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Multi-omics data integration is a term that refers to the process of combining and
analyzing data from different omic experimental sources, such as genomics,
transcriptomics, methylation assays, and microRNA sequencing, among others.
Such data integration approaches have the potential to provide a more
comprehensive functional understanding of biological systems and has
numerous applications in areas such as disease diagnosis, prognosis and
therapy. However, quantitative integration of multi-omic data is a complex
task that requires the use of highly specialized methods and approaches.
Here, we discuss a number of data integration methods that have been
developed with multi-omics data in view, including statistical methods,
machine learning approaches, and network-based approaches. We also
discuss the challenges and limitations of such methods and provide examples
of their applications in the literature. Overall, this review aims to provide an
overview of the current state of the field and highlight potential directions for
future research.
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1 Multi-omic integration

Multi-omics integration is a series of methods and techniques aimed at the joint
interpretation of different omics which has been made possible by the accumulation of
measurements obtained with different high-throughput technologies and their deposit in
databases – especially public ones –. In the most ambitious studies, reserachers even talk of
pan-omics, the simultaneous measuring of a biological systems with all the omic
technologies available. Current multi-omic approaches, often involve large amounts of
measurements, with different units and dynamic ranges, and not necessarily synchronous.
Hence, multi-omics constitute a complex perspective that demands its own statistical tools.
It is thus an approach that has had a long gestation period, during which it was necessary to
standardize high-performance technologies, achieve a minimum number of samples
required to meet statistical requirements, and adjust computational tools to new
objectives. This article will address the computational tools that have been developed,
as they constitute both precedents and methods of interest. Although the main focus will be
on applications of multi-omic integration to build semi-mechanistic models of regulatory
programs in cancer, most of what we will discuss is indeed applicable to other instances such
as the study of other chronic and infectious diseases, and even in agricultural or
ecological studies.

Multi-omic integration is thus a relevant topic that has been generating a lot of interest
in recent times. One comprehensive example of how the ideas behind systematic integration
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approaches to this problem have been established can be found in
the work by Wu and collaborators Wu et al. (2019) which discusses
the integration of multi-level omics data through the use of variable
selection methods. The focus is on addressing the challenges and
methodologies associated with integrating diverse types of omics
data, such as genomics, transcriptomics, proteomics, and
metabolomics, to provide comprehensive insights into biological
systems. This comprehensive review highlights the importance of
integrating multi-omics data to understand complex biological
phenomena and improve the precision of disease diagnosis and
treatment. It outlines several approaches for data integration,
emphasizing the significance of variable selection techniques in
handling high-dimensional data and identifying relevant
biomarkers.

The authors also discuss different variable selection methods,
including LASSO (Least Absolute Shrinkage and Selection
Operator), elastic net, and other regularization techniques, that
are commonly used to manage the complexity of multi-omics
data. These methods help in reducing the dimensionality of the
data by selecting the most informative variables while discarding the
less relevant ones. They also addresses the limitations of current
variable selection methods, such as their sensitivity to data
heterogeneity and potential for producing false findings. It
suggests that integrating robust statistical techniques and
leveraging network-based approaches can improve the accuracy
and reliability of the findings thus providing a comprehensive
overview of the current state of multi-level omics data integration
using variable selection methods and offers insights into future
research directions to enhance the integration process. This
work is indeed an authoritative source on the issues discussed,
strongly founded on statistical thinking with a view on clinical
applications.

1.1 Generalities of computational integration

The promise of multi-omics integration is hence to provide a
more complete perspective of complex biosystems such as cancer by
considering different functional levels, rather than focusing on a
single aspect of this heterogeneous phenomenon. Specifically, three
objectives have been mentioned:

• discover molecular mechanisms, as well as their association
with phenotypes;

• group samples or improve the characterization of
known groups, and;

• predict phenotypes (Kristensen et al., 2014; Bersanelli
et al., 2016a).

The last two objectives can be ordered in a successive manner,
first we find samples that are grouped, then we predict what will
happen with the new samples that are integrated into the groups. A
byproduct of such a succession would be the identification of
biomarkers, which allow the recognition of a sample’s belonging
to a group. These two objectives also match known statistical
learning problems, such as clustering, classification, and
regression. On the other hand, the discovery of molecular
mechanisms, which ideally would follow the identification of

markers, relies on network inference, and largely requires the
generation of validation data.

Using different names, multi-omics integration has been divided
according to the moment of integration and the object to be
integrated (see Figure 1A). It is called vertical integration or
N-integration (Figure 1B) when different omics are incorporated
referred to the same samples, that is, the use of concurrent
observations of different functional levels. This is the type of
integration that this work aspires to. On the other hand,
horizontal integration or P-integration (Figure 1C) adds studies
of the same molecular level, made on different subjects, to increase
the sample size (Ulfenborg, 2019; Rohart et al., 2017).

Additionally, early and late integration are discussed according
to the time of execution. Early integration refers to the concatenation
of measurements obtained with different omics from the beginning,
before any classification or regression analysis, which disregards
heterogeneity between platforms. On the other hand, late integration
combines multiple predictive models, obtained separately for each
omics, ignoring interactions between levels and the possibility of
synergy or antagonism (Rohart et al., 2017); this is the first type of
multi-omics integration that occurred and despite delivering
extremely useful results, it has progressively been abandoned for
other approaches. Although less discussed, an intermediate
approach has also been proposed, in which a single set of data is
modeled after transforming the omics through separate analysis,
which respects the diversity of platforms, without necessarily
capturing interactions between functional levels (Kim et al., 2014).

In addition to the compatibility problem between platforms,
multi-omics integration faces challenges in terms of noise, which
increases with the number of variables contributed by each omics; to
dimensionality, since the number of variables always exceeds the
sample size, and to the interpretability of the final model, which
becomes more difficult as more variables are added (Kristensen
et al., 2014; Tini, 2017). To resolve the compatibility issue, different
normalizations are used, after independent pre-processing and
according to the requirements of each platform. The
normalization method required by most tools is the
standardization of the concatenated data, that is, bringing all
values to a mean of zero and variance of one, regardless of the
omics of origin. When the number of variables and noise differs
between platforms, the normalization of matrix factorization
analysis (MFA) is recommended, which divides the data block of
each omics by the square root of the first eigenvalue, in this way, all
platforms have the same weight in the analysis. To prevent the
largest block from dominating the analysis, it has also been used to
divide each block by the square root of the number of variables or the
total variance (Garali et al., 2018; Lock et al., 2013) and an algorithm
has even been proposed to detect the optimal normalization method
(Ciucci et al., 2017).

The problems of dimensionality and interpretability can be
faced at the same time with the application of concise
multivariate methods. Multivariate methods simultaneously study
multiple variables, being part of early integration. To make them
concise, a penalty is added to the fitting function, which contracts
the coefficients so that some variables end up with a zero coefficient
and leave the model, improving its interpretability, while at the same
time allowing adjustment despite excess dimensions. These methods
also use the decomposition of data matrices, in particular singular
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value decomposition (James et al., 2013), producing well-founded,
fast statistical tools, and, as described below, ready for application to
questions in complex phenotypes such as cancer.

In turn, network construction displays interactions between
pairs of entities, normally without restriction as to their origin,
allowing the integration of any set of omics. The focus on a subset of
interpretable interactions is made, either by using a priori known
functional networks such as metabolic or signaling pathways or by
using significance or connectivity thresholds. In this case, the
problem of excess variables with respect to the sample size
largely depends on the inference method, although tools have
been proposed to identify the optimal sample size according to
the acceptable classification error (Tarazona et al., 2020).

2 Data integration classification

Data integration methods are the technical means by which data
from different sources is combined into a single unified dataset,
often for analytical reasons. There are several different classes of data
integration methods that can be used to facilitate data integration,
including extract, transform, and load (ETL) processes, data
virtualization, data federation, and other methods. Each of these
methods offers distinct advantages and disadvantages in terms of
cost, scalability, and speed, so it is important to understand the
differences between them in order to select the best method for a
given data integration project. Particularly relevant to the discussion
on the integration of multi-omics is the fact that multi-omic data
often comes from high-throughput experimental sources with
different –often disparate– assumptions, dynamic ranges and
noise levels. Also, statistical approaches to integration must take
into account –albeit often in an incomplete way– the biology behind
the different omic sources and their relationships and the fact that,
for obvious reasons, the different features are often interdendent. In

what follows, we will discuss the different classes of data integration
methods and their relative strengths and weaknesses (see Figures
2, 3).

