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Basecalling is an essential step in nanopore sequencing analysis where the raw
signals of nanopore sequencers are converted into nucleotide sequences, that is,
reads. State-of-the-art basecallers use complex deep learning models to achieve
high basecalling accuracy. This makes basecalling computationally inefficient and
memory-hungry, bottlenecking the entire genome analysis pipeline. However,
for many applications, most reads do notmatch the reference genome of interest
(i.e., target reference) and thus are discarded in later steps in the genomics
pipeline, wasting the basecalling computation. To overcome this issue, we
propose TargetCall, the first pre-basecalling filter to eliminate the wasted
computation in basecalling. TargetCall’s key idea is to discard reads that will
not match the target reference (i.e., off-target reads) prior to basecalling.
TargetCall consists of two main components: (1) LightCall, a lightweight
neural network basecaller that produces noisy reads, and (2) Similarity Check,
which labels each of these noisy reads as on-target or off-target by matching
them to the target reference. Our thorough experimental evaluations show that
TargetCall 1) improves the end-to-end basecalling runtime performance of the
state-of-the-art basecaller by 3.31 × while maintaining high (98.88%) recall in
keeping on-target reads, 2) maintains high accuracy in downstream analysis, and
3) achieves better runtime performance, throughput, recall, precision, and
generality than prior works. TargetCall is available at https://github.com/CMU-
SAFARI/TargetCall.

KEYWORDS

nanopore sequencing, basecalling, deep learning, filtering, efficiency

1 Introduction

Genome sequencing, which determines the nucleotide sequence of an organism’s
genome, plays a pivotal role in enabling many medical and scientific advancements
(Alkan et al., 2009; Ashley, 2016; Chin et al., 2011; Ellegren, 2014; Alvarez-Cubero
et al., 2017). Modern sequencing technologies produce increasingly large amounts of
genomic data at low cost (Wang et al., 2021). Leveraging this genomic data requires fast,
efficient, and accurate analysis tools.

Current sequencing machines are unable to determine an organism’s genome as a single
contiguous sequence (Alser et al., 2021). Instead, they sequence fragments of a genome,
called reads. The length of the reads depends on the sequencing technology and significantly
affects the performance (i.e., speed or runtime) and accuracy of genome analysis. The use of
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long reads can provide higher accuracy and performance on many
genome analysis steps (Treangen and Salzberg, 2011; Firtina and
Alkan, 2016; Alkan et al., 2010; Lu et al., 2016; Magi et al., 2018;
Firtina et al., 2023b).

Nanopore sequencing technology is one of the most prominent
and widely used long read sequencing technologies (Wang et al.,
2021; Branton et al., 2008; Gong et al., 2019; Jain et al., 2018;
Logsdon et al., 2020; Amarasinghe et al., 2020). Nanopore
sequencing relies on measuring the change in the electrical
current when a nucleic acid molecule (DNA or RNA) passes
through a pore of nanometer size (Zhang et al. 2021a). The
measurement of the electrical current, called a raw signal, is
converted to a nucleotide sequence, called a read, with a step
called basecalling (Wang et al., 2021; Alser et al., 2021; Wick
et al., 2019; Pagès-Gallego and de Ridder, 2023; Alser et al., 2022;
Wan et al., 2021). Basecalling commonly uses computationally
expensive deep neural network (DNN)-based architectures to
achieve high basecalling accuracy (Senol Cali et al., 2019; Rang
et al., 2018; Singh et al., 2024), which makes basecalling a
computational bottleneck for genome analysis that consumes up
to 84.2% of total execution time in the genome analysis pipeline
(Bowden et al., 2019). However, the majority of this computation is
wasted for genome sequencing applications that do not require most
of the basecalled reads. For example, in SARS-CoV-2 genome
assembly, 96% of the total runtime is spent on basecalling, even
though ≥ 99% of the basecalled reads are not required after
basecalling because they are not coming from the reference
genome that is targeted by the application (Dunn et al., 2021).
Therefore, it is important to eliminate wasted computation in
basecalling.

Our goal in this work is to eliminate the wasted computation
when basecalling the entire read, while maintaining high accuracy
and applicability to a wide range of genome sequencing applications.
To this end, we propose TargetCall, the first pre-basecalling filter.
TargetCall is based on the key observation that the typical reason for
discarding basecalled reads is that they do not match some target
reference (e.g., a reference genome of interest) (Grumaz et al., 2016;
Dunn et al., 2021). We call these off-target reads. Our key idea is to
filter out off-target reads before basecalling by analyzing the entire
read with a highly accurate and high-performance pre-basecalling
filter to eliminate the wasted computation in basecalling off-
target reads.

