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Background: This research seeks to formulate a prognosticmodel for forecasting
prostate cancer recurrence by examining the interaction between mitochondrial
function and programmed cell death (PCD).

Methods: The research involved analyzing four gene expression datasets from
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) using
univariate Cox regression. These analyses identified genes linked with
mitochondrial function and PCD that correlate with recurrence prognosis.
Various machine learning algorithms were then employed to construct an
optimal predictive model.

Results: A key outcome was the creation of a mitochondrial-related
programmed cell death index (mtPCDI), which effectively predicts the
prognosis of prostate cancer patients. It was observed that individuals with
lower mtPCDI exhibited higher immune activity, correlating with better
recurrence outcomes.

Conclusion: The study demonstrates that mtPCDI can be used for personalized
risk assessment and therapeutic decision-making, highlighting its clinical
significance and providing insights into the biological processes affecting
prostate cancer recurrence.
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1 Introduction

Prostate cancer, a prevalent cancer affecting men, especially in older age categories,
originates from the prostate gland and often progresses slowly, exhibiting few noticeable
symptoms (Siegel et al., 2023). The development of this cancer is influenced by genetic,
environmental, and lifestyle factors. Early detection is crucial for managing the disease and
is primarily achieved by prostate-specific antigen (PSA) testing, which is also vital for
tracking recurrence of the disease after treatment (Fenton et al., 2018). Treatment
alternatives include active monitoring, surgery, radiotherapy, androgen deprivation
therapy, chemotherapeutic treatments, targeted therapies, and immunotherapies. Recent
advances in treatments and a deeper understanding of the disease’s molecular mechanisms
have significantly improved patient outcomes (Nuhn et al., 2019; Subudhi et al., 2020;
Rehman et al., 2023; Xie et al., 2023). However, outcomes can vary depending on the
molecular properties of the tumors and individual patient differences.
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PCD plays an important role in maintaining tissue stability by
removing cells tare defective, excessive, or potentially cancerous
through processes such as apoptosis, anoikis, and autophagy. This
activity is crucial for preventing tumor formation by eliminating
cells that could become cancerous. However, the interaction
between PCD and tumors is complex, influencing tumor
resistance, proliferation, and metastasis. In cancer therapies,
harnessing PCD mechanisms to eradicate tumor cells is a
common strategy. Nevertheless, a significant challenge arises as
tumor cells may develop resistance to these treatments, for
example, by enhancing autophagy, thereby complicating
therapeutic outcomes (Galluzzi et al., 2018).

Additionally, mitochondria, essential organelles known as the
“powerhouses of the cell,” are primarily responsible for ATP
production and energy generation. They also play a crucial role
in various biochemical processes including energy metabolism,
cellular signaling, and the regulation of cell growth and death.
Dysfunctions in mitochondrial functions, such as impaired
respiratory capacity and morphological changes, are critical
because the management of cell death is significantly impacted
and cellular health and function are vitally maintained (Green
et al., 2011; Bock and Tait, 2020; Wang et al., 2022; Vringer and
Tait, 2023).

Mitochondria are critical in energy conversion and regulate a
variety of cellular processes including PCD, which is essential for
maintaining organismal stability. In prostate cancer, mitochondrial
dysfunction significantly affects tumor cell survival by altering cell
death pathways, thereby impacting disease progression and the
effectiveness of treatments.

The normal growth and function of the prostate are heavily
dependent on the androgen and androgen receptor (AR) pathway,
which is also crucial in the development and progression of prostate
cancer. Castration therapy, or AndrogenDeprivation Therapy (ADT),
halts the progression of prostate cancer by triggering programmed cell
death and significantly shrinking prostate volume through the
activation of intrinsic and extrinsic apoptotic pathways. Stress
signals activate BH3-only proteins, initiating the intrinsic apoptotic
pathway, which leads to the release and activation of pro-apoptotic
proteins BAX and BAK. These proteins increase the permeability of
the mitochondrial outer membrane (MOMP), resulting in the release
of pro-apoptotic factors like cytochrome c. This process culminates in
the formation of apoptotic bodies and the activation of a caspase
cascade, ultimately causing cell apoptosis (Brenner and Mak, 2009;
Choudhary et al., 2014; Tan et al., 2015; Ali and Kulik, 2021).