2.1 Late integration

The cluster-of-clusters (CoCA) analysis is perhaps the late
integration method that has had the most impact, being the base
tool of The Cancer Genome Atlas (TCGA), one of the largest
collection of standardized multi-omics data in contemprary
biomedicine (Network et al., 2012). It is a consensus clustering
algorithm based on the groups identified separately in each omics.
Although it was introduced for breast cancer data (Network et al.,
2012), later on, a decision tree was chosen to group, for instance,
gynecological tumors (Berger et al., 2018), as CoCA grouped them
by type of cancer. Although it disregards the relationship between
omics, this tool identified patterns that allow for speculation about
the effect one omics has on the other. For example, it was in Berger
et al. (2018) that the coincidence between the basal subtype, the
highest DNA hypomethylation and high genomic instability was
described, which could very well be the result of altered transposon
methylation, but proving it requires more data.

Leaving aside clustering algorithms, ActivePathways adds
gene significance from different omics analyses and performs a
functional enrichment analysis, both for the integrated list and
for separate significances, thus determining which enrichment
depends on which evidence. When applied to copy number
variants (CNVs) and gene expression data from the
METABRIC collaboration (Curtis et al., 2012), Paczkowska
and coworkers were able to identify pathways whose
enrichment depends on data integration, such as the negative
regulation of apoptotic processes in the enriched Her2 subtype,
and suggest markers (Paczkowska et al., 2020).

FIGURE 1
(A)Overview of data integration. (B) Vertical or N (also called subject-based) integration is represented by columns in which every subject (sample,
patient, etc.) has integrated information for different omic technologies. (C) Horizontal or P (also called omic-based) integration is represented by
columns in which every omic technology (DNA sequencing, RNASeq, Methylation, ATAC-Seq, Hi-C-seq, etc.) is measured in many (ideally all) subjects.
(Figure created with BioRender.com).
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As it can be seen, late integration tools take independent results
and do not consider relationships between omics, without this in any
way preventing the satisfaction of classification or functional
enrichment goals (for use cases, pros and cons of these methods
see Supplementary Table S1). Strictly speaking, the only goal of
multi-omic integration that demands early integration is that of
discovering multi-omic molecular mechanisms. Even so, there are
examples of early integration for all kinds of purposes.

2.2 Early integration

In contrast to adding independent results, concatenating the
data from the beginning allows for observing joint effects. However,
concatenation also produces very large data matrices, which
generally require dimensionality reduction strategies for their
analysis. Dimensionality reduction consists of constructing a
reduced set, q, of new variables, through linear combination of

the original variables, p. The new variables are called principal axes,
eigenvectors or variables, components or latent factors and are
formed by p coefficients (loadings), with at least one value
different from zero. There is no standard way of choosing the
size of q, but it is usually chosen according to the point where
the variance explained by each latent factor stabilizes. To find these
latent components, we seek to maximize the variance that each one
represents, but maintaining orthogonality between them, that is,
capturing the greatest amount of different information (Meng
et al., 2016).

The most common dimensionality reduction strategy is
principal component analysis (PCA), to represent complex data in
the plane. Although there are as many flavors as data qualities, such
as correspondence analysis, non-negative matrix factorization
(NMF), canonical correlation analysis (CCA), partial least squares
regression (PLS), or co-inertia analysis (CIA) (Meng et al., 2016).
Multiple factor analysis (MFA) was built on PCA, especially useful
for multi-omic integration, by considering the structure of the data,

FIGURE 2
Early integration is carried out by concatenating the different omic datasets prior to any data analysis. (Figure created with BioRender.com).
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normalizing each block of variables (omics) with its first eigenvalue
and then obtaining the principal components of the complete
concatenated matrix. MFA normalization tries to give all omics a
weight in the results relative to their variance - and not their size -
and solves the problem of early integration with heterogeneity
between platforms (De Tayrac et al., 2009).

Multi-omics Gene Set Analysis, MOGSA is a functional
enrichment tool specifically designed for single cell data, but
which exemplifies very well what is pursued with early
integration. To estimate enrichment, MOGSA projects target sets
onto the MFA axes, generating an enrichment value for each one. A
high enrichment value implies variables that explain a large
proportion of global information, from one or several blocks of
data, but always discarding exclusive effects of one block, such as the
batch effect associated with a platform. In this way it is possible to

find functional enrichment over disparate omics, without mapping
the different variables to the same genes, as would be necessary for
the aforementioned ActivePathways. Nor is it necessary to have
significance values per omics, eliminating the comparison between
groups that would require a differential expression analysis. In this
case, only the membership of each variable, of each block, in the
target sets is needed. In addition, the decomposition allows
excluding factors that are not of interest, improving
interpretability (Meng et al., 2019).

Another tool that starts from PCA is Joint and Individual
Variation Explained (JIVE), which decomposes the concatenated
matrix into submatrices - of lower rank - of shared variance,
individual variance, and noise. In addition to reducing
dimensionality, JIVE allows for the visual exploration of the
shared variance matrix and from that, the identification of

FIGURE 3
Late integration is carried out by analyzing each omic datasets separately to later integrate the different results. (Figure createdwith BioRender.com).
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potential biomarkers (O’Connell and Lock, 2016). When analyzing
miRNA and transcript expression data from glioblastoma, JIVE
finds more individual variance than shared variance between the
omics, and more in transcript data than in miRNA data. In turn, the
shared structure recovers more variance from miRNAs than from
transcripts. Since the structures are orthogonal, the information in
the shared variance matrix, where cancer subtypes can be
appreciated, is not related to the individual matrices. Since
originally the subtypes were identified by grouping gene
expression, the weight of miRNAs was an unexpected result. By
examining the coefficients on the shared structure, the authors were
able to identify both transcripts and miRNAs with roles in the
disease (Lock et al., 2013).

In addition to functional enrichment and the search for shared
structures, matrix decomposition can be used to group tumors, as
Cantini and collaborators did with different tools, with different
assumptions. Working with simulated data, intNMF and iCluster
identified the best groupings, with iCluster being worse, but allowing
all types of data and distributions, without the restriction of negative
values of NMF, and finding a common latent component between
omics (Shen et al., 2009). Working with data from TCGA, MCIA,
generalized canonical correlation analysis RGCCA and JIVE are the
best for finding factors associated with clinical characteristics or
biological functions. The RGCCA, which considers different and
non-shared latent factors per omics, performs best on breast cancer
data. It is suggested that this identification of latent factors per omics
not only allows finding shared biological processes, but also
processes that are complementary between data blocks (Cantini
et al., 2021).

RGCCA has also been used to identify metabolites with potential
as markers for hepatic cancer or cirrhotic tissues. Multi-Omic
inTegrative Analysis (MOTA) is a tool that uses RGCCA to
efficiently estimate the correlation between elements of different
omics. On the premise that phenotypes not only diverge in the
abundance of molecules, but also in the way they are connected,
MOTA estimates differential correlations with RGCCA results and
only connects pairs of elements with values above a pre-specified
threshold. In this way, MOTA produces a lean network and a score
per node. This score reflects both the connectivity of the node and its
differential expression, and facilitates the selection of nodes of
interest among those with the highest score. In their comparison
of hepatic tumors and cirrhotic tissues, the authors find that the top
30 transcripts with the best score are enriched in cancer genes and
processes related to hepatic cancer, which does not happen with
other equivalent tools (Fan et al., 2020). Thus, the identification of
possible markers is added to the list of objectives achieved with early
integration techniques.

RGCCA is generalized by the ability to analyze more than two
blocks of variables simultaneously and is regularized by including a
penalty on the coefficients (Tenenhaus et al., 2014). This is not a lean
method because the penalty it uses, known as ridge, does not set any
coefficient to zero, but simply brings it closer to this value. This
penalty reduces the variance of the fit and produces coefficients
whose absolute value is used to discern the most relevant variables in
the components. However, the cut-off point on the most relevant is
always arbitrary. Instead, LASSO and ENET penalties overcome this
difficulty by contracting some coefficients to zero, in lean methods
that result in the automatic selection of variables as we will discuss

later (James et al., 2013). Further information on use cases, pros and
cons of early integration methods, can be found in
Supplementary Table S2.

3 Data integration approaches

The vast majority of multi-omic integration approaches are
founded upon statistical modeling, classification and feature
selection methods. In this section we will present some of the
most successful algorithms to reduce dimensionality and extract
relevant information allowing for integrated models in multi-omics.

3.1 LASSO and related approaches

3.1.1 LASSO
The Least Absolute Shrinkage and Selection Operator (LASSO) is

a type of regularization technique used for regression models, aimed
at both improving prediction accuracy and interpretability. Such
regularization adds a penalty to the regression coefficients
proportional to their absolute values. This has the effect of
shrinking some coefficients to zero, effectively performing
variable selection. For this reason, LASSO is widely used to
handle overfitting in models with many predictors and to
identify a subset of predictors that have the most significant
impact on the response variable.

LASSO penalty has been added to various statistical
methodologies, resulting in the concise (i.e., sparse) versions of
analyses such as PCA, JIVE, PLS, and RGCCA. Its ability to select
variables has been exploited to suggest possible regulators of gene
expression, biomarkers, and, as desired here, to propose
relationships between different functional levels. Let us examin
this in more detail.