Prior works in targeted sequencing (Kovaka et al., 2021; Zhang
et al., 2021a; Dunn et al., 2021; Bao et al., 2021; Firtina et al., 2023a;
Lindegger et al., 2023; Firtina et al., 2024) propose adaptive sampling
techniques to discard off-target reads during sequencing to better
utilize sequencers. Sequencers provided by Oxford Nanopore
Technologies (ONT) can enable adaptive sampling with a feature
known as Read Until (Kovaka et al., 2021; Loose et al., 2016). ONT
sequencers that support Read Until can selectively remove a read
from the nanopore while the read is being sequenced. This requires a
method of identifying which reads are off-target for further
downstream analysis to decide which reads to remove from the
nanopore. The state-of-the-art adaptive sampling methods can be
classified into three groups based on the methodology used to label
the read. The first group converts the target reference into a
reference raw signal and performs raw signal-level alignment
(Zhang et al., 2021a; Dunn et al., 2021; Loose et al., 2016). The

second group generates noisy sequence representations of the raw
signal to compare them with the target reference (Kovaka et al.,
2021; Payne et al., 2020). The third group of works utilizes neural
network classifiers to label the sequences (Bao et al., 2021; Noordijk
et al., 2023). We provide a detailed background on different adaptive
sampling approaches in Section 1 of the Supplementary Material.

Even though the labeling techniques of adaptive sampling can be
repurposed for pre-basecalling filtering, the adaptive sampling
problem is different from pre-basecalling filtering for three main
reasons. First, in adaptive sampling, reads must be labeled during
sequencing, requiring only the initial portion of the raw signal to
classify reads as off-target or on-target. Analyzing a sub-region or
raw signals in adaptive sampling methods often leads to low recall
(77.5% − 90.40%) (Kovaka et al., 2021; Zhang et al., 2021a) or poor
basecalling Zhang et al., 2021a; Payne et al., 2020), meaning they can
falsely reject many on-target reads. In contrast, a pre-basecalling
filter can utilize the entire raw signal after the read is fully sequenced,
enabling more accurate classification. Second, adaptive sampling has
practical limitations, such as the risk of nanopores becoming
blocked after a few seconds of sequencing (Munro et al., 2024),
which limits the effectiveness of read ejection. A pre-basecalling
filter addresses these limitations by processing the whole signal of all
reads, even when adaptive sampling is not feasible. Third, some
adaptive sampling methods require re-training classifiers for each
different application and target reference (Bao et al., 2021), while a
pre-basecalling filter can be applied without requiring re-training,
making it more flexible across different use cases. We conclude that
pre-basecalling filtering is orthogonal to adaptive sampling and can
complement it. Even when adaptive sampling is used to reject reads
early, any remaining reads still need to be basecalled, and a pre-
basecalling filter can further improve accuracy and efficiency by
processing the entire signal of these remaining reads. This makes the
pre-basecalling filter a versatile solution that can be applied both
independently and in conjunction with adaptive sampling
approaches. TargetCall aims to overcome the challenges of state-
of-the-art methods by utilizing the entire raw signal for
classification, making it a widely applicable solution.

TargetCall consists of two main components: 1) LightCall, a
lightweight basecaller with a simple neural network model that
outputs erroneous (i.e., noisy) reads with high performance and 2)
Similarity Check to compute the similarity of the noisy read to the
target reference where the similarity is determined by the
conventional read mapping pipeline. LightCall’s model is 33.31 ×
smaller than the state-of-the-art basecaller, Bonito (2022). This
reduction in the model improves the basecalling speed
substantially with a small (4.85%) reduction in basecalling
accuracy. Although reducing the basecalling accuracy might cause
LightCall to be not applicable to some of the downstream analyses
that require high basecalling accuracy (Frei et al., 2021), it is
sufficient for Similarity Check to perform pre-basecalling
filtering. We use the state-of-the-art read mapper minimap2 (Li,
2018) for Similarity Check. TargetCall overcomes all three
limitations of prior methods. First, Similarity Check’s high
accuracy enables TargetCall’s accuracy to be significantly higher
than prior adaptive sampling approaches. Second, LightCall’s
performance is independent of the target reference size, which
enables TargetCall to be applicable to target reference sizes for
which prior works were inapplicable. Third, unlike prior approaches
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that require re-training the network for each application and target
reference, LightCall does not need to be re-trained.

