and PCR method Wang et al., 2013; Jonson et al., 2014

2 CHD8 United States Sanger sequencing Bernier et al. (2014)

3 CNTNAP2 China and Brazil PCR method Li et al., 2010; Nascimento et al., 2015

4 DRD3 Netherlands and United Kingdom SNP genotyping De Krom et al. (2009)

5 EN2 China and India PCR method Wang et al., 2008, Sen et al., 2010

6 FOXP1 Taiwan and Canada PCR method and Sanger
sequencing

Chien et al., 2013; Hamdan et al., 2010

7 GABRB3 United States, United Kingdom, and
Taiwan

PCR method and Sanger
sequencing

Buxbaum et al., 2002; Warrier et al., 2013; Chen et al., 2014

8 GRIN2B China and Korea Sanger sequencing, PCR method Pan et al., 2014; Hee Jeong et al., 2012

9 HoxA1 United States and Italy Sanger sequencing and PCR
method

Ingram et al., 2000; Conciatori et al., 2004

10 SRRM4 Italy and Japan RNA sequencing and GWAS Irimia et al., 2014; Narita et al., 2020

11 MECP2 United States and China Sanger sequencing and WES Nagarajan et al., 2006; Wen et al., 2017

12 MET United States and Italy PCR method Campbell et al., 2009; Jackson et al., 2009

13 NLGN3 China and Italy Sanger sequencing and WES Xu et al., 2014; Oleari et al., 2023

14 NLGN4 France, Bulgaria, and Japan PCR and sequencing Laumonnier et al., 2004; Avdjieva-Tzavella et al., 2012; Toya et al.,
2023

15 NRXN1 United States and China GWAS and array CGH sequencing Liu et al., 2012; Liu et al., 2012; Griswold et al., 2015

16 OXTR China and United Kingdom SNP genotyping Wu et al., 2005; Di Napoli et al., 2014

17 PTCHD1 European, Caucasian Sequencing Torrico et al., 2014

18 PTEN France, and United States WES Buxbaum et al., 2007, O’Roak et al., 2012

19 SLC25A12 United States and Finland SNP genotyping Ramoz et al., 2004, Joni et al., 2008

20 SYNGAP1 Canada Sanger sequencing Hamdan et al., 2011, Berryer et al., 2013

Frontiers in Genetics frontiersin.org06

Hakizimana et al. 10.3389/fgene.2024.1431093

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1431093


utilized GWAS; 26 genes were identified using a PCR-based method,
22 genes, including 10 differentially methylated, were discovered
using sequencing technologies, and 12 were found through other
techniques. Except for GWAS, most research methods used globally
for genetic studies on ASD have been applied in Africa. Our findings
demonstrate that numerous genetic variations could contribute to
the underlying genetic basis of ASD in African communities.

3.1.1 Genome-wide association studies
Several developed countries have employed the GWAS

technique to discover common and rare variants linked to ASD.
However, no single GWAS research study was performed for the
African population among our retrieved data.

3.1.2 Sequencing technologies
Seven studies used sequencing technologies and identified

12 genes associated with ASD in the African population:
CACNA1C, CHD7, FEZF2, FMR1, PCDHAC1, SATB2, SBCADD,
SHANK2, TBC1D8, TBR1, TCF7L2, and TSHZ3. In addition,
10 differentially methylated genes—AHI1, FIS1, GABPA, GLRA2,
MFN2, MTR, OPA1, PGC-1α, SETD5, and STOML2—were
identified as linked to ASD by these technologies. A number of
potentially pathogenic variations in known ASD genes—CACNA1C,
CHD7, FMR1, TCF7L2, and PCDHAC1—were found to be novel
autism susceptibility genes using whole genome sequencing (WGS)
on an East African cohort to investigate the genetics of ASD (Tuncay
et al., 2023). The results from this study suggested a higher
prevalence of ASD in East African children and demonstrated
the value of admixture analysis and African genetic diversity in
understanding the etiology of complex disorders.

Several studies using next-generation sequencing (NGS) and
identifying DNA methylation as causing ASD have been conducted
in South Africa. Whole-genome DNA methylation screening
showed that GLRA2 and AHI were differentially methylated in
children with ASD from South Africa (Stathopoulos et al., 2020).
Moreover, it was shown that the DNA methylation-related genes
SETD5 and MTR were differentially methylated, linking them to
ASD (Stathopoulos et al., 2018). Several genes including, PGC-1α,
STOML2, MFN2, FIS1, OPA1 and GABPA, have different levels of

methylation related to mitochondrial biogenesis, fission, and fusion
in ASD, according to next-generation bisulfite sequencing
technology (p < 0.05) (Bam et al., 2021). Furthermore, this South
African study showed the correlation between methylation at PGC-
1α and metabolomic evidence of mitochondrial malfunction. The
results of another South African ASD cohort showed that
methylation levels of case and control for PCCB and PCDHA12
varied widely from 9%–49% and 0%–54%, respectively. Further
evidence that DNAmethylation is a crucial epigenetic component in
the pathogenesis of ASD comes from the hypothesis that the
differentially methylated genes linked to ASD in this cohort have
a functional role in mitochondrial homeostasis and dysregulation.

A previous study showed a mutation in the SBCADD gene
among people originating from Somalia and Eritrea. This finding
was repeated in a four-year-old autistic Somali boy (Kanavin et al.,
2007), suggesting that this mutation is relatively common in this
demographic.