The difference between the LASSO and ridge penalties is the
object on which they work. While the ridge penalty scales the l2
norm of the coefficient vector, LASSO transforms the l1 norm, using
the same λ parameter with values between 0 and 1 that is chosen by
cross-validation (CV). The difference between these norms is a
power, as the l1 norm of a vector is defined as the sum of the absolute
values, while the l2 norm involves the sum of the squares (James
et al., 2013). Outside of this small difference in definition, the
mentioned statistical analysis methods remain largely unchanged
in terms of goals and assumptions.

Without necessarily using partial least squares fitting, regression
analysis with LASSO penalty has achieved the previously ignored
goal of identifying potential regulatory elements. An example is the
use of miRDriver to suggest miRNAs that extend the effect of a copy
number alteration to their trans targets. Using the TCGA breast
cancer data, it can be seen that miRDriver tends to select miRNAs
related to cancer and with prognostic value, such as miR-1224, miR-
31, let-7 g, and let-7b (Bose and Bozdag, 2019). Another example is
the asymmetric integration of DNA methylation, CNVs, miRNAs,
and TF binding sites with differentially expressed genes in breast
cancer subtypes. Comparing the prediction capacity of the omics
separately and together, the integrated models had better
performance, with a significant increase when adding
methylation data. Although there are shared regulators among
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the four subtypes, including E2F1 and CITED2, the possible
regulatory mechanism is not developed, but rather the
stratification capacity of a transcriptional signature with basal
subtype regulators is proven (Huang et al., 2019).

Going further, possible regulatory mechanisms have been
proposed based on this type of regression. Setty et al. modeled
differential expression between glioblastomas and normal tissue,
with a LASSO regression that integrates promoter methylation and
average copy number, with the count of TFs and miRNAs that can
bind to the regulatory region. The copy number was selected by the
LASSO in all cases, while the methylation coefficients were always
kept as large negative values. The variability of the coefficients
corresponding to miRNAs can be explained by a low correlation
with the expression of the target gene, due to the simultaneous
action of other regulators or, as has been suggested before, because
miRNAs only modestly affect gene expression. When the key
predictors were searched by subtype and gene, using a
dependency analysis, it was observed that REST, a repressor of
neuronal genes in non-neuronal cells, is key in the different
subtypes. Although the interactions shown there come from the
literature, the regulatory model depends on the selection of REST
and miR-124 in the regressions of all subtypes, and the selection of
YY1 and miR-132 in one of them (Setty et al., 2012).

Similarly, Li et al. integrated CNVs, methylation, and
microRNAs to predict ovarian cancer data from TCGA. The
decomposition of the matrices yields factors of, on average,
45 CNV loci, 43 CpG sites, 5 miRNAs, and 44 genes. While the
correlation between CNV events and expression levels remains
positive, the correlation with methylation varies. When deriving
correlation networks from the co-selected elements, the authors
emphasize that the elements would remain isolated if it were not for
the integration. Although these networks do not necessarily reflect
causal relationships, they can serve as a starting point for studying
the underlying mechanisms (Li et al., 2012).

Without focusing on any mechanism, integration has also been
used to build multi-omic networks, from which general conclusions
can be drawn regarding the importance of different functional levels
in cancer. Sohn et al. built networks of CpGs, miRNAs, and CNVs
with the coefficients of a predictive model of gene expression in
ovarian cancer. The integratedmodel predicts expression better than
single-omic models. Patterns of highly expressed genes have as their
preferred predictor the alteration in the number of copies; while
genes with greater variability are better explained with methylation,
which would indicate a dynamic effect of DNA methylation
regulation, which is increasingly supported by evidence
(Rossnerova et al., 2020). As for the networks, the network of the
integrated model has greater modularity and enriches for more
specific functions than single-omic networks. Edges with higher
weight (coefficient) tend to involve methylation sites and as the
weight decreases the proportion of CNVs increases, while miRNAs
remain stable (Sohn et al., 2013).

Although they only integrate data from DNA methylation and
breast cancer expression, Lee et al. built networks with the
coefficients of LASSO regression; implementing a weighted kernel
to share information between all samples, without failing to obtain
specific coefficients for each subtype. The use of the kernel improves
the predictions of genes linked to some subtype and especially to the
enrichment of Her2, which only has 16 samples. For each target

gene, they only consider the CpG sites of the pathways in which the
gene participates and the model selects between 200 and 300 sites,
which form networks with 88.82% of the edges in common between
subtypes. The most connected CpGs participate in cancer
progression, as happens with LEP and FGFR3 in the luminal B
subtype. The best-predicted genes encode GTPases, transcription
factors, and DNA binding proteins. By adding the error rates of the
genes in a pathway, it is possible to estimate the impact of
methylation on the pathway, leaving in the top of prediction of
the four subtypes pathways of carbohydrate metabolism such as
glycolysis/gluconeogenesis, the pentose phosphate pathway and
fructose and mannose metabolism (Lee et al., 2017).

Finally, LASSO selection has also been used to filter potential
therapeutic targets from among multiple genomic elements. This
was possible by adjusting a streamlined multivariate Cox model of
ovarian cancer expression data, miRNAs, DNA methylation, and
copy number alteration. The resulting signature contains
156 elements and predicts progression-free survival better than
larger signatures based on a single omics. The integrated
signature is enriched for genes involved in immune response and
metabolism. By ordering the elements of the signature by their
ability to stratify patients, it is possible to further filter the list of
potential biomarkers (Mankoo et al., 2011).

Although dimensional reduction alone may be sufficient to
predict phenotypes and group samples, LASSO penalization
facilitates the identification of potential regulators and the
construction of concise networks and, in doing so, opens the
possibility of fulfilling the early integration promise of
discovering multi-omic mechanisms. The major problem with
LASSO penalization is the instability of the selected variables.
This is an inherent problem and has a well-established palliative,
based on the frequency with which variables are selected in random
subsets of the data. Frequencies can be summarized with the Fleiss
score, which reflects concordance between subsets and takes larger
values as stability increases. You can also simply choose a cut-off
point on the selection frequency (Bose and Bozdag, 2019; Bravo-
Merodio et al., 2019), which however adds arbitrariness. Regardless
of the chosen strategy, highly correlated variables are more likely to
be selected in each subset (Lê Cao et al., 2011).

In addition, LASSO penalization has shown limitations when
there are groups of strongly correlated variables within the same
block, in which case LASSO tends to choose only one variable. In
situations where there are more samples than variables, ridge
penalization performs better. In situations where there are more
variables than samples, as is the case with omics, LASSO can only
select as many variables as there are samples. An ideal method
should eliminate trivial variables and include complete groups as
long as one of the variables is selected. With this in mind, an
intermediate penalization between ridge and LASSO, known as
elastic net, was proposed (Zou and Hastie, 2005).

3.1.2 ENET
Elastic net, ENET for short, combines the two penalties, ridge

and LASSO, to obtain a method that contracts the regression
coefficients to zero; but also filters complete groups of correlated
variables. Due to the selection of groups, elastic net selects more
variables than LASSO and often achieves more accurate predictions,
especially in the presence of collinearity.
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In its simplest derivation, elastic net penalty consists of the sum
of ridge and LASSO penalties, so it involves two parameters, λ2
which acts on l2 and λ1 to scale l1. To simplify, the λ parameters are
replaced by an α value, which converts the penalty to:

1 − α( )|β1| + α|β|2 ≤ t; α � λ2
λ2 + λ1

This way, when themixing parameter, α, is 1, the ENET becomes
the ridge penalty and when α is 0, it becomes the LASSO. Therefore,
the ENET exists between 0 and 1, although the evidence indicates
that the best performance is achieved with values very close to either
of the two extremes. Being a strictly convex function for any value
greater than 0, identical predictors receive the same coefficient,
which guarantees the grouping of strongly correlated variables. The
similarity with LASSO allows for efficient computation and its
application to solve both regression and classification problems
(Zou and Hastie, 2005).

Thus, the mixing parameter controls how sparse the model is
and is chosen by cross-validation (CV). As with the other penalties,
CV based on small data sets, smaller than 100 samples, produces
excess variance that can be problematic. Similarly, the values of
the coefficients have no relation to the original measures, which
makes their interpretation difficult (Kirpich et al., 2018). Finally, in
both penalties, the variables lack a measure of significance that
supports their selection (Pineda et al., 2015). The difference between
LASSO and ENET lies in an advantage of elastic nets when there is
an excess of relevant predictors or when there are groups of
correlated variables. Otherwise, when the models are highly
sparse, the performance of both penalties is equivalent
(Neto et al., 2014).