1.1 Key results

We evaluate the performance and accuracy impact of TargetCall
on the state-of-the-art basecaller by Bonito (2022) and compare
TargetCall with two state-of-the-art adaptive sampling methods,
UNCALLED (Kovaka et al., 2021) and Sigmap (Zhang et al., 2021a),
repurposed as pre-basecalling filters. TargetCall 1) improves the
end-to-end runtime performance (i.e., runtime of all the steps,
including basecalling and read mapping, used in an analysis) by
3.31 × over Bonito, 2) precisely filters out 94.71% of the off-target
reads, and 3) maintains high recall in keeping on-target reads with
98.88% recall. We show that TargetCall provides high accuracy in a
specific downstream analysis that aims to estimate the relative
abundance (RA) of organisms in a given sample even after losing
1.12% of on-target reads. We demonstrate that TargetCall improves
1) runtime performance by 1.46 ×/9.72 ×, 2) throughput by
1124.03 ×/42.08 ×, 3) recall by +3.09%/+23.15%, and 4)
precision by +58.48%/+62.31% over prior works UNCALLED/
Sigmap while requiring much less peak memory (on average
5.76 ×) and maintaining scalability to longer target references.

This article makes the following contributions:

• We introduce the problem of pre-basecalling filtering that
aims to classify reads utilizing the entire raw signal
information.

• We introduce the first pre-basecalling filter that eliminates the
wasted computation in basecalling by leveraging the fact that
most reads are discarded after basecalling.

• We propose LightCall, a lightweight neural network model
that significantly increases the performance of basecalling with
minor reductions in basecalling accuracy.

• TargetCall provides larger runtime performance and accuracy
benefits than the state-of-the-art adaptive sampling works for
basecalling.

• To aid research and reproducibility, we freely open source our
implementation of TargetCall at https://github.com/CMU-
SAFARI/TargetCall.

2 Materials and methods

Our goal in this work is to eliminate the wasted computation in
basecalling using an accurate pre-basecalling filtering technique. To
this end, we propose TargetCall, which can perform pre-basecalling
filtering in all genome sequencing applications accurately and
efficiently without any additional overhead. To our knowledge,
TargetCall is the first pre-basecalling filter that is applicable to a
wide range of use cases and makes use of entire raw signal
information to classify nanopore raw signals. TargetCall’s key
idea is to quickly filter out off-target reads (i.e., reads that are
dissimilar to the target reference) before the basecalling step to
eliminate the wasted computation in basecalling. We present the
high-level overview of TargetCall in Section 2.1 and explain its
components in Sections 2.2, 2.3.

2.1 High level overview

Figure 1 shows TargetCall’s workflow. First, TargetCall
performs noisy basecalling on the raw signal using LightCall (1).
The output sequence of LightCall is highly accurate but erroneous
compared to the reads basecalled using state-of-the-art basecallers.
Second, Similarity Check compares the noisy read of LightCall to the
target reference to label the read as an on-target or off-target read
(2). TargetCall stops the analysis of off-target reads by removing
them from the pipeline (3), whereas the analysis of the on-target
reads continues with basecalling following the usual genomics
pipeline to maintain basecalling accuracy1 (4).

The choice of the target reference depends on the specific genome
sequencing application. The size of the target reference is a major
constraint in most prior works, limiting the generality of the prior
approaches. We design TargetCall such that its runtime performance
scales well with the size of the target reference so that it is applicable to
any genome sequencing application. We achieve our design goal
because 1) the performance of LightCall is independent of the size
of the target reference, and 2) the performance of the Similarity Check
module scales well with the increasing target reference size.

2.2 LightCall

LightCall, the first component of TargetCall, is a lightweight neural
network-based basecaller that produces noisy reads. Although LightCall
is not designed to be as accurate as the state-of-the-art basecallers, its
combinationwith Similarity Check is effective in determining if the read
is an on-target read with respect to the target reference. We develop
LightCall by modifying the state-of-the-art basecaller Bonito’s
architecture in three ways: 1) reducing the channel sizes of
convolution layers, 2) removing the skip connections, and 3)
reducing the number of basic convolution blocks. Prior work (Singh
et al., 2024) shows that Bonito’s model is over-provisioned, and we can
maintain very high accuracy with reduced model sizes. Following prior
work’s insight, we generate different neural network models by pruning
the channel sizes of convolution and convolution blocks. The specific
LightCall configurations are tested and designed based on our intuition.
We select the neural network architecture for LightCall that balances
basecalling accuracy with the pre-basecalling filtering performance.