3.1.3 PCR-based methods
A total of 29 ASD genetic studies in Africa were conducted using

PCR-based approaches such as polymerase chain
reaction–restriction fragment length polymorphism (PCR-RFLP)
and real-time PCR. However, these methods identified 26 genes:
AADAT, C4B, COMT Val58Met, DRD1, DRD2A1+, DRD4, GABA,
GSTM1, GSTT1, HAAO, HLA-DRB1, HLA-DR4, HTR1A, 5-
HTTLPR, 5-HTTLPRS, 5-HT2A, IL-1β-511 and IL-1RA, IL-12,
LINE-1, MAOA, Q6NUR6, RELN (rs2229864), RTL, SHANK3,
TAMRTKS, and VDR. The first study that used sequencing in
Africa was conducted in the Egyptian population, linking the
DRD1 (rs453) variant to autism (Azzam et al., 2018). The COMT
Val58Met polymorphism and ASD in Egyptian young people were
also linked (Karam et al., 2013). A case-control study performed by
Egyptian researchers revealed strong evidence that the DRD4 7/
7 allele could be associated with an increased risk of autism (Kamal
et al., 2015).

Additionally, three genes involved in the tryptophan metabolic
pathways—MAOA,HAAO, andAADAT—were found to have lower
expression levels in patients with ASD, which was correlated with
the severity of autism in a comparison between children with ASD,

FIGURE 2
Selected articles on the association of genetic factors and ASD by study design.
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learning-disabled children, and healthy controls (Higazi et al., 2021).
The DRD2 A1+ genotype enhanced autism risk in Egypt’s autistic
community according to a study on the relationship between autism
and genetic variants in several neurotransmitter-related genes such
asMAOA,MAOB rs1799836, and DRD2. SNPs and/or mutations in
miR-21 or miR-431 were not found in the patients enrolled in the
study (Salem et al., 2013). A genetic study conducted on Tunisian
people with ASD reported an increase of Q6NUR6 gene expression
in blood (Bayou et al., 2010), which might be linked to the cause of
ASD in those populations.

The results of numerous investigations point to a correlation
between complex diseases brought on by genetic variants and
variations in serum protein levels in solid tissues and biofluids.
Genetic effects on serum proteins may provide new perspectives on
the mechanisms behind the genetics of common diseases and
significant characteristics. These new perspectives could help us
understand the genetics of prevalent diseases and their key
characteristics. Based on the analysis of TAMRTKs blood levels
in a sample of Egyptian children with autism, the findings revealed
that their levels were upregulated and had strong positive
associations with the severity of the condition (Mostafa et al.,
2022). In addition, the results of the study supported the
immunological etiology of ASD by demonstrating that Egyptian
children with ASD had an immunological impairment in the form of
an elevated serum level of IL-12, which was positively linked with the
severity of autistic symptoms (Ibrahim et al., 2015).

ASD in Egyptian children was found to be associated with
abnormally elevated serum levels of IL-1β and IL-1RA, and
polymorphisms in the IL-1β-511 and IL-1RA genotype variants
may influence the risk of ASD and be used as potential biomarkers of
the disorder. These findings were strongly linked to the severity of
autism and behavioral impairments (Saad et al., 2020). Evaluation of
the possible involvement of RTL and LINE-1 methylation as
biomarkers for autism revealed a substantial lower level of
methylation than controls in Egyptian autistic patients with p <
0.001 (Salem and Ashaat, 2023). RTL and LINE-1 methylation
percentages can both be used as biomarkers for autism. Mostafa
and Shehab (2010) suggested that C4B null allele autoimmunity in
Egyptian autistic people may be related to the C4B null allele. In the
Egyptian ASD population, GABAerigic malfunction was shown to
increase apoptosis. As a result, neuronal excitement and an
imbalance in the inhibitory system can be connected to GABA
synaptopathies and their linkage to apoptosis, which can be used as
trustworthy potential biomarkers for autism (El-Ansary et al., 2021).
It is interesting to note that all South African autistic ethnic
groupings have shown a highly meaningful correlation with the
*S/*S variant of 5-HTTLPR (Arieff et al., 2010). Furthermore, the 5-
HTTLPRS allele S allele significantly increased in Egyptian autistic
children (Meguid et al., 2015). The expression of the HTR1A gene
was shown as a potential candidate gene for ASD-related pathways
in an explored sample of the Egyptian population (Yahya et al.,
2019). Moreover, the 5-HT2A receptor may be involved in the
development of ASD, according to a study on Egyptian children with
autism (Abdelrahman et al., 2015).

The role of the RELN gene in autism has been elucidated by
many discoveries of reduced levels of the reelin protein in the brain
and plasma in patients with autism. Evidence first indicated that
RELN rs736707 may play a role in autism in South African

populations (Sharma et al., 2013). Recently, RELN gene
polymorphism (rs2229864) has been reported as a possible
contributing factor for ASD genetic susceptibility and severity in
Egyptians (Abdelhady et al., 2022). Two different studies were
conducted in Egyptian children with autism on HLA allele. One
study found that there was a considerable probability that the HLA-
DRB1 allele would be linked to a family history of autoimmunity
(Mostafa et al., 2013). The HLA-DR4 alleles have been also linked to
autism, according to another study conducted in Egypt (El-Hossiny
et al., 2023). Children with ASD in Egypt have been shown to have
SHANK3 copy number variations, and the variation in SHANK3
copy number revealed the function of SHANK3 in the ASD etiology
(Meguid et al., 2020). One potential mechanism underpinning the
etiology of ASD is gene–environment interaction. The most
common type of null GSTM1 and GSTT1 genotypes in ASD were
reported in a gene-environment interaction Egyptian study. That
genotype may make autistic children more susceptible to reduced
antioxidant status (GST enzyme activity), which could result in
improper aluminum detoxification (Said et al., 2021).