The superiority of the elastic net increases with the number of
samples and the level of correlation; but it declines after a while
when the number of predictors increases (Neto et al., 2014).
Counterintuitively, false positives also increase with more
samples, fewer predictors, and higher correlation, which is
controlled by raising the value of α. It is on this basis that the
value of 0.5 for the mixing parameter is recommended, as it controls
the type I error and tends to filter out complete groups of correlated
variables (Kirpich et al., 2018).

Instead of choosing one penalty over the other, the use of both
has been proposed for the robust identification of markers. Based on
three cohorts with lipidomic data, horizontal integration with the
two penalties yields a marker and a classification of subjects based on
that marker, which surpasses differences between cohorts. Testing
the same combined scheme with data on pancreatic
adenocarcinoma expression and, separately, on myeloid leukemia,
the recovery of highly discriminatory genes is repeated, which, when
connected in a network of interactions, model the differences
between cancer and normal tissue (Bravo-Merodio et al., 2019).

In addition to joint use, Pineda and company proposed a
permutation strategy in order to evaluate the significance of the
selection. The two penalties were used to predict bladder cancer
expression from genetic variants, methylation, or a combination of
both omics. The result of LASSO is a selection of 9 genes
significantly explained by genetic variants, 19 by CpGs, and
23 by the combined model. Contrary to expectation, the selection
by the elastic net is smaller, with 11, 6 and 4 genes, respectively.
Although the intersection between penalties is small, it is taken as

additional evidence of the model. Notably, the genes selected by both
LASSO and ENET achieve similar p-values (Pineda et al., 2015).

Another innovation is the adjustment of different penalties by
omics, which Liu et al. implement to classify samples of acute
myeloid leukemia and, independently, prostate adenocarcinoma,
based on the integration of gene expression and DNA methylation
data. The idea is that forcing uniform contraction over omics with
different sizes and different magnitude effects can unfairly punish
important but more subtle variables than the entire block of the
other omics. Then, the adjustment of different penalties addresses
the problem of early integration with compatibility between
platforms. Although this adds a parameter to adjust per omics,
which requires more computing time, it does not change the
underlying method, as the programming packages that contain
the elastic net, such as glmnet and caret, usually already include
this option. Thus, the authors fix α at 0.5 and optimize a λ

contraction value and a κ contraction radius, which ultimately
improve the model’s predictability. Simulated data indicate that
the greater the contrast in the number of variables between the
blocks, the greater the differential penalty should be, loading the
contraction of coefficients on the omics with more noise. AML
classification improves when the penalty affects themethylation data
less, as chromosomal aberrations cannot be identified only with
expression. On the other hand, prostate tumor classification does
not improve with differential penalty, but the optimal κ is slightly
above one and selects an excess of transcripts, mostly already linked
to cancer (Liu et al., 2018).

Due to its origin, the elastic net shares difficulties with LASSO.
Namely, cross-validation parametrization, the interpretability of the
coefficients, and their lack of significance. Fortunately, each of these
issues has, if not complete, well-established solutions, such as the use
of alternative k-folds, leave-one-out, or bootstrapping in the case of
parameter choice or the obtaining of empirical values, as Pineda
et al. did (Pineda et al., 2015), to address the lack of significance
values. Although the coefficients are not comparable to the original
values of the omics, Huang and collaborators (Huang et al., 2019)
show how the coefficients reflect the strength of the association
between predictors and even give them a sign. As tools for early
integration, both multivariate sparse methods face differences
between platforms, either with normalizations that control the
weight of each omics (De Tayrac et al., 2009) or by varying the
penalty to which they are subjected, as Liu and coworkers
demonstrated (Liu et al., 2018).

Finally, by depending on dimensionality reduction methods,
they inherit the issues of matrix decomposition. Since latent
components are linear combinations of the original variables,
only relationships with an extended linear effect on different
predictors can be captured, when probably the effect of
alterations is not concentrated on a single factor (Rohart et al.,
2017; Vlachavas et al., 2021). Additionally, the number of
components limits the information captured. Although the first
components explain the majority of the variance and the last ones
would be linked with noise; cancer data encompasses tissue signals,
exposure to mutagens, treatment, and immune infiltration, among
others, which can increase the amount of necessary components.
Even more, the components of the sparse models, with most
coefficients at zero, explain a lower percentage of variance (Lê
Cao et al., 2008). When it comes to classifying samples, the
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convention is to recover K-1 components, where K represents the
number of classes (Lê Cao et al., 2011). However, when seeking
multi-omic mechanisms, there are no classes to guide us.

It has been suggested that dividing the data blocks into
functional pathways or sub-blocks can simplify the choice of the
number of components, by giving them a more direct interpretation
(Garali et al., 2018). Since both sparse methods end up in correlation
networks, it is also relevant to highlight that these networks fail to
distinguish between direct and indirect relationships, which could be
resolved by estimating the precision matrix (Fan et al., 2020).
Although the precision matrix is nothing but the inverse of the
covariance matrix, its acquisition is not a simple process when there
are co-linear blocks or more predictors than observations (Garali
et al., 2018). Therefore, when implementing a sparse multivariate
model, it is necessary to weigh the aforementioned disadvantages
against the ability to integrate large amounts of variables without the
strict need for prior filtering (Pineda et al., 2015).

On the issue of how these methods are able to deal with the
complex, heterogeneous nature of cancer at the molecular scale it is
relevant to notice that under some circumstances LASSO, in
particular, may not be the best choice to accommodate cancer
related heterogeneity. ENET, on the other hand, may be more
robust. This is so since it combines the l1 penalty of LASSO and
the l2 penalty of Ridge Regression, allowing it to perform variable
selection (like LASSO) while also handling multicollinearity (like
Ridge Regression), this makes it more robust in situations where
there are groups of correlated predictors, as it can select entire
groups of correlated variables rather than just individual variables.
ENET will work in two ways under such circumstances:

1. The l1 component of Elastic Net encourages sparsity, meaning
it can select a subset of important predictors, which is useful in
heterogeneous data where some variables may be irrelevant.

2. The l2 component helps to stabilize the solution when
predictors are highly correlated, which is common in
heterogeneous data.

Heterogeneous data often have multicollinearity issues due to
the presence of similar or redundant features. The l2 penalty in
Elastic Net helps to mitigate these issues by shrinking correlated
predictors together rather than forcing the model to select only one
from a group. Hence ENET’s ability to select groups of correlated
variables makes it particularly useful for data with inherent group
structures or when predictors are naturally grouped together due to
the nature of the data. We have to consider however that Elastic Net
requires tuning two regularization parameters, λ1 and λ2, which
control the balance between l1 and l2 penalties. Cross-validation is
typically needed to find the optimal values. For very large datasets
this may become computationally burdensome.

One also has to consider, however, that both LASSO and Elastic
Net can produce false findings when applied to multi-omics data
because these methods assume a uniform error distribution andmay
struggle with long-tailed distributions or data contamination.
Additionally, they do not inherently account for the complex
correlations and network structures often present in multi-omics
data, leading to potential inaccuracies in identifying relevant
associations and in variable selection. Interestingly, to improve
upon this, Wu and collaborators Wu et al. (2018) developed a
robust approach to better address these challenges in the context of
joint copy number variant and gene expression concurrent data.

In brief, the method proposed (termed Robust network-based
penalized estimation) consists in the following: 1) Using a partially
linear model with a nonlinear cis-acting CNV effect for each gene
expression (GE). 2) Developing a robust loss function to
accommodate the effects of long-tailed distributions and data
contamination. 3) With this penalization approach addressing
high dimensionality and identifying relevant CNVs. 4)
Introducing a network structure to account for correlations
among CNVs, 5) Developing an effective computational
algorithm and rigorously establishing consistency properties. This
approach aimed to improve prediction accuracy, stability, and
biological plausibility in multi-omics data analysis. More
information regarding integration approaches based on LASSO/
ENET can be found in Supplementary Table S3.

3.2 Canonical correlation analysis and partial
least squares

In the case of SGCCA–where the “S” stands for sparse–, the goal
of RGCCA to extract shared information between blocks of data is
maintained for each of them, that is, not a single shared structure is
obtained as with JIVE, but rather a latent component is generated for
each block. This block component summarizes the variance of its
own data while being correlated with other blocks. The correlated
blocks depend on a C parameter (more on this function below). In
addition to being regularized as sparse, SGCCA has as its main
characteristic the maximization of covariance. While RGCCA can
maximize covariance, correlation, or a compromise between the
two, SGCCA only optimizes covariance, prioritizing finding block
components that contain the highest possible variance and, as a
second priority, recovering correlation with neighboring
components.