Figure 2 shows the architecture of LightCall. Each block consists of
grouped 1-dimensional convolution and pointwise 1-dimensional
convolution. The convolution operation is followed by batch
normalization (Batch Norm) (Ioffe and Szegedy, 2015) and a
rectified linear unit (ReLU) (Agarap, 2018) activation function. The
final output is passed through a connectionist temporal classification
(CTC) (Graves et al., 2006) layer to produce the decoded sequence of
nucleotides (A, C, G, and T). The CTC layer acts as the loss function by
providing the correct alignment between the input and the output
sequence. The CTC loss allows the model to handle the variable-length
sequences by aligning the model’s output to the target sequence while

1 Basecalling accuracy is calculated as the ratio of the number of correctly

identified bases to the total number of bases in the read, expressed as a

percentage.
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ignoring the blank or padding symbols. Our LightCall architecture is
composed of 18 convolution blocks containing ~292,000 model
parameters (~ 33.35 × fewer parameters than Bonito).

Modern deep learning-based basecallers (Singh et al., 2024;
Wick et al., 2019; Neumann et al., 2022; Konishi et al., 2021; Xu
et al., 2021; Lou et al., 2020; Perešíni et al., 2021; Pagès-Gallego and
de Ridder, 2023; Zhang et al., 2021b) incorporate skip connections to
help mitigate the vanishing gradient and saturation problems (V and
Kiran, 2022). Removing skip connections has a higher impact on
basecalling accuracy. However, adding skip connections introduces
the following three issues for performance (Shahroodi et al., 2023;
Singh et al., 2024). First, the skip connections increase the data
lifetime. The layers whose activations are reused in subsequent
layers must wait for this activation reuse (or buffer the
activations in memory) before accepting new input and

continuing to compute. This leads to high resource and storage
requirements due to data duplication. Second, skip connections
introduce irregularity in neural network architecture as these
connections span non-adjacent layers. Third, skip connections
require additional computation to adjust the channel size to
match the channel size at the non-consecutive layer’s input.
Therefore, we remove the skip connections, as we can tolerate a
lower LightCall accuracy to improve the performance of TargetCall.

LightCall works by splitting a long read in raw signal format
(e.g., millions of samples) into multiple smaller chunks (e.g.,
thousands of samples per chunk) and basecalling these chunks.
The CTC layer assigns a probability for all possible labels (i.e., A, C,
G, and T) at each sequence position for a chunk. The label with the
highest probability is selected as the final output for a sequence
position. LightCall merges the outputs of each position to produce
the basecalled chunk andmerges the basecalled chunks to output the
basecalled read. Because LightCall’s algorithm is independent of the
target reference, LightCall’s performance does not depend on the
target reference length.

2.3 Similarity check

After LightCall outputs the noisy read that approximately
represents the raw signal, Similarity Check compares the noisy
read to the target reference. For this task, we use a procedure
common in genome analysis known as sequence alignment.
Sequence alignment computes the similarity between a read and
a reference. To provide a scalable and fast solution for Similarity
Check, we use minimap2, a well-optimized sequence aligner
designed by Li (2018). Similarity Check labels a read that is
similar to the target reference, that is, a read that maps to the
target reference as on-target. With the efficient index structure of
minimap2, the performance of sequence alignment is almost
independent of the length of the target reference genome. Hence,
TargetCall is scalable to large target reference genomes of Gbp
(i.e., Giga base pair) length.

The accuracy of the computed sequence alignments is not high
enough to represent the true alignment between the read and the
target reference because the reads computed by LightCall are noisy.
However, the labeling accuracy of Similarity Check for determining

FIGURE 1
High-level overview of TargetCall.

FIGURE 2
Overview of LightCall architecture.
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the on-target/off-target reads is high enough to provide recall up to
99.45% in filtering reads. The minor inaccuracy of Similarity Check
can be compensated with the high sequencing depth-of-coverage,
the average number of reads that align to a genomic region, required
for confident genome sequence analysis (Quail et al., 2012; Levy and
Myers, 2016; Hu et al., 2021; Sims et al., 2014).

3 Results

3.1 Experimental setup

3.1.1 Evaluated use cases
To show the applicability of TargetCall, we evaluate it on use cases

with varying target reference sizes without compromising the accuracy.
We describe three use cases we use to evaluate TargetCall: (1) COVID
detection, (2) sepsis detection, and (3) viral detection. All three use cases
contain a significant fraction of off-target reads that are eliminated using
TargetCall to show the benefits of pre-basecalling filtering.

3.1.2 COVID detection
The first use case aims to accept reads coming from a small

target reference. We choose SARS-CoV-2 detection as a sample
biological application where the goal is to detect the reads coming
from a SARS-CoV-2 reference genome (~30 Kbp) from a sample
taken from a human and filter out the human reads in the sample as
performed by Dunn et al. (2021) and Geoghegan et al. (2021).