This study investigates into the effects of mitochondrial
dysfunction and programmed cell death on recurrence-free
survival (RFS) in prostate cancer patients. By leveraging multi-
omics data and machine learning techniques, it aims to uncover
the intricate relationships between mitochondrial dysfunction,
programmed cell death, and the clinical features of prostate
cancer. The objective is to identify precise molecular targets to
develop personalized treatment strategies. Given the limited
understanding of the interactions between mitochondrial
dysfunction and PCD in prostate cancer, this research introduces
the mtPCDI. This index is designed to predict treatment outcomes
and prognosis, thereby aiding in the evaluation of clinical outcomes
and the selection of optimal treatment approaches for prostate
cancer patients.

2 Materials and methods

2.1 Data prepare

Clinical and transcriptomic datasets were collected from
895 patients using TCGA and GEO databases. The TCGAbiolinks R
toolkit (Colaprico et al., 2016) was employed to retrieve 483 samples
from the TCGA-PRAD cohort and the GEOquery R toolkit (Davis and
Meltzer, 2007) to was utilized to procure 412 samples from four GEO
cohorts: GSE116918 (248 samples), GSE54460 (100 samples),
GSE70768 (19 samples), and GSE7079 (45 samples). All RNA-seq
data were standardized to Transcripts PerMillion (TPM), and potential
batch effects in the GEO datasets were rectified utilizing using the
“combat” method from the “sva” toolkit (Leek et al., 2012). The five
cohorts were used to develop the recurrence prognosis model, with the
TCGA cohort serving as the training set and the GEO cohort as the
validation set. The GSE150368 cohort included pre- and post-treatment
transcriptomic data from six individuals with locally advanced prostate
cancer who received neoadjuvant androgen deprivation therapy (ADT).
Additionally, data normalization was performed across all samples to
ensure consistency in the analysis. Genomic analysis involved
determining copy number variations using gistic2 applied to TCGA
prostate cancer Masked Copy Number Segment files, and somatic
mutations were sourced from TCGA prostate cancer mutect maf
mutation files (Mermel et al., 2011). Mutation data were analysed
using maftools (Mayakonda et al., 2018). Additionally, five types of
genomic scores were integrated, based on the results of Thorsson V.
(Thorsson et al., 2018). This holistic approach allowed for a thorough
exploration of genomic alterations in prostate cancer.

2.2 Identification of prognosticmitochondrial-
related and PCD-related genes

In a comprehensive study, 1,414 genes were identified as being
associated with 18 types of programmed cell death (Zou et al., 2022).
Additionally, 1,011 genes related to mitochondrial functions were
extracted from the MitoCarta 3.0 database (Rath et al., 2021). Using
the Wilcoxon test to analyze gene expression differences between
prostate cancer tissues and normal tissues, significant differences were
identified with a log2 fold change greater than one and an FDR below
0.001. The results were visualized using the “VennDiagram” software,
showcasing differentially expressed genes involved in mitochondrial
functions and PCD. Furthermore, co-expressed genes highly related to
mitochondria and PCD were pinpointed in TCGA-PRAD samples
through Spearman correlation analysis, with thresholds set at absolute
correlation coefficients surpassing 0.6 and a p-value below 0.001.

2.3 Pathway activity analysis

Pathway activity scores (PAS) for TCGA prostate cancer
samples were obtained from the GSCA database (Liu et al.,
2023). Samples were stratified into high and low expression
categories based on median gene expression values from the
TCGA prostate cancer dataset. The Wilcoxon test compared PAS
between these categories, considering a gene as potentially activating
a pathway if its PAS was higher in the high-expression category.
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Statistical significance was determined with an FDR threshold of
less than 0.05.

2.4 Tumor cell stemness

Data from the PCBC dataset were utilized, focusing on stem cells
and their differentiated progenitors. Using the OCLR algorithm, a
stemness index was derived and applied to transcriptomic
expression data from the TCGA dataset, resulting in the
development of TCGA Prostate Cancer mRNA Stemness Indices
(mRNAsi) (Malta et al., 2018).

2.5 Prognostic model construction

30 models from seven distinct machine learning algorithms,
including Lasso, GBM, Random Forest, Elastic Net, Stepwise Cox,
Ridge, SuperPCwere integrated. Their effectiveness was tested on four
independent external datasets. Model accuracy was assessed using
Harrell’s Consistency Index (C-index). The criteria for selecting the
optimal model include two aspects. First, the C-index values of
multiple cohorts have the highest consistency. Second, the average
C-index value is the highest among these cohorts. And the best-
performing model was identified (Liu et al., 2022). For larger prostate
cancer (PRAD) cohorts exceeding 100 samples, individuals were
stratified into high and low categories based on median scores of
mtPCDI. In smaller cohorts of fewer than 50 samples, optimal cutoff
points were determined using the survimer R package. Kaplan-Meier
curves were utilized to explore the prognostic significance of
recurrence-free survival, and the survivalROC R package was
employed to generate calibration and receiver operating
characteristic (ROC) curves, aiding in evaluating the prognostic
performance of the models (Heagerty et al., 2000).