Thus, SGCCA is defined with the optimization problem:

maxw1 ,...,wj∑J
j,k�1cjkg(cov(Xjwj, Xkwk)) s.t. ‖wj‖2 � 1

‖wj‖1 ≤ sj
{ ,

j � 1, . . . , J
Where:

X1 , . . . , Xj � Data blocks

wj � Coefficient vectors

Xjwj � Block componentsg

� Convex continuous function allowing different optimization criteria such as :

· identity function which simply optimizes covariance

·Horstfunction,which penalizes negative correlation among blocks

· centroid function allowing negative correlations
C � Squarematrix whose size is given by the number of blocks, values 1 and 0,

depending onwhether the blocks are connected or not

sj � positive constant that determines penalization degree, that is how sparse is w

The (Tenenhaus et al., 2014; Garali et al., 2018) C matrix allows
for examining different relationships between functional levels. In
the original publication of SGCCA, three C designs were studied by
Tenenhaus and collaborators with respect to the relationship
between gene expression, chromosomal imbalance, and the
location or subtype of pediatric gliomas. The design with the
three blocks connected seeks simultaneous alterations of the two
functional levels with respect to the subtypes. When the connecting
point is location, the objective is the alterations associated with the
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subtypes, regardless of the relationship between expression and
imbalance. Finally, placing expression as the bridge between the
other two blocks speaks of imbalances that affect expression and in
turn affect the subtype. The second design had the best predictive
values, confirming that in that case the aim was to determine the
subtypes, although the expression block yields more discriminatory
information than the imbalance block. A smaller number of
variables are also reported to be selected compared to
comparable methods and low sensitivity to the g function
(Tenenhaus et al., 2014).

Just as Principal Component Analysis (PCA) and Partial Least
Squares regression (PLS), can be derived as special cases of RGCCA
(Garali et al., 2018), the sparse version of PLS, sPLS, is based on
SGCCA. There are however, some interesting differences between
these approaches: PLS is primarily used for regression and
classification tasks, especially when dealing with highly collinear
and high-dimensional data. PLS works by projecting the predictors
and the response variables into a new space and finding a linear
relationship in this projected space. It creates components (called
latent variables) that are linear combinations of the original
predictors, with the goal of maximizing the covariance between
the predictors and the response.

PCA aims to reduce the dimensionality of a dataset while
retaining as much variability (information) as possible. It works
by performing noise reduction by keeping only the components with
significant variance. For this reason, PCA is used for feature
extraction and preparation for other machine learning algorithms.

In contrast, the mixOmics package in R has implemented
instances of Tenenhaus’s SGCCA specifically designed for both
vertical integration and horizontal integration and, especially,
supervised extensions dedicated to classification and prediction.
In doing so, it strongly relies on the robustness of the Canonical
Correlation Analysis (CCA) family of methods. CCA is used to
understand the relationships between two sets of variables. It aims to
find linear combinations of variables in each set that are maximally
correlated with each other. It is particularly useful in multi-view data
analysis (the case of multi-omics), where two sets of variables (e.g.,
different data modalities) are measured on the same set of
observations.

For usability, mixOmics replaces the penalty parameter with the
number of elements to recover from each dimension and facilitates
its adjustment with functions taken directly from statistical research.
At the same time, the package captures measures of error and
stability of the selected variables, allowing for efficient visualization.
When examining its own tools, the authors report higher
discriminatory capacity of the subtypes of breast cancer in the
integration of transcriptome and proteome data compared to
using miRNA expression data, which, however, are strongly
correlated with the transcriptome (González et al., 2012; Rohart
et al., 2017; Singh et al., 2019).

The advantages of sPLS include greater stability with collinear
data - which is common in omics - compared to other types of
regression or even canonical correlation analysis (CCA) itself;
explained variance similar between different levels of
penalization; orthogonality of latent factors within the same
block, but not of factors from different blocks - which arise from
the maximization of covariance - (Rohart et al., 2017); superior
performance to classification tools such as random forests and

nearest centroids; and 4 different modes of decomposing the data
matrix, with different purposes. The regression mode, or PLS2, aims
to explain Y (e.g., dependent features) from X (independent
variables), so the decomposition is asymmetric and the obtained
latent factors will not be the same as when predicting X with Y. The
classic mode is identical to the regression mode and is also identified
as PLS2, but uses a different normalization, which produces different
Y coefficients. The canonical mode, on the other hand, is symmetric,
as its goal is to model the relationships between blocks, without
assuming a direction in them. As an exploratory mode, it cannot be
subjected to the same adjustment criteria as the supervised
alternatives. Finally, the invariant mode would also be
asymmetric, as it does not decompose the response but rather
performs a redundancy analysis of X with respect to Y (Lê Cao
et al., 2008; Lê Cao et al., 2011).

Coupling mixOmics’s sPLS and MOGSA, Chapell and
colleagues do not suggest a possible multi-omic mechanism, but
rather a regulatory axis that would be desirable to intervene. By
integrating data from basal breast cancer cell lines, which include
DNA methylation, gene expression, protein expression,
phosphoproteomics, and histone modification, TGFB1, TGFBR2,
KLF6, KLF12, PIK3R3, VIM, NES, RASL11B, HOXC9, LAMB3,
PRKCD, PRKCE, and MELK were recovered in the first two latent
components. Upon further review, the authors find that TGFb
signaling differs effectively between lines with and without
BRCA1 mutations and that its enrichment depends on the
phosphorylation of SMAD5. Since in tumor cells the stimulated
TGFb receptor phosphorylates SMAD1/5 and promotes cell
migration, it is concluded that the TGFb-TGFBR1-SMAD1/5 axis
could be of clinical interest (Chappell et al., 2021). More information
about PLS/CCA integration approaches can be found in
Supplementary Table S4.

4 Network integration

In his 2016 review, Bersanelli hierarchically divided integrative
methods by distinguishing methods based on networks from those
independent of them (Bersanelli et al., 2016a). As seen, multivariate
methods can generate multi-omic networks, but they do not need
them to concretize integration, but rather work at the level of the
data matrix. On the other hand, there are tools that exploit the ability
to find dependency relationships between any pair of random
variables, converted into nodes (Hawe et al., 2019), such as the
expression of a miRNA and the methylation of a CpG.

Moving forward by pairs, the relationships are blind to the effect
of others and end in dense networks of limited interpretability
(Hawe et al., 2019). Therefore, an extra step is needed, which focuses
on interactions that meet certain criteria, restricting themselves to
interactions with support in the known.

It is also possible to estimate conditional dependencies (partial
correlations) through Gaussian graphical models, which obtain the
network from the precision matrix (Hawe et al., 2019). However, this
approach is still being explored and will only be touched upon in the
context of DRAGON (Determining Regulatory Associations using
Graphical models on multi-Omic Networks). Since omics produce
data matrices with more predictors than observations, the covariance
matrix is not invertible and cannot be used to calculate partial
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correlations. DRAGON introduces a penalty that contracts the
covariance matrix and allows the obtaining of a contracted precision
matrix. In this way, it has become a tool that is still being evaluated, but
with promising results, such as the identification of ELF4 and ZBTB33,
two co-expressed TFs due to their co-methylation, in TCGA breast
cancer data (Weighill et al., 2021).

While the connection of any pair of variables generates
multipartite networks, multi-omic integration is also possible
through multi-layer networks. Multipartite networks have as
many types of nodes as integrated omics and the edges represent
both intra and inter-omic relationships. In contrast, multi-layer
networks represent relationships within the same set of nodes
through different functional levels, being then a compilation of
the networks derived from each omics (Bersanelli et al., 2016a). The
multiple links connecting a pair of nodes in this formalism are the
basis of layered integration algorithms.

Additionally, there are examples of integration that do not fit
into any of the sections. Such is the case of the division of cancer
types into those characterized by mutations and those linked to the
number of copies. This division arises from the analysis of the
modularity of a bipartite graph, of patients and alterations, and
places breast cancer in the group associated with CNVs. Although
the network involves CNVs, point mutations, and DNA
methylation, effectively integrating different omics; the nodes are
not random variables, but isolated entities that connect to the
network according to the presence or absence. The network also
does not match the multi-layer formalism, as the nodes only exist in
their own functional level, which would be that of alterations in
cancer. However, by ignoring the relationships between alterations,
which only connect through co-occurrence in a patient and involve a
filtering of complete omics to frequent events, this work qualifies as
intermediate integration. Despite the relatively simple strategy, the
network approach allows such a powerful conclusion as suggesting
different oncogenic mechanisms for tumors, from different tissues,
that group around specific combinations of functional events
(Ciriello et al., 2013).

Another example is the identification of transcription factors
that are sensitive to DNA methylation in most cancer types. In this
case, it all starts with a gene expression regression network, which
links TFs and genes, and the integration is more of an incorporation
of methylation patterns into the attributes of the genes, to evaluate
the effect of epigenetics on the TF-gene relationship. Comparing the
different types of cancer, they found that only 0.28% of the
regulatory relationships mediated by methylation appear in more
than 4 types of cancer, yet there are TFs that consistently are
sensitive to methylation. These TFs regulate more targets, show
differential expression, and are enriched in signal transduction
pathways, cell adhesion, and the ETS family (Wang et al., 2020).
Here, the nodes do represent random variables, but from the same
omics, and the network is essential for the joint interpretation of the
expression and methylation data, which is the final objective of the
integration. Additionally, this debatable example of multi-omic
integration by networks, considers the effect of one functional
level on the other and focuses on the interactions, first to
recognize those that depend on DNA methylation, and then to
contrast the different subtypes.