Even though most of the results from genetics studies showed a
positive association with ASD, some studies have a negative
association with autism in the African population. A PCR-
amplified DNA MTHFR gene assay revealed that the
homozygous 677TT genotype was found in 23% of the children
with ASD, whereas the heterozygous 677CT genotype was found in
56% of the ASD group in an Egyptian study on the MTHFR C677T
polymorphism. Despite the fact that the 677CT variant alleles were
increased in autistic patients, it is doubtful that these alleles cause the
wide range of symptoms associated with autism (Shawky et al.,
2014). Another Egyptian study analyzed a functional polymorphism
of the HFE gene and SLC40A1, and the results highlighted the rarity
of this functional polymorphism (Gebril and Meguid, 2011; Na and
Oh, 2014). The study of two genes, HoxA1 and HoxB1, appeared to
be implicated in the development of autism in various groups.
Nevertheless, a study could not find a statistically significant link
between the prevalence of autistic children in Egypt and the
variations of these two genes (Sheikh et al., 2007). ASD patients
have considerably lower levels of reduced glutathione, according to
an evaluation of the serum levels of oxidative stress indicators and an
analysis of genetic variants of glutathione S-transferase related with
autism for children with autism in Nigeria. However, in this study,
the distribution of the three polymorphisms GST1, GSTM1, and
GSTP1 was not linked to autism (Oshodi et al., 2017).

3.1.4 Other molecular biology techniques
A total of 12 genes was identified through methylation analysis

and microarray-based comparative genomic hybridization (aCGH):
CELF4, CHRFAM7A, ERICH1, FTHL17,NEXMIF, NLGN4X, PCCB,
PCDHA12, PRKN, SPN, SYCE3, UQCRC2 and one de novo balanced
(7; 16) (p22.1; p16.2) chromosomal aberration by cytogenetics and
fluorescent in situ hybridization (FISH). Through methylation
analysis, the results from the South African ASD cohort, both
case and control PCCB and PCDHA12, had methylation levels
that ranged widely: 9%–49% and 0%–54%, respectively. The
PCCB revealed three CpG loci that were differently methylated
with p ≤ 0.05; however, PCDHA12 revealed two CpG sites with a
significant difference between ASD and control (p ≤ 0.001)
(Stathopoulos et al., 2020). In addition, lead, aluminum, and
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mercury were found at a higher concentrations in the hair of autistic
children than in control children. Autism may be caused by
exposure to these harmful heavy metals in the environment at
critical developmental stages, as shown in the Egyptian study that
used the hydride generation technique (Mohamed et al., 2015). The
aCGH technology presented high pathogenicity scores in numerous
genes, such as PRKN, CHRFAM7A, SYCE3, UQCRC2, SPN,
FTHL17, NLGN4X, ERICH1, NEXMIF, and CELF4, in Tunisia
children with ASD (Chehbani et al., 2022), and were pathogenic/
likely pathogenic to ASD, as showed in this cohort study. A case
report in Tunisia showed particular chromosomal abnormality in a
person with autism, with de novo balanced (7; 16) (p22.1; p16.2)
translocation (Bayou et al., 2008).

4 Discussion

ASD can be caused by both inherited and de novo gene
mutations due to its extreme genetic heterogeneity. A staggering
number of newly emerging mutations linked to ASD have been
discovered due to advances in human genetics and sequencing
technologies. The genetic causes of ASD are now better
understood because of recent large-scale multinational research
projects. To date, there are more than 100 genes linked to autism
(Sanders et al., 2015; Grove et al., 2019; Forrest and Penzes, 2020).
However, this study has found 61 genes associated with ASD in the
African population. ASD-causing genes were found in nine
African countries.

The majority of the studies were conducted in Egypt and South-
Africa, as their governments acknowledge the importance of science
and research in improving people’s standard of living and generating
income for their citizens (Hardy et al., 2008; Bond et al., 2012). This
has enabled them to establish genetic and genomic facilities while
other countries lack an enabling environment for genomic studies,
have scarce or no funding, and have complicating political contexts
(Omotoso et al., 2022).

Except for GWAS, most research methods used globally for
genetic studies on ASD have been applied in Africa. Our findings
demonstrate that numerous genetic variations may play a role in the
genetic basis of ASD in the African population. Study findings have
shown that several chromosomal regions include one or more
susceptibility genes for autism (Monaco and Bailey, 2001).

4.1 Advances in genomics for ASD analysis

The quest for the genes underlying prevalent human diseases
and associated quantitative features is being revolutionized by
GWAS. This method combines a thorough and objective
examination of the genome with the capability of finding
common alleles with few phenotypic effects (Hirschhorn and
Daly, 2005). The effectiveness of this technique depends on the
underlying impact sizes carried by the genuine risk variations as well
as the statistical power to detect these effects given the sample size
and study design. Common genetic variation accounts for around
half of ASD genetic risk (Glasson et al., 2004), making GWAS an
effective method for locating risk variants. Many loci linked to ASD
have been discovered in non-African population using GWAS.

Increased number of SNPs (iPSYCH-SSI-Broad Autism Group
et al., 2016; Grove et al., 2019) and other types of variation (such
as copy number variations and rare structural variants) (De La
Torre-Ubieta et al., 2016) that are linked to ASD have been found
during the past 10 years through GWAS. According to a meta-
analysis of GWAS, there is a strong genetic correlation between ASD
and a number of genes relevant to neurodevelopment, including
EXT1, ASTN2, MACROD2, and HDAC4 (Anney et al., 2017). In
addition, it has been shown through GWAS that traits resembling
autism are associated with numerous immune-related genes such as
RNF114, CDKN2A, KAZN, SPATA2, and ZNF816A (Arenella et al.,
2022). However, GWAS must have a sample size with enough
statistical power to identify the genes responsible for human
complex disorders (Baranger et al., 2023). Thus, care must be
taken in study design, execution, analysis, and interpretation to
minimize the drawbacks of this strategy.