2.6 Biological function and pathway
enrichment analysis

Various bioinformatics tools and databases were utilized to
investigate the biological functions, pathways, and immune
landscape associated with mtPCDI. Initially, hallmark cancer-
associated signatures from the Molecular Signatures Database
(MSigDB) were analyzed to discern their relevance to mtPCDI
(Liberzon et al., 2015). Using the GSVA R package (Hanzelmann
et al., 2013), scores were assigned to each tag, and differences in
expression between varying levels of mtPCDI were identified via
limma analysis, adhering to a significance threshold of a corrected
p-value below 0.05 (Ritchie et al., 2015).

2.7 Immune microenvironment assessment

In the context of immune infiltration, several computational
methods were employed to detail the immune landscape, supported
by the use of single-sample gene set enrichment analysis (ssGSEA)
targeting specific marker genes. Additionally, the expression of
123 immune-regulatory genes, which included factors of receptor,

major histocompatibility complex, immunostimulatory factors, and
chemokines was thoroughly examined (Charoentong et al., 2017).
Further enrichment was achieved by incorporating signatures from
the Tracking Tumor Immunophenotype (TIP) database (Xu et al.,
2018), linked to the Cancer Immunity Cycle, and calculating the Tumor
Inflammation Signature (TIS) based on 18 characteristic genes. Insights
into immune functions were enriched by 13 signatures compiled from
research by Bindea et al. (2013); Liu et al. (2018), while the
immunedeconv R package integrated seven algorithms such as
cibersort and mcp_counter to analyze immune cell infiltration using
prostate cancer samples from TCGA (Sturm et al., 2019). Moreover,
data concerning prostate cancer immune subtypes and multi-omics
classifications were also derived from TCGA’s pan-cancer datasets,
alongwith anAndrogen Receptor (AR) score extracted from theCancer
Genome Atlas Research Network’s prostate cancer research (Cancer
Genome Atlas Research, 2015). This multi-faceted approach not only
enhanced the understanding of the molecular and immunological
aspects of prostate cancer but also paved the way for potential
targeted therapies.

2.8 Drug sensitivity analysis

In this research, the “oncoPredict” R package was employed to
predict the IC50 of various drugs using TCGA prostate cancer
expression data. Differences in IC50 between mtPCDI categories
were analyzed using the Wilcoxon test (Maeser et al., 2021).

2.9 Construction of clinical nomograms

Multivariable Cox regression was utilized to pinpoint significant
indicators of clinical recurrence at 1, 3, and 5 years, taking into
account the mtPCDI score and other clinical factors. Significant
predictors identified from the Cox regression analysis were used to
develop prognostic nomograms, which were visualized by “regplot”
package in R. The accuracy of these nomograms was evaluated by
the generation of calibration curves with the “rms” package, and
their clinical value was assessed by calculating their net benefits
using the “ggDCA” package.

2.10 Statistical methods

Additionally, the Fisher test was applied to compare variable
distributions across two categories, and Spearman correlation
analysis was used to investigate relationships among variables.
The influence of risk factors on survival outcomes was further
examined through the Cox regression model, while Kaplan-Meier
survival analysis was performed to evaluate these outcomes. All
statistical analyses and scientific plotting were performed
using R 4.2.1.

3 Results

An overview of the research is presented in Figure 1. The basic
information of the prostate cancer cohort is detailed in
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Supplementary Table S1, while the gene sets associated with
programmed cell death and mitochondrial function used in the
study are listed in Supplementary Table S2.