As disparate as these examples may be, they highlight the
importance of connections, whether between TFs and genes or

between tumors through alterations and therefore, align with
network biology, this systems biology approach focused on
inferring network models on biological phenomena and their
analysis using graph theory. In particular, the examples presented
here belong to the probabilistic approach of network biology. This is
a top-down approach, which builds the model to be tested from
massive data, not just from the (limited) information, already stored
in the databases (Hernández-Lemus, 2014). Next, we will delve
deeper into this probabilistic approach and its implications for
multi-omic integration.

4.1 Probabilistic networks

Most gene network reconstruction methods, start with a single
omics dataset –usually gene expression–, used to suggest
mechanisms from the relationships between genes. Think about
the culprits by association in interaction networks (Lee et al., 2011).
The difference with genetic regulation networks is that the edges
reflect statistical dependencies between expression patterns. Two
genes connected by their expression patterns may hold a functional
relationship or simply co-occurrence (Margolin et al., 2006). The
difference with multi-omic networks is that the variables exist on
different scales and need to be normalized. If the measure of
statistical dependency is correlation, it’s not enough to have
comparable values, the variance distributions must also be similar
(Tarazona et al., 2020).

Although Pearson’s correlation may be the most common
measure, there are multiple tools that use, fort instance, mutual
information (MI). Mutual information is a measure of statistical
dependence that comes from information theory, and by treating
information as a reduction of uncertainty, it measures the reduction
in uncertainty of one variable with respect to the information about
another variable (Mousavian et al., 2016). MI is indeed the
maximum entropy/maximum likelihood non-parametric measure
of statistical significance.

I X, Y( ) � ∑
xϵX

∑
yϵY

p x, y( )log p x, y( )
p x( )p y( )

I X, Y( ) � H X( ) −H X|Y( ) � H Y( ) −H Y|X( ) � I Y,X( )
Mutual information has an advantage over correlation in

capturing non-linear relationships, being insensitive to
parameterization, and able to be estimated quickly, all desirable
characteristics for multi-omic integration, with non-linear
relationships, different scales, and a large number of variables.
On the other hand, mutual information is always positive, even
when evaluated on random patterns, so it is necessary to establish
empirical thresholds (Margolin et al., 2006). Additionally, it is a
symmetric measure, which does not allow giving direction to
interactions (Hernández-Lemus and Rangel-Escareño, 2011).

In the so-called relevance networks, mutual information is
calculated similarly and all pairs below a threshold are discarded.
Although this strategy highlights functional nodes, it is unable to
distinguish direct and indirect relationships. Thus, the ARACNE
(Algorithm for the Reconstruction of Accurate Cellular Networks)
was built on relevance networks, which finds irreducible, probably
regulatory, statistical dependencies by getting rid of indirect
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interactions. ARACNE’s DPI (Data Processing Inequality) examines
each triangle in the relevance network and discards the edge with the
least weight, considering that mutual information decreases rapidly
as the distance between nodes increases (Margolin et al., 2006).

ARACNE has been exploited for integrating miRNA and
transcript expression data in breast cancer. Comparing networks
of cancer and adjacent normal tissue, Drago-Garcia et al. observed a
reduction of links between miRNAs and transcripts in cancer,
despite the fact that there are more miRNAs, which connect to
each other and are essential for maintaining network cohesion. They
also report an enrichment of processes related to the immune system
and cell adhesion, as well as a very clear association between the
miR-200 family and the DKL1-DIO3 cluster, which participates in
epithelial-mesenchymal transformation. Regarding the technique,
the authors find quantitative differences in the distribution of MI
between miRNAs and transcripts, which may reflect the differences
between the molecules and foreshadow difficulties in distinguishing
direct interactions in the multi-omic approach (Drago-García
et al., 2017).

The solution for discriminating between direct and indirect
relationships may be conditional mutual information. If the
conditional information between a pair of nodes, with respect to
a third, is less than a threshold, then the edge connecting the pair
should be removed (Mousavian et al., 2016). In this way, Liu and
colleagues built networks for different types of cancer, based on
mutual information between transcripts and TFs, given the
promoter methylation pattern and copy number. Then, to
examine the regulatory effects, they adjusted linear regressions
that show better predictability by integrating the omics than
using only expression data, genes that strongly depend on copy
number and genes that mainly depend on methylation. These latter
ones overlap between cancer types and are associated with
tumorigeneisis. Finally, they used promoters whose methylation
affects transcription to group cancer types and examined the
survival curves of the groups, identifying 10 types of cancer,
including breast cancer, where methylation is an important
determinant of tumor aggressiveness. Despite the approach
yielding highly interesting results, the authors warn that it
requires large sample sizes and data with sufficient variance to
find reliable networks (Liu et al., 2019).

In turn, the lack of direction of the edges can be resolved by
switching from searching for regulators for each gene, to searching
for regulators for groups of genes co-expressed through different
conditions. LeMoNe, later LemonTree, begins with a two-way
clustering, which combines co-expressed genes with high
probability into enriched clusters of specific functional categories
(Joshi et al., 2007). As a second step, the algorithm sorts a list of
possible regulators, according to their ability to predict the
expression of the cluster in different conditions. Although only
TFs, miRNAs and CNVs have been tested separately as regulators,
there are no formal restrictions on the type of variables that can be
integrated. In the case of miRNAs, most are assigned to a single
group, but there are repeated miRNAs between groups. In the case of
CNVs, LemonTree produces modules with more significant
enrichments than the dedicated tool CONEXIC (Bonnet et al.,
2010; 2015). This example proposes a solution to the problem of
symmetry in statistical dependency measures, such as MI and
correlation, and successfully identifies potential regulators for

groups of genes associated with functions, but in the process
erases the boundaries between regulators and ignores their
possible interactions.

4.1.1 Uncertainty in probabilistic network
integration

The probabilistic component of network modeling introduces a
powerful framework for capturing the inherent uncertainty in
biological systems, which is particularly relevant when integrating
multi-omics data. Probabilistic models, such as Bayesian networks
and Markov random fields, represent the relationships between
variables as probabilistic dependencies, allowing for the
quantification of uncertainty in the predicted interactions
(Vahabi and Michailidis, 2022; Subramanian et al., 2020;
Bersanelli et al., 2016b). This is especially important in biological
contexts where data is often noisy, incomplete, and subject to
various sources of variability. By modeling the dependencies
probabilistically, these approaches can incorporate prior
knowledge, handle missing data, and provide more robust
predictions that reflect the uncertainty associated with the
biological processes being studied (Miao et al., 2021; Wang W.
et al., 2021; Sathyanarayanan et al., 2020).

Uncertainty quantification in probabilistic models is typically
achieved through the estimation of probability distributions over the
possible states of the network components (Graw et al., 2021;
Athieniti and Spyrou, 2023). For example, in a Bayesian network,
the relationships between variables are represented by conditional
probability distributions, which describe how the probability of one
variable depends on the state of other variables (Mallick et al., 2024;
Fang et al., 2018; Wang et al., 2019). The uncertainty in these
relationships can be quantified by the width of these distributions,
indicating the level of confidence in the inferred interactions. In
practice, this allows researchers to not only predict the most likely
interactions but also to assess the degree of uncertainty associated
with each prediction, which can be critical when making decisions
based on these models, such as identifying potential drug targets or
biomarkers (Nicora et al., 2020; Wang R.-S. et al., 2023; Wang Y.
et al., 2021).

In the context of multi-omics data integration, incorporating
probabilistic modeling allows for a more nuanced understanding of
the complex interactions between different omic layers. For instance,
when integrating genomics, transcriptomics, and proteomics data, a
probabilistic approach can account for the uncertainty in how
changes at the genomic level translate to changes at the
transcriptomic and proteomic levels. This is particularly valuable
given the often non-linear and context-dependent nature of these
interactions. By quantifying uncertainty, probabilistic models can
help to identify which relationships are robust and likely to hold
across different datasets and conditions, and which are more
tentative and may require further validation (Yin et al., 2022;
Yang et al., 2020).

The effect of uncertainty quantification on integration methods
is profound. It can enhance the interpretability of the integrated
models by providing a measure of confidence in the predicted
interactions, helping researchers to distinguish between strong,
well-supported findings and those that are more speculative. This
is particularly important in translational research, where the
consequences of acting on uncertain or incorrect predictions can
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be significant. Furthermore, probabilistic models can be used to
prioritize experimental validation efforts, directing resources
towards investigating the most promising hypotheses that emerge
from the integration process.