Most studies have focused on populations from the
United States, Europe, and Asia, and there is little information
regarding the genetic composition of ASD across Africa. This
scoping review notes that no gene has been found in the African
population using GWAS. According to the African Genome
Variation Project, the population of Ethiopia has the highest
percentage of unique and private genomic diversity in all of
Africa, accounting for about 24% of genomic variants (Gurdasani
et al., 2015). It represents the highest prevalence of ASD for an East
African population (Barnevik-Olsson et al., 2008; Magnusson et al.,
2012). Although the prevalence rate of ASD is higher in East African
populations than the rest of the globe, no prevalence study has been
carried out in East Africa’s nations. Numerous studies carried out in
Europe for immigrant populations highlight a higher frequency of
ASD among offspring born to parents from East Africa (Barnevik-
Olsson et al., 2008; Magnusson et al., 2012). Thus, large-scale GWAS
studies are required in Africa to uncover many genetic variants
linked to ASD because the continent still retains much of the
diversity found in the human genome. Understanding common
biological processes that influence health and disease in all groups
will result from identifying genetic variations in African
populations.

The use of sequencing technology for disease-causing gene
mutation discovery has the advantage of emphasizing the
importance of this discovery for proper patient management and
family counseling (Lohmann and Klein, 2014). The patient’s entire
exome or genome may be precisely analyzed using next-generation
sequencing and can be found in a single experiment (Gupta and
Verma, 2019). Sequencing technology is especially well-suited for
studying the genetics of heterogeneous traits like ASD; it has
discovered a meaningful number of arising mutations linked to
ASD. The ability of next-generation sequencing to find risk-
mediating variations in single families or small cohorts of ASD
patients was demonstrated in a number of early studies (O’Roak
et al., 2012; Sanders et al., 2012). To discover ASD risk genes in the
coding regions of human DNA and search for de novo mutations
from various populations, several researchers have utilized a variety
of sequencing methodologies, such as whole genome sequencing
(WGS) and whole exome sequencing (WES) (Michaelson et al.,
2012; Neale et al., 2012). Although sequencing technology has only
recently been adopted in several African nations, it has allowed
researchers to identify numerous genes associated with ASD.
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Common and rare variants of the voltage-gated calcium channel
gene CACNA1C have been associated with autism and
neurodevelopmental disorders, including schizophrenia, bipolar
disorder, and attention deficit hyperactivity disorder (ADHD)
(Buddell et al., 2019). FMR1, the gene linked to fragile X
syndrome (FXS), is located on chromosome X, and an unstable
CGG repeat in the 5’ untranslated region of the gene prevents FMR1
from functioning properly, resulting in FXS. One of the primary
gene regulators in the central nervous system (CNS) is FMRP, the
protein that results from FMR1. It has been discovered that
individuals with ASD who do not have FXS have defective
multiple FMRP-regulated pathways (Fyke and Velinov, 2021).
The two most commonly identified mutations in ASD patients,
CACNA1C and FMR1 (Tuncay et al., 2023), were also found in the
East African population. A CHD7 intronic variant causes some
important genes linked to neural developmental disorders to
become dysregulated; this effect is comparable to that brought on
by gene deletion (Zhang et al., 2021). The CHD7 intronic variation is
potentially an autism susceptibility locus within the Chinese ASD
population (Zhang et al., 2021) and has also been identified in the
East African cohort (Tuncay et al., 2023).

In addition, a mediator of canonical Wnt signaling, TCF7L2, is
recognized to be crucial for the development of the central nervous
system (CNS). Heterozygous de novo mutations in TCF7L2 exhibit
neurodevelopmental symptoms (Dias et al., 2021). Previously,
TCF7L2 reported in non-African populations (Dias et al., 2021)
was also found in East Africa (Tuncay et al., 2023). Protocadherin α
(PCDHA) is involved in serotonergic innervation of the brain and
synaptic specificity (Katori et al., 2009), making it a good candidate
gene for autism. Strong genetic evidence has been reported of the
possible role of PCDHA as an autism candidate gene in the Japanese
population (Anitha et al., 2013), and the mutation in one PCDHA
family gene, PCDHAC1, was also found in East Africa (Tuncay et al.,
2023). A 2-methylbutyryl-CoA dehydrogenase deficit, sometimes
referred to as “short/branched chain acyl-CoA dehydrogenase
deficiency” (SBCADD), is caused by a malfunction in the
breakdown process of the amino acid L-isoleucine. Isoleucine is
oxidized and used as fuel in the brain. Two cases from Somalia and
Eritrea displayed mutated SBCADD gene (Kanavin et al., 2007).
Major transcription factors encoded by FEZF2 modulate neuron
location and identity. FEZF2 and ASD have been genetically linked
in two sizable European ancestry cohorts, and this relationship has
been confirmed in two more cohorts (Wang et al., 2009).
Interestingly, the FEZF2 gene was also found in the Moroccan
population (Bensaid et al., 2019).

The scaffolding proteins found in glutamatergic synapses’
postsynaptic density (PSD) encoded by the SHANK2 and
SHANK3 genes, and de novo SHANK2 deletions confirmed in
Caucasian ancestry ASD patients (Leblond et al., 2012), were also
reported in a patient of Ethiopian ancestry (Lu et al., 2018).
Furthermore, SHANK3 deletion was found in Chinese people
with ASD through a genome-wide copy number variation
analysis (Guo et al., 2017); SHANK3 dose contributes to the
pathogenesis of ASD for Egyptian autistic children (Meguid
et al., 2020). There is mounting proof that DNA methylation
influences ASD characteristics. Retinal degeneration and
progressive renal failure are potential outcomes of
AHI1 mutations (Parisi et al., 2006), and GLRA2 was found to