The study first identifies significantly differentially expressed
genes by comparing normal and cancerous prostate tissues.
Further, using Spearman correlation analysis, genes related to
mitochondrial function and programmed cell death with high
correlation coefficients and low p-values are screened.
Univariate Cox regression analysis determines which of these
co-expressed genes significantly impact the recurrence-free
survival of prostate cancer patients. Utilizing machine learning
algorithms, combined with TCGA-PRAD and external validation
datasets, the mtPCDI model is developed, and key genes
influencing RFS are identified. The predictive capability of the
mtPCDI model is validated across multiple prostate cancer
datasets by calculating AUC values to assess its accuracy. The

gene expression patterns of patients with different mtPCDI scores
are analyzed to explore their effects on the cell cycle, AR signaling
pathway, mitochondrial dynamics, and other aspects. The genomic
variations, including gene copy number, mutation frequency, and
genetic instability, are compared among patients with different
mtPCDI scores. The relationship between mtPCDI and tumor
immune activity is investigated by analyzing immune cell
infiltration and immune-related signaling pathways in patients
with varying mtPCDI scores. The mtPCDI index has been
attempted to be linked with multiple omics characteristics and
the AR signaling pathway. By combining mtPCDI scores and
clinicopathological features, a clinical nomogram is developed
through multivariate Cox regression analysis to enhance the
accuracy of prognosis prediction. Based on the mtPCDI model,
the sensitivity of patients with different mtPCDI scores to specific
drugs is assessed, providing a reference for personalized treatment.

FIGURE 1
Analysis framework.
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3.1 Preliminary screening of mtPCDI
regulators

Differential expression analysis highlighted 812 genes with
significant expression differences between normal and cancerous
prostate tissues (Figure 2A). This analysis also revealed distinct
expression patterns for 24 mitochondrial function-related genes and
73 PCD-related genes (Figure 2B). Using Spearman co-expression
analysis, the study identified 62 genes from these categories that had
a correlation coefficient over 0.6 and a p-value below 0.001.
Moreover, a univariate Cox regression analysis conducted on the
TCGA-PRAD dataset indicated that 23 of these co-expressed genes

significantly influenced RFS in PRAD patients. 30 different machine
learning algorithms were employed to develop the mtPCDI, utilizing
data from TCGA-PRAD and four external validation datasets. The
most effective model combined the StepCox [backward] and GBM
algorithms, pinpointing eight critical genes that affect RFS in PRAD
patients (Figure 2C). Of these, seven genes were associated with
longer RFS and one with shorter survival (Supplementary Table S3).
Finally, the mtPCDI scores from the GBM model effectively
distinguished patients into high and low risk categories, revealing
substantial expression differences, mostly with genes expressed
more in the low mtPCDI category (Figure 2D), suggesting a
novel method for prognosis stratification in PRAD patients.

FIGURE 2
Prognostic model development andmtPCDImodel (A) Volcano diagram depicting the gene expression differences between normal and cancerous
prostate tissues. (B) Examination of differential gene expression associated with mitochondrial function and programmed cell death in prostate tumors
versus normal tissue (C) Construction of prognostic models through the application of diverse machine learning algorithms. (D) Assessment of gene
expression profiles within the GBM model stratified by mtPCDI categories.
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3.2 Prognostic analysis of the mtPCDI model

Analysis of prostate cancer datasets such as TCGA-PRAD,
GSE116918, GSE54460, and GSE70768 has provided significant
insights into mtPCDI scores. It has been observed that high
mtPCDI scores are linked to shorter RFS times, as depicted in
Figures 3A–C. Within these studies, the TCGA-PRAD cohort
demonstrated robust Area Under the Curve (AUC) values of
0.768, 0.808, and 0.785 indicating strong predictive capabilities
for 1-year, 3-year, and 5-year prostate cancer recurrence,
respectively. For the GSE54460 cohort, AUC scores were 0.71,
0.655, 0.668, and for the GSE116918 cohort, AUC scores were
0.769,0.575 and 0.598 (Figures 3D–F). Furthermore, smaller
datasets such as GSE70768 and GSE70769 reinforced the link
between high mtPCDI and shorter RFS times, as referenced in
Supplementary Figures S1A, 1B. And the AUC values were
0.83 and 0.625 respectively (Supplementary Figure S1). The
GSE7079 dataset also showed consistent results. And the AUC
values were 0.747, 0.719, and 0.72 (Supplementary Figure S1).
These collective findings underscore the predictive significance of
mtPCDI scores across various datasets, highlighting their
potential utility in clinical assessments of prostate
cancer prognosis.