Moreover, probabilistic modeling facilitates the integration of
prior knowledge, such as known biological pathways or regulatory
mechanisms, into the analysis. This prior information can be
encoded as prior probability distributions, which are then
updated as new data is integrated. This Bayesian updating
process allows the model to refine its predictions as more data
becomes available, continually improving the accuracy and
reliability of the integrated network. This dynamic aspect of
probabilistic modeling is particularly valuable in the fast-evolving
field of omics, where new data is constantly being generated. A
comparative table of probabilistic network approaches is presented
in Supplementary Table S5.

The algorithms described here infer potentially regulatory
networks from complete omics. The resulting graphs are not
complete, because some edges do not pass thresholds if we are
talking about MI networks or conditional MI, or because there is an
initial restriction on who is joined to whom in LeMoNe/LemonTree.
Once the graphs are obtained, the focus of the analysis can be
narrowed even further around nodes with important roles in the
network. As a result of this, there is an indirect filter on the nodes,
only the connected ones appear, so that the perspective of the
analysis is guided by the data itself. On the other hand, there is a
whole set of tools guided by interactions already deposited in
databases, as detailed below.

4.2 Networks known a priori

Instead of relying completely on statistics, multi-omic data can
be organized based on known interactions, thus preserving proven
edges that otherwise might be diluted in accumulated noise (Koh
et al., 2019). By simply retaking what is known, this approach is not
useful for proposing multi-omic mechanisms, because the
relationships between different functional levels are not known,
at least not to the degree of specificity required. On the other hand,
by focusing on already established information, it leads the
discussion directly to functions and genes, without getting lost in
the sea of new data. In other words, the integration guided by known
networks is not the approach to finding novelties but rather to put
the already collected information to use, in the form of proposed
markers or signatures and therapeutic targets. Additionally, since
this approach does not necessarily depend on statistics, the sample
size becomes less important, and it is even possible to talk about a
network for each patient.

The simplest applications of this approach only map altered genes
to the network and record topologically important nodes, such as hubs
and bottlenecks. APODHIN (Analysis of Pan-omics Data in Human
InteractomeNetwork) sums the logFC values of the different omics, if it
is a vertical integration, or cohorts, for horizontal integration, and
reports the associated pathways, in addition to the topologically
important genes (Biswas et al., 2020). Instead of altered genes, Cava
et al. map genes with prognostic ability of basal breast cancer. The
innovation here is double, because first, they extract a subnetwork per
patient, using the prognostic genes that also have an alteration in the

number of copies in that patient and then look for drugs linked to the
five genes with the highest degree, turning a simple analysis into a tool
for personalized medicine. In basal tumors, the simultaneous alteration
of BRCA1 and TP53 is observed in half of the cases, both being central
nodes in the network, potentially susceptible to various drugs, and thus
desirable therapeutic targets (Cava et al., 2021).

The most sophisticated applications calculate some type of score
by taking advantage of the network. Such is the case of NetICS
(Network-based Integration of Multi-omics Data), which seeks out
mediating genes that connect the alterations with the effectors, based
on the functional interactions deposited in databases, such as KEGG
and miRTarBase. Since the networks a priori have direction, it is
enough to diffuse downstream the disturbance score and upstream
the differential expression score of the effectors, using a heat
diffusion algorithm, to obtain a mediation score. After repeating
the process for each sample, the combination of the scores generates
a global value. In breast cancer, the mediating genes are enriched in
signaling pathways. EP300 and TP53 stand out, each downstream of
5 different genes, altered in 50% of the samples, and connected
through the effectors. The major disadvantage of NetICS is a bias
towards highly connected genes, which by chance, have a greater
probability of having altered genes as neighbors (Dimitrakopoulos
et al., 2018).

Similarly, data from GWAS, eQTLs, mQTLs, ATAC-seq, and
the annotation of the Roadmap project have been integrated to
propose key genes. The process starts by connecting genes with the
SNPs that affect them, directly or indirectly, and locating those genes
in two different networks of protein-protein interactions (PPI), a
general and a tissue-specific one. For each of the affected genes,
functional and prognostic signatures enrichment must be verified,
such as MammaPrint and PAM50, among the first neighbors and
obtain a combined score of prognostic enrichment in the two
networks. By calculating this score for breast cancer, it can be
concluded that SNPs affect cancer and signaling pathways, such
asMAP kinases, TGF-beta, andWNT. The 20 genes with the highest
prognostic enrichment include known cancer genes and novelties
such as RNASEH2A, which exhibits abnormal expression in tumors
and is associated with copy number alterations, lower survival, and
ER-tumors (Chen et al., 2020).

Mergeomics promises to integrate any set of omics, following
largely the same steps as in the previous example. First, it evaluates
the enrichment of any predefined set of genes, in any type of disease
association data (GWAS, TWAS, EWAS) and if there are different
types it calculates a meta-value of significance. Later, the enriched
sets are projected onto a known regulatory network, seeking disease-
associated subgraphs and specifically “hubs.” After giving the nodes
a weight that reflects the confidence of the adjacent edges, the
contribution to the weight of the hub of the enriched set is
compared to chance. If the contribution is significant, the hub is
proposed as key to the disease (Shu et al., 2016).

While the examples described so far focus on the identification
of genes of interest, iOmicsPASS uses networks to discover
signatures that distinguish between subgroups of samples and
which, at the same time, form a graph of functional nodes,
which can be used to learn about the associated phenotype. This
implementation focuses on integrating transcriptome and
proteome, normalizing gene expression with the number of
copies. Moving on validated transcriptional regulation and PPI
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networks, the abundance of a pair of connected nodes becomes the
weight of the edge that connects them. If the protein of a TF is
elevated at the same time as its target, it is considered that the
interaction is probable and it is given greater weight. Then, a nearest
centroid algorithm looks for subgraphs that predict the phenotype,
which constitute the classification signatures. The signatures
obtained for breast cancer do not completely separate the Her2-
enriched subtype from the luminal tumors, but divide the Her2+
group according to a subgraph linked to DNA replication and repair.
Other interesting subgraphs are the enrichment of signalling by
estrogen receptor and the regulation by FOXA1 and AP1 in the
luminal B subtype compared to the luminal A, which in turn exhibits
sub-expression of pathways related to the cell cycle. The basal
subtype is not clearly defined when analyzing the omics
separately, but it is when integrated, highlighting the importance
of transcriptional regulation (Koh et al., 2019).

Following the idea of adapting a priori networks to the studied
phenotypes, Glass et al. propose a tool that combines the three
approaches to network integration. PANDA (Passing Attributes
between Networks for Data Assimilation) starts from a
probabilistic network and two a priori networks and finds a
network that incorporates both sources, through the exchange of
edges (Glass et al., 2013). PANDA is not a multi-omic integration
tool, but rather a transcriptional network inference method based on
the multi-layer formalism. However, algorithms have been built on
PANDA to incorporate miRNA data, chromatin accessibility and
omics in general, all through the fusion of probabilistic and a priori
networks to the transcriptional network.

The reader interested in a comparative view of a priori network
integration methods will found further information in
Supplementary Table S6.

4.3 Multilayer networks

Multi-layer network integration consists of collapsing the
different network layers into a single graph that adds the
different sources of information. The layers are the networks
derived from each omics under analysis, with the peculiarity of
always including the same group of nodes. This allows to weigh the
edges by the level of evidence and give strong support to any possible
discovery. On the other hand, the restriction in terms of nodes
requires an amount of information not always available. Reviewing
the algorithm for single omics PANDA, it is possible to see these
advantages and disadvantages.

PANDA seeks concordance between layers, refining each
network with the information from the other, highlighting the
aspects of the data that concern the a priori networks and the
aspects of the a priori networks that best reflect the data. To this end,
PANDA starts from: 1) a network inferred from the data, which is
usually given by a correlation measure and provides the initial
probability of co-regulation; 2) a known prior regulation
network, consisting exclusively of nodes included in the data; and
3) a network of transcriptional factor interactions, with the same
restrictions as the regulation network. In general, the idea is to
combine the networks iteratively, each time with small changes
governed by an update parameter and calculating a concordance
score, whose convergence gives the stop signal. Concordance

considers the accumulated evidence that gene j is regulated by
TF i, given the cooperation (interaction) between i and other TFs
that regulate j, and the co-expression of j with other genes regulated
by i. Initially, the weight of all the edges is normalized to z-scores and
is updated with the information shared between networks in each
iteration, to end with a value that reflects the confidence in the
interaction, being negative when the evidence says that there is no
connection between the nodes and positive in the opposite case
(Glass et al., 2013).