be a new gene that causes high myopia (Tian et al., 2023). Through
whole-genome DNA methylation screening, AHI1 and GLRA2
genes were differentially methylated in a South African cohort
with ASD (Stathopoulos et al., 2018), and a United States study
provided evidence for an associated haplotype in AHI1 with ASD
(Alvarez Retuerto et al., 2008). Moreover, GLRA2 was reported in
autistic people from France (Pilorge et al., 2016). The ubiquitin-
proteasome pathway that may be responsible for the downregulation
of SET domain-containing 5 (SETD5) is often overactive and
mutated in human NDDs as well as cancer (Li et al., 2023). The
ASD-linked genes SETD5 (Grozeva et al., 2014) andMTR (Muratore
et al., 2013), which are directly involved in DNA methylation, were
differentially methylated in the ASD South African population
(Stathopoulos et al., 2018). Peroxisome proliferator-activated
receptor-γcoactivator (PGC-1α) is involved in remodeling muscle
tissue into a fiber-like composition, and it increases mitochondrial
biogenesis (Liang and Ward, 2006). The differential methylation of
the PGC-1α gene was reported in the ASD South-African population
(Bam et al., 2021), and a Chinese Han study also suggested that the
SIRT1/PGC-1α signaling pathway has a crucial function in patients
with ASD (Bu et al., 2017). In addition, the optic atrophy 1 (OPA1)
gene, involved in mitochondrial fusion, works in conjunction with
stomatin-like protein 2 (STOML2) (Tondera et al., 2009). Study
results for those two genes in a South African population with ASD
showed that the OPA1 and STOML2 genes were significantly
differentially methylated, which may implicate their contribution
in ASD etiology (Bam et al., 2021). Furthermore, in a Chilean study,
autistic children had significantly higher levels of mtDNA in their
oral mucosa, and there was an expression ofMFN2, FIS1, and OPA1
involved in the fission/fusion processes of mitochondria (Carrasco
et al., 2019). Several co-occurring symptoms linked to SATB2 gene
variations have led to identifying a single clinically recognized
syndrome known as SATB2-associated syndrome (SAS) (Döcker
et al., 2014). There was a decreased metabolic response to
tryptophan for SAS patients from United States, and that has
been associated with ASD (Boccuto et al., 2013). The SATB2
gene has also been found in Moroccan people (Bensaid et al.,
2019). Furthermore, TSHZ3 encoding the zinc-finger
homeodomain transcription factor TSHZ3 that was found in
networks of human neocortical genes is strongly expressed
throughout late fetal development and is implicated in
neurodevelopmental and neuropsychiatric diseases (Caubit et al.,
2016; Li M. et al., 2018). This gene linked to ASD in a Moroccan
study (Bensaid et al., 2019) was identified as one of the ASD-related
genes differently expressed in the brain in a Chinese study (Li et al.,
2020). Additionally, TBR1, a T-box transcription factor (TF)
essential for controlling cortical development (Han et al., 2011),
previously reported as ASD risk contributing mutation (O’Roak
et al., 2012) in a United States study, was also identified in Moroccan
ASD families (Bensaid et al., 2019). Protein coding gene
TBC1 domain family member 8 (TBC1D8) is a new ASD gene
found in Libyan siblings with ASD (Zeglam and Alhmadi, 2020) but
not reported in any other populations.

Re-sequencing the complete genome in patients and controls to
look for a variant or group of variants enriched or depleted in disease
cases yields the most thorough study of candidate genes. However,
because such research is still time-consuming and expensive, it has
mostly focused on the coding areas of a small number of potential
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genes. In addition to revealing complex inheritance patterns, such as
the inheritance of two autosomal recessive gene mutations in the
same patient and family, the use of sequencing technology for
disease-causing gene mutation discovery has the advantage of
emphasizing the importance of this discovery for proper patient
management and family counseling (Lohmann and Klein, 2014).
The patient’s entire exome or genome may be precisely analyzed
using next-generation sequencing, and single nucleotide variations
can be found in a single experiment (Gupta and Verma, 2019). As
the most advanced molecular approach available today, PCR
technology has a wide range of present and future therapeutic
uses, including pathogen detection, assessment of emerging novel
infections, surveillance, early detection of biothreat agents, and
antibiotic resistance profiling (Yang and Rothman, 2004). PCR is
used by a variety of researchers to analyze mutations that arise in
many genetic disorders (Reiss and Cooper, 1990). PCR-based
methods were mostly adopted in Africa for studying the genetic
etiology of ASD. The reelin gene (RELN) plays a key role in the
brain’s regulation of neuronal migration, synaptogenesis, and
synaptic plasticity. Therefore, the RELN signaling pathway has
been linked to a number of neurological conditions in humans,
including mental retardation, ASD, and schizophrenia (Jossin,
2020). Two different RELN SNPs previously linked to ASD in
non-African population were also identified in Africa. One RELN
SNP, rs736707, discovered to be significantly linked to ASD in Asian
groups (Chen et al., 2017), was reported as an ASD risk factor for the
South African population (Sharma et al., 2013). Another RELN SNP,
rs2229864, associated with the genetic predisposition for ASD in the
Chinese Han population (Wang et al., 2018), was also found to be
related to ASD in Egyptian children (Abdelhady et al., 2022). Brain
serotonin (5-HT) is widely recognized to be involved in the
regulation of both normal and abnormal behavior (Blier and
Ward, 2003; Ögren et al., 2008). Numerous studies have
suggested that the neurobiological process underlying ASD is
likely to involve function-impairing polymorphisms of the 5-HT
system, including 5-HTTLPR, 5-HTR1A, and 5-HTR2A (Chugani,
2002; Richardson-Jones et al., 2010). Strong associations have been
found between the 5-HTTLPR polymorphism and various autistic
populations worldwide, according to numerous case-control studies.
In a United States study, a significant relationship was found
between ASD and the serotonin transporter gene promotor
polymorphism (5-HTTLPR) (Brune et al., 2006), and was also
found in all ASD patients in South Africa (Arieff et al., 2010).
Moreover, the 5-HTTLPRS allele was significantly increased in
Egyptian autistic children (Meguid et al., 2015). Nevertheless, an
association between the 5-HTTLPR polymorphism and autism has
not been found by a meta-analysis (Wang et al., 2019). Moreover,
theHT2A gene reported in the Croatian (Hranilovic et al., 2010) and
Korean (Cho et al., 2007) populations was also shown in Egyptian
autistic children (Abdelrahman et al., 2015). The steroid hormone
vitamin D is well known for its function in neuronal growth and
neuroprotection. Consequently, deficiencies in the vitamin D
pathway might contribute to the development of ASD (Zhang
et al., 2018). It has been demonstrated that some VDR gene
polymorphisms, particularly rs731276, are a risk factor for
childhood ASD in the Chinese Han community (Zhang et al.,
2018) and are linked to ASD in the Egyptian population (Arafa
et al., 2021).