3.3 Mechanism comparison between
different mtPCDI categories

In prostate cancer research, the expression patterns of model genes
significantly influence cellular behaviors and disease outcomes. Seven of
the eight model genes generally suppress cell cycle and AR (androgen
receptor) signaling pathways when expressed at high levels, although
GGCT stands out by potentially activating these pathways instead
(Figure 4A). Regarding mitochondrial dynamics, patients with
higher mtPCDI exhibit increased AR activity and higher tumor cell
stemness scores, which are indicative of aggressive cancer traits (Figures
4B, C). In addition, the oxidative phosphorylation pathway score
associated with mitochondrial function shows significant differences
between the high and low mtPCDI categories. Patients in the low
mtPCDI category have lower oxidative phosphorylation scores
compared to those in the high mtPCDI category (Figure 4D). This
high mtPCDI category also shows enhanced activity in the MYC target
signaling pathway and DNA repair mechanisms, as determined by
Gene Set Variation Analysis. Conversely, lower mtPCDI categories
display more active immune-associated signaling pathways, including
IL6 JAK STAT3 signaling and the Interferon Gamma response,
Inflammatory response, and Apoptosis, suggesting different immune
engagement (Figure 4E). Moreover, high mtPCDI categories have

FIGURE 3
Prognostic significance of mtPCDI (A–C) RFS curves delineating different mtPCDI score categories within the PRAD TCGA, GSE116918, and
GSE54460 cohorts. (D–F) ROC curves predicting RFS within 5 years using mtPCDI scores across the specified cohorts.
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FIGURE 4
Pathway mechanisms across mtPCDI categories (A) Analysis of gene expression correlations with pathway activation levels. (B) Comparison of
androgen receptor (AR) activity scores between high and low mtPCDI categories. Each box illustrates the quartile range of the data, with the median
denoted by the horizontal line Statistical differences were assessed through the Wilcoxon test, as denoted by the significance levels. (C) Relationship
between mtPCDI scores and tumor cell stemness metrics. (D)Differential analysis of mitochondrial metabolism-related KEGG enrichment pathway
scores between high and low mtPCDI categories (***p < 0.001; **p < 0.01; *p < 0.05). (E) Heatmap representation of cancer-related pathway scores
derived from gene expression data across mtPCDI categories. (F) Distinctions in mutation-driven pathway activities among mtPCDI categories.
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FIGURE 5
Genomic characteristics of mtPCDI categories (A) Heatmap illustrating segmental copy number variations within different mtPCDI categories. (B)
Forest plot indicating differences in somatic mutation rates for specific genes across mtPCDI categories. (C–G) Comparative genomic analysis of various
genomic scores between high and low mtPCDI score categories. Each box illustrates the quartile range of the data, with the median denoted by the
horizontal line Statistical differences were assessed through the Wilcoxon test, as denoted by the significance levels (***p < 0.001; **p < 0.01;
*p < 0.05).
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FIGURE 6
Immunemicroenvironment analysis bymtPCDI categories (A)Correlation ofmtPCDI scoreswith the Tumor Inflammation Signature (TIS). (B)Evaluation
of immune cycle scores across mtPCDI categories. (C) Heatmap integrating results from six immune cell analysis tools and ESTIMATE scores by mtPCDI
category. (D) Variations in immune-related scores between high and low mtPCDI score categories. (E) Dissimilarities in prevalent immune checkpoint
activities bymtPCDI category. (F) Expression variances of mtPCDI model genes within diverse immune subtypes. Each box illustrates the quartile range
of the data, with the median denoted by the horizontal line Statistical differences were assessed through the Wilcoxon test, as denoted by the significance
levels (***p < 0.001; **p < 0.01; *p < 0.05).
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elevated somatic mutation frequencies in the PI3K, Hippo, and WNT
signaling pathways, correlating with a more intricate genetic landscape
and higher aggressiveness and progression of the disease (Figure 4F).
This comprehensive analysis reveals a complex interplay between
mitochondrial function, gene expression, and signaling pathways,
underscoring their pivotal roles in the progression and
characterization of prostate cancer.

3.4 Genomic comparison between different
mtPCDI categories

In individuals with a high mtPCDI, distinct pattern in genetic
alterations has been observed. Compared to those with a low
mtPCDI, these individuals demonstrate an increased number of
genetic copies at locus 8q24.21, while showing decreased copy
numbers at loci 2q22.1, 5q11.2, and 5q15 (Figure 5A).
Furthermore, the high mtPCDI category is associated with an
higher occurrence of non-silent mutations and exhibits
significantly elevated aneuploidy scores, indicating a greater
degree of chromosomal instability. This category also displays
increased values in homologous recombination defects and
segments number, alongside indications of fraction altered.
Statistical analysis confirms that these differences in aneuploidy
scores, fraction altered, and homologous recombination defects are
significant, each with a p-value of less than 0.001 (Figures 5C–G).
Additionally, genes such as SPOP, DCHS2, FOXA1, MACF1,
COL11A1, and PIK3CA show more frequent mutations in the
high mtPCDI category (Figure 5B), suggesting different pathways
of genetic instability between the two categories.