3.1.3 Sepsis detection
The second use case aims to filter reads when the target reference

is large (~3 Gbp) to show that TargetCall is applicable to use cases
with large target references. We choose sepsis detection, as described
by Grumaz et al. (2016), Celik et al. (2022), and Sands et al. (2021), as
a sample biological application where the goal is to delete the human
reads from a human sample. Because the bacteria causing the disease
are unknown, we cannot search for reads coming from a specific
bacterial target. Instead, we apply TargetCall to filter out reads
similar to the target reference.

3.1.4 Viral detection
The third use case aims to filter reads when the target reference

contains a collection of reference genomes to show that TargetCall
can correctly filter reads when the sample and the target reference
have a wide variety of species. This is to test the specificity of
TargetCall in filtering reads when the on-target and off-target reads
resemble each other more than in previous use cases. We choose
disease-causing viral read detection as a sample biological
application where the goal is to detect the viral reads from a
metagenomic sample of bacterial and viral reads, and the target
reference contains a collection of viral reference genomes, as
demonstrated by Mokili et al. (2012).

3.1.5 Evaluation system
We use NVIDIA TITAN V to train and evaluate the LightCall

and Bonito baseline. For our evaluations, we increase the batch size
maximally such that the entire GPU memory is occupied (Sections
3.2–3.5). We use NVIDIA A100 to evaluate TargetCall against prior
work. We evaluate UNCALLED and Sigmap on a high-end server

(AMD EPYC 7742 CPU with 1 TB DDR4 DRAM). For our
evaluations, we optimize the number of threads (128) for
UNCALLED/Sigmap and the batch size (128) for TargetCall such
that all tools have theminimum execution time (Section 3.6).We use
the state-of-the-art read mapper, minimap2 (Li, 2018), for the
Similarity Check module of TargetCall with -a and -x map-ont
flags. The -a flag is used to compute sequence alignments, and -x

map-ont is used to configure minimap2 parameters for ONT data.

3.1.6 Training setting
We use the publicly available ONT dataset, Bonito (2022),

sequenced using MinION Flow Cell (R9.4.1) (ONT, 2022) for the
training and validation. The neural network weights are updated using
theAdamoptimizer (Kingma and Ba, 2014) with a learning rate of 2e−3,
a beta value of 0.999, a weight decay of 0.01, and an epsilon of 1e−8.

3.1.7 Baseline techniques
We evaluate TargetCall’s runtime performance and accuracy as

a pre-basecalling filter by integrating it as a pre-basecalling filter to
Bonito (2022), which is one of the official basecalling tools developed
by ONT. In Section 3.6, we evaluate two state-of-the-art, non-
machine learning-based adaptive sampling methods, UNCALLED
(Kovaka et al., 2021) and Sigmap (Zhang et al., 2021a), repurposed
as pre-basecalling filters to compare against TargetCall. We
repurposed UNCALLED and Sigmap by using their classification
methods to classify the reads as on-target/off-target before the
basecalling step without any change in their implementations.
We identify the ground truth on-target and off-target by
basecalling the reads using a high accuracy Bonito model
followed by performing minimap2. We do not evaluate
TargetCall against other adaptive sampling methods, such as
SquiggleNet (Bao et al., 2021), that cannot be trivially used as
pre-basecalling filters.

3.1.8 LightCall configurations evaluated
To determine the final architecture of TargetCall, we test 5

different LightCall configurations. Table 1 lists the LightCall
configurations evaluated.

3.1.9 Evaluated datasets
We sampled 287,767 reads from prior work (Zook et al., 2019;

cad, 2020; Wick et al., 2019) and simulated 35,000 reads using
DeepSimulator (Li et al., 2018; Li et al., 2020) to evaluate TargetCall.
We use four reference genomes to evaluate TargetCall on three

TABLE 1 Different LightCall configurations.

Model name Number of
parameters (K)

Model
size (MB)

Bonito 9,739 37.14

LCMain×2 565 2.16

LCMain 292 1.11

LCMain∕ 2 146 0.55

LCMain∕ 4 52 0.19

LCMain∕ 8 21 0.07
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different genome sequencing applications. The details of the exact
read datasets and reference genomes used to produce all our results
can be found in Section 2 of the Supplementary Material.