Autoimmunity and various autoimmune disorders may be
influenced by complement (C) 4B null alleles, which result in
low levels of C4B protein. The C4B null allele had a high risk of
association with autism, and there is a connection between the C4B
null allele and a family history of autoimmunity (Mostafa and
Shehab, 2010). Therefore, autoimmunity in Egyptian patients
with ASD may be significantly influenced by the C4B null allele
(Mostafa and Shehab, 2010), and the US study’s findings indicate
that this allele is significantly linked to an increased risk of autism
(Odell et al., 2005). The tryptophan metabolism-related genes such
as aminoadipate aminotransferase (AADAT), 3-
hydroxyanthranilate oxygenase (HAAO), and monoamine
oxygenase A (MAOA) were found in children with ASD in Egypt
(Higazi et al., 2021). Interestingly, de novo missense mutation in
AADAT found in Chinese families with ASD (Li S.-J. et al., 2018) was
suggested as the basic etiology of ASD for those families. ASD
patients in the United States have shown decreased expression levels
of the genes AADAT, HAAO, and MAOA (Boccuto et al., 2013). In
addition, the enzyme catechol-O-methyltransferase (COMT) has
been linked to aberrant dopaminergic activity, suggesting that this
gene may be involved in the etiology of ASD (Esmaiel et al., 2020).
The COMT variant is linked to hyperactivity symptoms in Egyptian
children with ASD (Karam et al., 2013), and findings from a
United States study suggested that the ASD phenotype may be
influenced by the COMT gene (Radoeva et al., 2014).

Dopamine is crucial for maintaining appropriate attention.
Hence, research has examined the dopaminergic system’s genes,
particularly concerning attention problems. The DRD1 and DRD2
genes were identified in Egyptian ASD autistic patients (Salem et al.,
2013; Azzam et al., 2018), and according to the results from an
Italian study, both DRD1 and DRD2 receptor SNPs may be regarded
as possible risk factors for ASD (Mariggiò et al., 2021). The human
dopamine receptor D4 (DRD4) gene, found on chromosome 11p
close to the telomere, has an unusually high level of expressed
polymorphism. A clinically higher risk for autistic symptomsmay be
associated with the DRD4 7-repeat allele (Reiersen and Todorov,
2011) according to US findings from Missouri-born twins study,
which are similar to the findings of another Egyptian study (Kamal
et al., 2015). In the adult human brain, gamma-aminobutyric acid
(GABA) is the main inhibitory neurotransmitter. Several
neuropsychiatric disorders, including, anxiety, epilepsy, and
learning disabilities, have all been linked to GABAergic
dysfunction (Coghlan et al., 2012). In a US study, autistic
children exhibited considerably lower levels of sensorimotor
GABA than healthy controls (Puts et al., 2017), and that was also
found in an Egyptian study (El-Ansary et al., 2021). HLA proteins
are involved in the development of the central nervous system
(CNS), cerebral hemisphere specialization, synaptic function, and
neural cell interactions (Torres et al., 2012), and several HLA alleles,
including HLA-DRB1 alleles, are linked to ASD (Polleux and
Lauder, 2004). Findings from a Han Chinese study suggest that
theHLA-DRB1 gene is linked to ASD (Chien et al., 2012), which has
been reported in Egypt (Mostafa et al., 2013). Furthermore, a US
study suggested thatHLA-DR4 is linked to ASD (Torres et al., 2002),
where autistic patients demonstrated high HLA DR4 allele
frequency, and an Egyptian study has also reported such results
(El-Hossiny et al., 2023). In addition, long interspersed nucleotide
element-1 (LINE-1) is a type of non-long terminal repeat
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retrotransposon that has been linked to disorders including ASD
due to aberrant DNAm (Saeliw et al., 2018). LINE-1 methylation
was shown to be substantially lower in lymphoblastoid cell lines
from ASD patients in Italy (Tangsuwansri et al., 2018), and a recent
study in Egypt has reported similar results (Salem and Ashaat, 2023).
Furthermore, the gene retrotransposon Gag-like 1 (RTL1), a
paternally expressed gene, is crucial for placenta maintenance
(Sekita et al., 2008). The RTL gene also reported in this study
was found in the Iranian population, and the findings showed a
sexually dimorphic pattern of RTL in children with ASD (Panahi
et al., 2023).