3.5 Immune microenvironment analysis of
different mtPCDI categories

The research illustrates a negative relationship between the
mtPCDI and the Tumor Inflammation Index (TIS), showing that
lower mtPCDI scores are linked to enhanced tumor immune activity
(Figure 6A). This relationship is highlighted by the progression of
the tumor immune process through seven stages, where each stage
showing higher activity scores in the category with lower mtPCDI
category (Figure 6B). Among the six immune cell infiltration
prediction software, the results of three are consistent: TIMER,
EPIC, and MCP-counter. In these three software, B cells, CD4+

T cells, CD8+ T cells, NK cells, and macrophages all show consistent
differences, which are important immune infiltrating cells. Other
software also show a similar trend, with B cells, CD8+ T cells, and NK
cells having higher infiltration abundance in the low mtPCDI
category. Further validation is provided by the estimate
algorithm, elevated immune and stromal scores, and reduced
tumor purity in the low-mtPCDI category (Figure 6C).
Additionally, there is a heightened expression of MHC class I,
chemokine, receptors, cytokines, and immune checkpoint-related
genes, alongside elevated responses in Type I and II interferon
signaling (Figures 6D, E; Supplementary Figure S2). Notably, there
are significant variations in the expression of mtPCDI model-related
genes across different immune subtypes, with the inflammatory
subtype showing the highest expression and the wound healing

subtype the lowest (Figure 6F). These findings collectively suggest
that the mtPCDI is a crucial marker for assessing the tumor immune
microenvironment and could significantly influence personalized
immune therapy strategies.

3.6 Construction of mtPCDI clinical
nomogram

A multivariate Cox regression analysis was conducted to assess
RFS in cancer patients, using the mtPCDI score along with clinical-
pathological T and N staging, and Gleason grade. This analysis
identified the Gleason grade, T stage, and particularly the mtPCDI
score as significant prognostic factors, with the mtPCDI score
emerging as an independent factor with a p-value below 0.001
(Figure 7A). To refine predictive capabilities further, a clinical
nomogram incorporating these significant variables was
developed, and its accuracy was confirmed by a calibration curve
that closely matching the 45-degree diagonal, indicating precise
predictions (Figures 7B, C). Over various time points, both the
mtPCDI score and the nomogram exhibited consistent trends and
demonstrated superior net benefits compared to using T stage and
Gleason grade alone (Figure 7D). This enhancement in predictive
accuracy highlights the utility of the mtPCDI score and the
nomogram in improving clinical decision-making for
predicting RFS.

3.7 Multivariate subtype correlation analysis
in prostate cancer

Genetic and molecular characteristics showed significant
variations between the high and low-mtPCDI categories. The
high-mtPCDI category exhibited considerable genomic instability,
characterized by increased copy number variations and methylation
levels, with statistically significant p-values of 2.4096e-11 and
2.268e-5, respectively (Figures 8A, B).

Conversely, the low-mtPCDI category exhibited greater
genomic stability, evidenced by lower methylation levels and a
slightly higher incidence of specific fusion mutations such as
ERG, EIV4, and FLI1, albeit with a less significant p-value of
0.09. Somatic mutations, including SPOP and FOXA1, were
notably more prevalent in the high-mtPCDI category. In terms of
intergrative subtypes, integrative subtypes 1 and 2, characterized by
high tumor suppressor gene mutations, high methylation, low
mRNA expression, and high copy number variations, were
predominantly found in the high-mtPCDI category. In contrast,
Subtype 3, which was more common in the low-mtPCDI category,
showed lower methylation levels, the presence of some ERG fusions,
higher mRNA expression, and fewer copy number variations, with a
significant p-value of 4.512e-19 (Figures 8C, D).