3.1.10 Evaluation metrics
We evaluate TargetCall using five different metrics: 1)

filtering accuracy, 2) basecalling accuracy, 3) relative
abundance (RA) estimation accuracy, 4) basecalling execution
time, and 5) end-to-end execution time. For the basecalling
execution time, we compare the wall-clock time spent on pre-
basecalling filtering followed by basecalling of the reads that are
accepted by the filter and conventional basecalling. For the end-
to-end execution time, we compare the wall-clock time spent on
the entire genome analysis pipeline of basecalling, read mapping,
and variant calling with and without the use of pre-basecalling
filtering. The index generation time of minimap2 is excluded
from end-to-end execution time as this is a one-time task per
reference genome. When comparing TargetCall with
UNCALLED and Sigmap in terms of the end-to-end execution
time, we acknowledge that TargetCall benefits from hardware
acceleration as it uses GPUs while the other tools use CPUs.
Implementing UNCALLED and Sigmap on GPUs could further
improve their speed performance.

We evaluate the filtering accuracy of TargetCall by computing its
precision and recall. We define precision as the number of reads that
TargetCall correctly labels as on-target, divided by the total number
of reads that TargetCall labels as on-target. We define recall as the
number of reads that TargetCall correctly labels as on-target, divided
by the overall number of on-target reads in the dataset. The ground
truth on-target reads are determined by the conventional pipeline of
basecalling with Bonito and read mapping. An ideal pre-basecalling
filter should have 100% recall to maintain accuracy in the
downstream analyses and 100% precision to provide the
maximum possible runtime performance improvement.

For basecalling accuracy, we use Bonito’s training and
evaluation procedure to extract the median identity as basecalling
accuracy Bonito (2022). For relative abundance (RA) accuracy, we
calculate the difference in relative abundances of viral species after 1)
pre-basecalling filtering and 2) conventional basecalling. We
compute how much RA deviates from the true RAs after pre-
basecalling filtering. RA is defined as the proportion of reads
corresponding to a particular species relative to the total number
of reads. The true RA refers to the RA obtained after conventional
basecalling, which is considered the benchmark. Equation 1
provides the calculation of the deviation in RAs where TC_RAi

is the RA of species i after TargetCall, and B_RAi is the RA of species
i after conventional basecalling with Bonito.

RADeviation � ∑
for each species i

100*
TC_RAi − B_RAi| |

B_RAi
. (1)

3.2 Filtering accuracy

In Figures 3, 4, we assess the precision and recall of TargetCall
with different LightCall configurations for all use cases explained in
Section 3.1. We make four key observations. First, TargetCall’s
precision and recall are between 73.59%–96.03% and

42.57%–99.45% for different configurations of LightCall on
average across all three use cases tested. Second, the precision
and recall of TargetCall increases as the model complexity of
LightCall increases. Third, increasing the model complexity
provides diminishing precision and recall improvements beyond
the complexity of the LCMain model. Fourth, models smaller than
LCMain are sufficient for use cases with small-to-medium target
reference sizes, whereas more complex models are required for use
cases with large target reference sizes. We conclude that LCMain*2

provides the highest precision and highest recall compared to other
LightCall configurations.

3.3 Basecalling and relative
abundance accuracy

Table 2 shows the basecalling accuracy and the RA deviation
from the ground truth relative abundance estimation calculated for
each LightCall configuration and using Bonito without pre-
basecalling filtering. We evaluate the RA accuracy of TargetCall
in the viral detection use case. We use Equation 1 to calculate the RA
deviation as the RA accuracy metric.

We make the following two key observations. First, the RA
deviation results are negligible ( ≤ 0.1%) for TargetCall
configurations with recall higher than 98.5%. The only
exception to this observation is our results when using the
LCMain∕ 8 model. Although the basecalling accuracy drop is
approximately 10% between LCMain∕ 8 and LCMain∕ 4, the
deviation increases substantially because most of the reads
cannot be mapped (see the low recall result in Figure 4),
which affects the relative abundance estimations. Furthermore,
as the read accuracy decreases, the read deviates from its original
viral genome while it can still map to other viral genomes. We
note that a similar issue is not observed in the precision results of
the filtering use case (see Figure 3), as the goal of the filtering is to
differentiate a viral genome from a bacterial genome (Section 3.2)
rather than correctly mapping a read to its original viral genome
compared to other viral genomes.

Second, TargetCall’s minor inaccuracy is not biased toward any
specific portion of the target reference. Otherwise, the deviation of
the relative abundances would be higher. Losing a small number of
on-target reads randomly enables sequencing depth-of-coverage to
compensate for the loss of reads. We conclude that TargetCall’s high
recall enables accurate estimation for relative abundance
calculations.