Microarray-based comparative genomic hybridization aCGH
technology performed on Tunisian children diagnosed with ASD
has reported numerous pathogenic or likely pathogenic variants
such as CELF4, CHRFAM7A, ERICH1, FTHL17, NEXMIF,
NLGN4X, PRKN, SPN, SYCE3, and UQCRC2 (Chehbani et al.,
2022). Several of these were reported to be associated with ASD
worldwide, such as both CELF4 and CHRFAM7A in Italy (Bacchelli
et al., 2015; Barone et al., 2017), NEXMIF in Switzerland (Lambert
et al., 2018), and both NLGN4X and UQCRC2 in China (Yu et al.,
2011; Shen et al., 2019). The ASD etiology is thought to be caused by
epigenetic processes like DNA methylation, RNA interference, and
chromatin alteration (Tremblay and Jiang, 2019). The methylation-
dependent regulation of transcription has become an intriguing
theory for the etiology of ASD because of next-generation
sequencing and the identification of DNA alterations. The PCCB
gene mutations found in ASD patients in Belgium (Witters et al.,
2016) were differentially hypomethylated in South-Africa patients
affected with ASD (Stathopoulos et al., 2020). Another gene,
PCDHA12, reported in that South African study was also studied
in Japan, providing strong genetic evidence that PCDHA12may be a
viable candidate gene for autism (Anitha et al., 2013). Moreover,
genetic and environment interactions have also been identified as
potential factors contributing to ASD. Many hazardous metals must
be detoxified, and glutathione-S-transferase (GST) genes and
associated enzymes are essential. The study findings imply that
among Jamaican children with ASD, the existence of active versions
of the GSTT1 and GSTM1 genes may be linked to a higher ability for
lead (Pb) detoxification (Rahbar et al., 2022), and an Egyptian study
also found that the most prevalent genotype associated with ASD,
null GSTM1 and GSTT1, may predispose ASD children to a lower
antioxidant status (Said et al., 2021), which can ultimately result in
improper aluminum detoxification. There is significantly more
aluminum in the hair of children diagnosed with ASD, and the
development of autism in these children may be significantly
influenced by oxidative indicators that result in oxidative damage
(Said et al., 2021). However, a Nigerian study reported opposite
results on GST genes by discovering that although ASD patients had
significantly lower levels of reduced glutathione, there was no
correlation between ASD and the distribution of the GSTT1,
GSTM1, or GSTP1 polymorphisms (Oshodi et al., 2017).
Furthermore, the limited sample size made it difficult to
generalize these findings to the whole population. Large sample
sizes are typically required in case-control studies to detect such
effects because common diseases are caused by complicated
interactions among several genetic variations and environmental
risk factors (Moonesinghe et al., 2008). In addition, several other
genes such as DISC1, GABRB3, GSTP1, HFE, HOXA1/HOXB1,

SLC40A1, and MTHFR 677C>T were unrelated to risk of ASD in
Africa. Numerous chromosomal abnormalities, both balanced and
unbalanced, have been linked to autism (Wassink et al., 2001; The
Autism Genome Project Consortium, 2007), and de novo balanced
(7; 16) (p22.1; p16.2) translocation was reported in a Tunisian male
patient with autism (Bayou et al., 2008). According to our findings, a
total of 12 genes associated with ASD in Africa—ERICH1, FTHL17,
GABPA, IL-1β-511 and IL-1RA, IL-12, PRKN, Q6NUR6, SPN,
STOML2, SYCE3, TAMRTKS, and TBC1D8—were not identified
in non-African populations.

On other hand, 20 ASD genes, each reported at least in two
population studies, were identified in non-African populations that
are yet to be confirmed/reported in Africa, perhaps because
molecular research on ASD has continually underrepresented
African populations, and the majority of current research on
ASD is carried out in high-income countries (Frickel et al.,
2023). Acetylserotonin methyltransferase (ASMT), a component
of the final stage of melatonin production, was reported in China
(Wang et al., 2013; Jonsson et al., 2014). The chromodomain helicase
DNA binding protein 8 (CHD8) interacting with beta-catenin for
chromatin remodeling (Bernier et al., 2014) was reported in the
United States. Contactin-associated protein-like 2 (CNTNAP2), a
member of the neurexin superfamily that plays a crucial role in brain
development (Li et al., 2010; Nascimento et al., 2016), was reported
in China and Brazil. The dopamine-3-receptor (DRD3) gene linked
to posttraumatic stress disorder-related impairments in emotion
reactivity, executive functioning, and stress-responding (De Krom
et al., 2009) was reported in the Netherlands and United Kingdom.
Engrailed 2 (EN2), a homeobox transcription factor that plays a role
in the cerebellum’s patterning during brain development (Wang
et al., 2008; Sen et al., 2010) was reported in China and India. The
forkhead-box protein P1(FOXP1) gene encoding a transcription
factor crucial for the early development of numerous organ systems,
including the brain (Hamdan et al., 2010; Chien et al., 2013), was
reported in Taiwan and Canada. Gamma-aminobutyric acid
(GABRB3), the primary inhibitory neurotransmitter in the brain
(Buxbaum et al., 2002; Warrier et al., 2013; Chen et al., 2014), was
reported in the United States, United Kingdom, and Taiwan. The
glutamate-binding GluN2 (GRIN2B) involved in circuit
construction, brain development, and potential cell migration and
differentiation (Yoo et al., 2012; Pan et al., 2015) was reported in
China and Korea. HoxA, a key player in the formation of hindbrain
neural structures (Ingram et al., 2000; Conciatori et al., 2004), was
reported in the United States and Italy. The methyl CpG binding
protein 2 (MECP2) gene (Nagarajan et al., 2006; Wen et al., 2017)
was reported in the United States and China. The MET mediating
hepatocyte growth factor signaling (Campbell et al., 2009; Jackson
et al., 2009) was reported in Italy and the United States. Neuroligin 3
(NLGN3) regulating synapse organization (Yu et al., 2011; Oleari
et al., 2023) was reported in China and Italy, while Neuroligin4
(NLGN4) was reported in France, Bulgaria, and Japan (Laumonnier
et al., 2004; Avdjieva-Tzavella et al., 2012; Toya et al., 2023). In
addition, Neurexin-1 (NRXN1) was reported in China and the
United States (Liu et al., 2012; Griswold et al., 2015). The
oxytocin receptor gene (OXTR) which plays a role in social-
emotional behaviors (Wu et al., 2005; Di Napoli et al., 2014) was
reported in the United Kingdom and China. The patched domain
containing protein 1(PTCHD1) was reported in Spain, the
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Netherlands, Germany and Italy (Torrico et al., 2015). PTEN, a
PI3K/AKT pathway negative regulator, was reported in the
United States (Buxbaum et al., 2007). The SLC25A12 gene
involved in catalysis of the mitochondrial carrier of aspartate-
glutamate exchange (Turunen et al., 2008; Aoki and Cortese,
2016) was reported in Finland and the United Kingdom. SRRM4,
a member of an RNA splicing factor family that controls the
incorporation of specific genetic material (Irimia et al., 2014;
Narita et al., 2020), was reported in Italy and Japan. Lastly,
SYNGAP1 that regulates developmental excitatory synapse
formation and function was reported in Canada (Berryer
et al., 2013).