Prominent differences in mRNA expression were also observed,
with the High-mtPCDI category demonstrating overall lower
expression levels overall, whereas the dominant subtype in the
low-mtPCDI category showed higher expression levels,
significantly marked by a p-value of 1.537e-19. Additionally, the
low-mtPCDI category had a greater proportion of class 1 miRNA
subtypes, which closely resemble the miRNA expression patterns of
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FIGURE 7
Independent prognostic value of mtPCDI in the immune context (A) Confirmation of mtPCDI score as an independent prognostic indicator. (B)
Formulation of amultivariate clinical nomogram including themtPCDI score. (C)Calibration plot for the clinical nomogram’s accuracy. (D)Decision curve
analysis to compare the nomogram’s utility against other clinical predictors.
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FIGURE 8
Multivariate subtype correlation with mtPCDI categories (A–F) Analysis encompassing Fisher’s tests and Sankey diagrams to explore the
interrelations between mtPCDI categories and various genetic subtypes, including copy number variation, methylation, classical fusion mutations,
integrative subtypes, and miRNA/mRNA subtypes.
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FIGURE 9
Drug sensitivity analysis by mtPCDI categories (A) Comparative gene expression analysis within the mtPCDI model pre- and post-androgen
deprivation therapy (ADT). (B) The tenmost significant differences in drug sensitivity between high and lowmtPCDI score categories. Each box illustrates
the quartile range of the data, with themedian denoted by the horizontal line. Statistical differences were assessed through theWilcoxon test, as denoted
by the significance levels (***p < 0.001; **p < 0.01; *p < 0.05).
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normal tissue, evidenced by a significant p-value of 2.806e-17. These
findings underscore the distinct molecular and genetic landscapes of
each mtPCDI category, suggesting potential specific targets for
tailored therapeutic strategies (Figures 8E, F).

3.8mtPCDImodel drug sensitivity analysis in
prostate cancer

RNA sequencing revealed that ADT treatment led to an
upregulation of cell death-related genes, except for GGCT, in
lesion tissues. Post-treatment gene expression patterns resembled
those of the low-risk category in the mtPCDI model (Figure 9A).
The study identified differences in drug sensitivity between the high
and low-mtPCDI categories, highlighting drugs like JAK_8517_
1739, BMS−754,807_2171, and PD173074_1049 were more
effective in patients with low mtPCDI scores. Conversely, drugs
such as Vorinostat_1012, Sepantronium bromide_1941, and
Uprosertib_2106 showed greater effectiveness in the high
mtPCDI category (Figure 9B).

4 Discussion

The mtPCDI is an innovative prognostic model designed to
predict recurrence risks in prostate cancer patients, serving as a
pivotal tool in personalized medicine. This biomarker reflects the
interactions between mitochondrial function and programmed cell
death pathways, highlighting how mitochondrial dysfunction can
lead to cancer recurrence by enabling cells to evade apoptosis.
Higher mtPCDI values, indicating compromised mitochondrial
function, are associated with poorer outcomes due to increased
copy number variations, which potentially contribute to greater
tumor heterogeneity and treatment resistance.

The mtPCDI index is being attempted to be linked with multiple
omics characteristics. In prostate cancer research, several genetic
and epigenetic factors significantly impact tumor behavior and
patient prognosis. Chromosomal alterations, such as
amplification at 8q24.21 and deletions at 5q11.2 and 5q15,
crucially alter cellular functions (Liu et al., 2008; Chen et al.,
2020). For example, mutations in the SPOP gene lead to
increased stability of tumor-associated proteins like PTEN and
enzymes involved in the PI3K/mTOR signaling pathway,
enhancing cell proliferation. These mutations also prevent the
breakdown of androgen receptor proteins, boosting AR signaling
and thereby fostering tumor growth. Similarly, mutations in the
FOXA1 gene activate AR signaling, promotes tumor growth,
facilitating the epithelial-mesenchymal transition, and increasing
tumor metastasis potential by inducing transcriptional changes that
activate the WNT signaling pathway (Barbieri et al., 2012; Blattner
et al., 2017).

Moreover, studying of methylation patterns reveals that higher
methylation in certain prostate cancer categories can lead to gene
silencing, affecting tumor progression and patient outcomes.
Variations in miRNA expression further delineate distinct
regulatory mechanisms influencing tumor development and cell
death pathways. Understanding these complex interactions and
integrating multi-omic data, including methylation patterns and

miRNA profiles, can significantly refine personalized treatment
strategies. For instance, patients with higher methylation levels
might respond better to epigenetic therapies with demethylating
agents, suggesting that a tailored approach to treatment could
benefit for those with significant genetic alterations, potentially
requiring more aggressive management (Okano et al., 1999; Lyko
and Brown, 2005; Jones and Baylin, 2007).