3.4 Basecalling execution time

Figure 5 provides the total execution time of Bonito and Bonito
with TargetCall. We make three key observations. First, TargetCall
improves the runtime performance of Bonito by 2.13 ×–3.31 ×.
Second, both the precision and model complexity of LightCall
affect the runtime performance of TargetCall, resulting in a non-
linear relationship between model complexity and runtime
performance. Precision affects the runtime performance of the
filter as lower precision results in a higher number of falsely
accepted reads to be basecalled using conventional basecallers.
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Model complexity affects the runtime performance of the filter as
lower model complexity results in higher LightCall runtime
performance with lower precision. Third, decreasing the model
complexity increases the runtime performance to the point where
read filtering accuracy is no longer sufficient to filter out reads
correctly. This results in a significant number of reads being falsely
accepted by the filter, reducing the runtime performance of
TargetCall significantly. We conclude that TargetCall significantly
improves the execution time of basecalling.

3.5 End-to-end execution time

Figure 6 provides the total time spent on the genome analysis
pipeline of basecalling, read mapping, and variant calling with and
without the use of pre-basecalling filtering. We used minimap2 (Li,
2018) and DeepVariant (Poplin et al., 2018) for read mapping and
variant calling, respectively. We make three key observations. First,
TargetCall improves the runtime performance of the entire genome
sequence analysis pipeline by 2.03 ×–3.00 ×. Second, the choice of the

FIGURE 3
Precision of our evaluated use cases using TargetCall with different LightCall configurations.

FIGURE 4
Recall of our evaluated use cases using TargetCall with different LightCall configurations.

TABLE 2 Basecalling accuracy and relative abundance (RA) deviation.

Model name Basecalling accuracy (%) RA deviation (%)

Bonito 94.60 0.00

LCMain×2 90.91 0.03

LCMain 89.75 0.08

LCMain∕ 2 86.83 0.23

LCMain∕ 4 80.82 0.91

LCMain∕ 8 70.42 72.19
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variant callers affects the end-to-end runtime performance improvement
of TargetCall. Because we used a highly accurate neural network-based
variant caller, the execution time of variant calling dominated read
mapping (not shown). This reduces the end-to-end runtime
performance benefits of TargetCall, as the variant calling is performed
only on the alignments of on-target reads (i.e., on the reduced dataset)
determined during a relatively lightweight read mapping step. Third,
similar to basecalling execution time, multiple factors affect the runtime
performance of TargetCall with different LightCall configurations, which
results in a non-linear relationship between the runtime performance
and model complexity of LightCall. We conclude that TargetCall
significantly improves the end-to-end execution time of the genome
sequence analysis pipeline by providing up to a 3.00 × speedup.

3.6 Comparison to prior work

We compare TargetCall with the best LightCall configuration
(LCMain) with two state-of-the-art adaptive sampling methods,

UNCALLED and Sigmap. Section 3.1 of the Supplementary Material
explains the best model selection procedure. We used two different
reference genomes for the sepsis use case, but UNCALLED failed to
generate the index structure for our default human reference genome
(hg38) in a high-end server with 1TB ofmainmemory.We evaluate only
these two methods, as they can readily be repurposed as pre-basecalling
filters. The other methods are either not fully open source (Payne et al.,
2020) or cannot be repurposed as pre-basecalling filters (Bao et al., 2021).

We compare the recall of TargetCall with that of Sigmap and
UNCALLED. The ground truth on-target reads are determined by the
conventional pipeline. In our analysis, we observe that UNCALLED
could not be executed on the hg38 reference genome. To ensure a fair
assessment, we excluded hg38 from the performance evaluation of
UNCALLED. Figure 7 shows the recall of Sigmap, UNCALLED, and
TargetCall. We make two key observations. First, TargetCall provides
significantly higher recall, +3.09%/+23.15%, than UNCALLED/
Sigmap on average. Second, TargetCall consistently provides the best
recall compared to both methods across all use cases except COVID
detection, for which adaptive sampling methods are optimized.

FIGURE 5
Basecalling execution time of our evaluated use cases using TargetCall with different LightCall configurations.

FIGURE 6
End-to-end execution time of our evaluated use cases using TargetCall with different LightCall configurations.
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We compare the precision of TargetCall with that of Sigmap and
UNCALLED. Figure 8 shows the precision of Sigmap, UNCALLED,
and TargetCall. We make two key observations. First, TargetCall
provides significantly higher precision, +58.48%/+62.31%, than
UNCALLED/Sigmap on average. Second, TargetCall maintains high
precision as the target reference size increases, unlike priormethods.We
conclude that TargetCall significantly achieves higher recall and
precision in all use cases independent of the target reference size.