4.2 Recommendations for genomic
ASD study

Given the genetic diversity found in Africa, more extensive
sequencing of samples from various African populations is
lacking. There is a need to conduct sequencing research in
various African countries, which could identify new genetic
variants linked to ASD in Africa. The use of sequencing
techniques to identify ASD risk genes and unreported mutations
in well-known sites has shown potential. The potential genes that
have not yet been linked to ASD will need to undergo sequencing in
larger cohorts and additional experimental validation to prove
causation or the genes’ role in the disorder. Most genetic studies
for ASD in Africa adopted PCR-based methods; however, fewer
ASD risk genes were identified through this study design than in
other techniques. The PRC-RFLP method has been primarily
performed in Africa, as it is faster and cheaper than sequencing
methods. Sequencing is a common technique for the identification
of mutations. Additionally, there is a need for many genetic studies
that use sequencing technology or GWAS across various African
countries, thus helping to identify a significant number of de novo
genetic variants associated with ASD due to using different ethnic
groups. Several identified studies in this paper have shown that
findings can be limited by some technical difficulties and relatively
small sample size due to the cost of the sample for analysis. To better
understand the hundreds or thousands of common and unusual
genetic variants associated with ASD in the African population,
sample sizes must be significantly increased. A greater sample size
should be used in subsequent efforts to enable additional studies,
such as better cataloging of structural variation and improved
disease prediction.

4.3 Clinical and therapeutic implications

ASD risk is believed to be influenced by numerous common gene
variants. ASD risk genes found in Africa are linked to various human
disorders (Table 1). The primary symptoms of ASD, including difficulties
with social communication or repetitive activities, are not currently
treated with pharmaceuticals; instead, behavioral therapy and the use
of tightly regulated learning environments are used as treatments for
ASD. Up until now, the US Food and Drug Administration (FDA) has
only licensed and approved two medications for the treatment of
irritability associated with ASD: the antipsychotics risperidone and

aripiprazole (Lamy and Erickson, 2018). However, many additional
pharmacological treatments have shown successful therapeutic
management of ASD symptoms, including: atypical antipsychotics
(risperidone, olanzapine, clozapine) for temper tantrums, aggression,
or self-destructive behavior; selective serotonin reuptake inhibitors
(sertraline, citalopram, fluoxetine) for anxiety and repetitive behaviors;
psychostimulants (methylphenidate) for hyperactivity; opioid antagonists
(naltrexone) for hyperactivity (Aman, 2004; Kumar et al., 2012).
Additionally, a few of the most effective medications are currently
undergoing various stages of clinical trials for the treatment of ASD’s
behavioral and neurological symptoms (Eissa et al., 2018).

Precision medicine is a future medical practice based on
algorithms that consider the patient’s features, such as their
genome, epigenetics, and lifestyle. The main objective of ASD
research is to find effective treatments for people with ASD
(Fischbach et al., 2016), and the development of a customized
medicinal strategy for these individuals depends on the
identification of a genetic etiology (Schaefer, 2016). According to
data from a Norwegian sample study, many parents of children with
ASD obtain positive results from clinical genetic testing (CGT) since
there may be an etiological cause (Johannessen et al., 2017).
However, investigations are failing if African people and other
underrepresented ethnicities are not included in genetic studies.
Many unidentified genetic variants probably contribute to medically
significant traits in African and non-African populations. Thus, the
identification of genes associated with ASD in Africa’s population
would help in the pharmaceutical production of therapeutics that
would meet the genetic etiology of ASD in Africa.

4.4 Study limitations

The exclusion of gray studies, such as thesis projects, is a
limitation given the findings of such excluded studies. However,
as genetic research on ASD is not a very developed research field in
Africa, theses may contribute significantly to the overall research
evidence; hence, their exclusion may have resulted in an incomplete
picture of the existing literature. Furthermore, our findings reveal a
limitation of small sample sizes in the identified studies, which could
account for the discrepancies in the results; thus, future research
should focus on using larger samples from multiple sites to
generalize its findings more broadly.

5 Conclusion

Our scoping review examined research conducted in Africa on
genetic factors potentially associated with ASD, categorized into
groups based on study methodology: GWAS, sequencing, PCR-
based methods, and other techniques. We found that PCR-based
study design is the most performed in Africa. However, only a
limited number of ASD risk genes and polymorphisms were
reported using that method. Even though sequencing performed
in various African countries is limited, many genetic variants
associated with ASD were identified through this approach.
However, no study identified any ASD gene with GWAS, even
though it has been used in non-African countries. Furthermore,
larger samples should be used in future studies to enable additional

Frontiers in Genetics frontiersin.org13

Hakizimana et al. 10.3389/fgene.2024.1431093

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1431093


analysis, such as better cataloging of structural variation. As these
are developing countries, grants for research collaboration should
strengthen research capacity in Africa. African ASD could be highly
attributable to genetic factors, as shown in the results of the few
studies that have been conducted. Large-scale research on the
genetics and prevalence of ASD is required in Africa, which will
support increasing efforts to understand the genetic causes of ASD
and other NDDs in the continent’s population and thus assist
researchers and pharmaceutical industries to propose therapies
that will meet the needs of African populations.
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