Mitochondria are crucial to the development of prostate
cancer, influencing energy bioenergetics, programmed cell
death, and immune cell function regulation. Dysfunction in
these organelles can alter the tumor microenvironment by
modifying inflammatory signals and cytokine release, thus
affecting immune cell behavior. This is quantifiable through the
Mitochondrial Programmed Cell Death Index (mtPCDI), which
assesses mitochondrial functionality and cell death status. A lower
mtPCDI, signifying healthier mitochondria and normal cell death
processes, is associated with enhanced immune activity and
improved responses to immune therapies, such as checkpoint
inhibitors (Xie et al., 2023).

In addition, the connection between the androgen receptor (AR)
pathway in prostate cancer, mitochondrial dysfunction, and
programmed cell death requires further investigation.
Furthermore, AR is integral to the development and progression
of prostate cancer, with many cancer cells relying on AR signaling
for survival and growth. ADT, which targets AR activity, is a
common treatment approach; however not all patients respond
well, and some eventually develop resistance, leading to
treatment failure and recurrence. AR not only impacts cellular
processes like energy metabolism and apoptosis but also
mitochondrial function, playing a crucial role in the cancer’s
behavior and treatment outcomes (Marquez-Jurado et al., 2018;
Bajpai et al., 2019; Ahmad and Newell-Fugate, 2022).

By integrating assessments of mitochondrial function,
programmed cell death (via mtPCDI), and AR activity,
clinicians might gain comprehensive biomarker insights. This
integrated approach could enhance predictions of patient
responses to ADT and their recurrence risks. Typically, high
AR activity correlates with more aggressive cancer types and
poorer outcomes. Tumors maintaining high AR activity post-
ADT often resist treatment and continue progressing. Some
cancers adapt to low-androgen environments by altering AR
signaling, which supports their survival and proliferation.
Evaluating both mtPCDI and AR activity allow for more refined
patient classification and assist in selecting aggressive treatments,
such as novel AR inhibitors or combination therapies, particularly
for patients exhibiting high levels of both indicators (Parker et al.,
2020; Labriola et al., 2021).

Mitochondrial function plays a pivotal role in cellular
bioenergetics and the regulation of cell death, potentially
influencing redox states and energy balance, and leading to
apoptosis. This is particularly relevant in prostate cancer
treatments, where dysfunctional mitochondria can affect the
stability and activity of the AR. Enhancing mitochondrial
function could potentially increase the effectiveness of ADT in
treating prostate cancer. Therefore, future research should focus
on the interactions between mitochondrial PC-induced death
(mtPCDI) and AR activity, especially in relation to treatment
resistance and disease recurrence. It is also crucial to validate
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mitochondrial and AR-related biomarkers to predict treatment
outcomes and guide therapeutic decisions (Baumgartner
et al., 2024).

This study has certain limitations. In terms of sample size, the
number of samples in this study was constrained by the clinical
information available in public databases, preventing a larger-scale
sample study. Due to the heterogeneity of prostate cancer, whether
this model is universally applicable for predicting prostate cancer
recurrence still requires further construction of clinical follow-up
data and additional research. Furthermore, commonly used PSA
levels and Gleason scores in prostate cancer could be considered in
combination with the mtPCDI index as a predictive model for
patient recurrence in the future.

Furthermore, utilizing multi-omics approaches could greatly
enhance treatment strategies, particularly in immunotherapy for
prostate cancer. Resistance issues in treatments such as
Enzalutamide, used for castration-resistant prostate cancer
(CRPC), might be addressed by investigating JAK2 inhibitors like
JAK_8517_1739, which target the growth and resistance pathways
activated by Enzalutamide (Udhane et al., 2020). Additionally,
Vorinostat, a histone deacetylase inhibitor, is currently under
clinical trials to assess its effectiveness against metastatic CRPC,
especially for its synergistic effects when combined with the mTOR
inhibitor Temsirolimus. Vorinostat is also being evaluated in clinical
trials (e.g., NCT00589472, NCT01174199, NCT00330161) for
potential benefits in conjunction with radical prostatectomy and
androgen deprivation therapy.

5 Conclusion

The mtPCDI signature, initially developed using the TCGA-
PRAD cohort, was subsequently validated across four external
cohorts, demonstrating its superiority over existing clinical
models as a prognostic marker. Its predictive accuracy remained
robust even after adjusting for potential confounding factors.
Further research explored the relationship between mtPCDI,
immunomodulators, and the tumor microenvironment, providing
valuable insights and laying the groundwork for more detailed
future studies in these areas.
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