We compare the end-to-end execution time of TargetCall with
that of Sigmap and UNCALLED, and the results are shown in
Figure 9. We make two key observations. First, we observe that
TargetCall outperforms Sigmap by 9.72 × and UNCALLED by
1.46 ×. TargetCall’s higher runtime performance benefits come
from its higher precision in filtering out off-target reads. Second,
TargetCall’s runtime performance improvements become more
significant as the target reference size increases.

We evaluate the throughput of TargetCall and compare it with
that of Sigmap and UNCALLED. Throughput shows the number of
base pairs that the tools process per second. We use uncalled

pafstats for evaluating the throughput of UNCALLED and use
Sigmap and Bonito output for evaluating the throughput of
LightCall. We only evaluate the throughput of the LightCall
component of TargetCall, as it has a significantly lower
throughput than Similarity Check and is the bottleneck of
TargetCall. Figure 10 shows the throughput of Sigmap,
UNCALLED, and LightCall. We make three key observations.
First, we observe that LightCall improves the throughput of
UNCALLED/Sigmap by 1124.03 ×/42.08 ×. Second, we observe
that the throughput of LightCall is consistently high, unlike other
tools (e.g., Sigmap), whose throughput declines with target reference
length. Third, LightCall’s high throughput does not reflect its
execution time. The reason for this discrepancy between

FIGURE 7
Recall of Sigmap, UNCALLED, and TargetCall.

FIGURE 8
Precision of Sigmap, UNCALLED, and TargetCall.
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LightCall’s throughput and execution time is likely because, unlike
Sigmap and UNCALLED, TargetCall processes the entire read
before labeling it as on-target/off-target. We conclude that
TargetCall’s benefits can be amplified by optimizing it further via
integrating early filtering of reads that will match/not match the
target reference without processing the entire read.

Overall, we conclude that TargetCall 1) significantly improves the
end-to-end execution time of basecalling compared to priormethods by
filtering out a higher fraction of the off-target reads with its higher
precision, 2) improves the recall of prior methods in filtering reads, 3)
has a consistently higher throughput than all prior works, and 4) can be
accurately applied to target reference lengths that prior methods are
unable to be accurately applied while requiring much less (on average
5.76 ×, see Section 3.2 of Supplementary Material) peak memory than
prior works. We believe TargetCall can be used as a lightweight real-
time sequence classification and filtering tool due to its high throughput
if it is optimized to work with the first few chunks of a read.

3.7 TargetCall execution time breakdown

Weanalyzed the execution time breakdown of a pipeline that includes
TargetCall as the pre-basecalling filter in Figure 11. We make four key
observations. First, LightCall is the bottleneck of the new basecalling
pipeline that includes pre-basecalling filtering by consuming 61.44% of

the total execution timeon average. Second, basecalling is still an important
computational overhead for the pipeline by consuming 35.04% of the total
execution time on average. Third, the computational overhead of
basecalling increases with the increased ratio of on-target reads in the
dataset, such as in the viral use case. Fourth, the Similarity Check
component consumes less than 3.4% of the total execution time on
average anddoes not bottleneck the pipeline that includesTargetCall as the
pre-basecalling filter even when used in the expensive alignment mode.

4 Discussion

We propose TargetCall, a pre-basecalling filtering mechanism
for eliminating the wasted computation in basecalling. TargetCall
performs lightweight basecalling to compute noisy reads using
LightCall and labels these noisy reads as on-target/off-target
using Similarity Check. TargetCall eliminates the wasted
computation in basecalling by performing basecalling only on the
on-target reads. We focus on convolution-based networks for
TargetCall architecture for two reasons: (a) matrix multiplication,
the core operation in these networks, is highly suitable for hardware
acceleration, facilitating improved performance, and (b) the training
and inference of RNN and LSTM models involve sequential
computation tasks, which pose significant challenges for
acceleration on modern hardware such as GPUs and field-

FIGURE 9
End-to-end execution time of Sigmap, UNCALLED, and TargetCall.

FIGURE 10
Throughput of Sigmap, UNCALLED, and LightCall.
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programmable gate arrays (FPGAs) (Singh et al., 2024). We evaluate
TargetCall for three different genome sequence analysis use cases of
pre-basecalling filtering with varying requirements: covid detection,
sepsis detection, and viral detection. We show that TargetCall
reduces the execution time of basecalling by filtering out most
off-target reads, and it is more applicable than the state-of-the-
art adaptive sampling methods. We hope that TargetCall inspires
future work in pre-basecalling filtering and real-time sequence
classification that accelerate other bioinformatics workloads and
emerging applications with its high throughput and recall. We
explain future work and optimizations that can build upon
TargetCall in Section 4 of the Supplementary Material.
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