As can be seen from the PANDA premises, the algorithm is quite
general and could be used to search for other transcription
regulators, as is indeed the case. PUMA (PANDA Using
MicroRNA Associations) is an adaptation that finds miRNAs and
TFs, following the same steps, but starting with a transcript-miRNA
co-expression network, the PPI network, a regulatory network that
includes validated links with miRNAs and a list of regulators
(miRNAs) that do not cooperate with each other and which
should therefore not appear in the PPI network (Kuijjer et al.,
2020). Although cooperation between regulators other than TFs has
not been ruled out, there are also no established networks that can
join the PPI network. Currently, as many expression predictors as
desired could be integrated with PUMA, simply by adding them to
the list of non-cooperators; alternatively, SPIDER allows considering
the chromatin accessibility of a phenotype. The peculiarity of
SPIDER (Seeding PANDA Interactions to Derive Epigenetic
Regulation) is that the regulation network that feeds PANDA
incorporates DNAse-seq data, so that the edges involve a TF
motif that overlaps with an open chromatin region and with the
regulatory region of the target gene, including sites outside the
proximal promoter. Adding the information on chromatin
accessibility predicts networks similar to those observed with
ChIP-seq and works even better when the focus is on distal
regulatory regions (Sonawane et al., 2021).

Thus, the so-called message passing allows for the discovery of
new, phenotype-specific interactions that could not be found with
prior network-guided integration and would be difficult to identify
among the edges of probabilistic networks. However, in the case of
PANDA, the accessible new interactions are limited to the
mechanism where a regulator acts on co-expressed targets or
cooperates with other regulators of the same target (Glass et al.,
2013). Other tools that implement message passing are not subject to
this restriction, because they are dedicated to classification.

SNF (Similarity Network Fusion) is an example of message
passing for patient clustering. It starts by building similarity
networks between samples according to the different omics,
which are then combined iteratively, until the convergence of all
the graphs into one. The final network incorporates both common
and complementary information and contains a reduced amount of
noise, by discarding the similarities without much weight. The
integration with SNF of DNA methylation, transcript expression,
and miRNA data from glioblastoma multiforme shows that each
omics produces very different topologies, but together they sustain a
subset of subtypes with significant differences in terms of survival. In
the integrated network, 49.5% of the edges come from two omics and
17.2% from the three studied, the rest are only supported by one
omic, but they represent great similarities. In addition to the
classification as such, the networks help to understand the
heterogeneity between patients, for example, the intra-subtype
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similarity can be traced to particular alterations, such as the
overexpression of CTSD in the second group, which affects the
response to the drug normally used to treat this type of cancer
(Wang et al., 2014).

MONET (Multi Omic clustering by Non-Exhaustive Types)
follows a similar strategy, starting with an omics similarity
network and then searching for heavy and recurrent subgraphs
between the omics, with a greedy algorithm. Each subgraph
represents a module of similar patients, without necessarily
having a connection between the modules or two modules
arising from the same omics. This makes it possible to integrate
incomplete omics and to identify atypical patients that do not fit into
any module. The evaluation of the tool with methylation, transcript
expression andmiRNA expression of different types of cancer, yields
a majority of modules based on a single omics and consistent
groupings between restarts (Rappoport et al., 2020).

SNF and MONET share up to a certain point the omics
similarity networks, making them suitable for few sample
analysis and immune to the differences of scale and size between
platforms. Although they differ in terms of criteria for integrating
the networks of each omics, both tools are discarding the edges with
less weight, giving them robustness against noise and heterogeneity
of the data (Wang et al., 2014). In short, the properties of the
message passing are desirable for cancer classification. If the goal is
to search for multi-omics mechanisms, the message passing is also
functional, as demonstrated by PANDA, PUMA and SPIDER,
although there are alternatives.

The approach by Kim et al. starts off the same as SNF andMONET
with omics similarity networks, in addition to a priori known omics
interactions networks. Known regulatory pairs are integrated when
expression of transcripts andmiRNAs are incorporated; loci affected by
CNVs are also considered, when this omics is included. Then, instead of
iteratively fusing the networks, the coefficients are adjusted to obtain a
linear combination of them, which appears to be the analytical
equivalent of the previous examples. To find the best option, a
study comparing the results of each tool is needed, as well as the
properties of the algorithms, which, to the best of our knowledge, is
currently unavailable. What can be said at the moment is that SNF/
MONET would have an advantage, depending exclusively on omics,
without needing prior networks. As has been observed previously, the
results of Kim et al. based on more comprehensive information surpass
those that depend on partial information. Coincidentally, there are
isolated components in the integrated network, but most of the nodes
are connected, suggesting that the different functional levels interact,
even more, the authors suspect synergy between methylation and
miRNAs in the regulation of expression (Kim et al., 2014).

Another example without message passing, just to integrate
transcripts and proteins, starts from two independent co-
expression networks, whose adjacency matrices allow computing
the overlap between networks and finding conserved modules in
both levels. Afterwards, the edges are filtered according to their
association with the phenotype. The functional enrichment of the
modules highlights the coordination between levels (Gibbs et al.,
2014). In this case, the requirement of multilayer networks for the
mapping between levels is very clear, although the relationship
between transcripts and proteins is not 1:1, nor would it be
between transcripts and methylation or miRNAs, exhibiting
another advantage of PANDA and its variants.

In conclusion, networks allow for multi-omic integration with
few compatibility issues across platforms. It is possible to
distinguish, with some exceptions, three different approaches to
network integration, each with its advantages and disadvantages, but
clearly geared towards specific objectives. Integration with
probabilistic networks is more versatile and allows for general
observations on how different functional levels are connected,
but the discussed articles have a clear bias towards the search for
potential regulators and eventually towards the proposal of multi-
omic mechanisms. A priori networks facilitate the finding of nodes
of interest, with the expectation that predictors that exploit multiple
types of data will be more robust and reflect the complexity of the
disease (Gibbs et al., 2014). Finally, the approaches that merge
networks pose a more complete classification of tumors, without
necessarily assuming a common structure at all functional levels
(Rappoport et al., 2020). The great exception are the PANDA
derivatives, closer to a network fusion (merging) tool than to the
rest of the approaches, but oriented towards the proposal of
regulators.

To simplify the recovery and comparison of the networks
produced by these tools, dedicated databases have been created.
iNetModels contains multi-omic networks related to different
metabolic conditions (Arif et al., 2021); while GRAND (Gene
Regulatory Network Database) contains transcriptional and
transcript-miRNA integration networks, obtained with PANDA
derivatives, from data in the Cancer Cell Line Encyclopedia
(CCLE) and TCGA (Ben Guebila et al., 2022). The ultimate
purpose of these repositories is to facilitate the reuse of already
publishedmulti-omic networks and foster directed experimentation.
However, even without the difficulties of distinguishing direct and
indirect interactions or assigning direction to edges, it is necessary to
remember that correlation is not enough to infer causality
(Mousavian et al., 2016). Case uses, pros and cons of these
approaches are presented in Supplementary Table S7.

4.4 Newperspectives to face biomedical and
clinical challenges using multiomic
approaches

After giving a panoramic view of the methods, approaches and
tools of multiomic integration, it may result helpful to consider how
have these resulted useful to cope with challenging problems in the
biomedical and clinical setting (Heo et al., 2021; Yoo et al., 2018).
Here, we will discuss just a few examples of the many available,
trying to present a glimpse of what lies ahead and what can be done.

One relevant field of application of multiomics and multiomic
integration in cancer is the identification of novel biomarkers
(Ivanisevic and Sewduth, 2023). In this regard, we can comment
on the work by Liu and collaborators (Liu et al., 2021) that integrated
multiomic data for 293 primary gastric patients from the TCGA
collaboration analyzing copy number alteration and somatic
mutation data to discover dysregulated factors in transcriptional
regulation. These lead them to the identification of 31 molecular
markers of genomic variation, includingWASHC5 whose role could
not be revealed using single omic methods. Using multiomic
integration of genomic and transcriptomic data, Rahman and
coworkers (Rahman et al., 2020) found evidence of GDF10 as a

Frontiers in Genetics frontiersin.org15

Hernández-Lemus and Ochoa 10.3389/fgene.2024.1425456

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1425456


novel therapeutic biomarker for breast cancer, finding that
downregulation of GDF10 is associated with breast cancer
progression and patient’s survival, thus becoming a therapeutic
biomarker for treating breast tumors. By integrating confederated
data on mutations, copy number changes, expression changes, and
protein–protein interactions from 12 different studies Li et al. (2020)
were able to identify key biomarkers in ovarian cancer.

Multi-omic studies can also be useful to reveal new tumor types
and subtypes (Gómez-Cebrián et al., 2021; Olivier et al., 2019). That
was the case of the work by Yang and collaborators who developed a
robust approach to identify clusters corresponding to cancer
subtypes (Yang et al., 2022). Several applications of similar
approaches can be found in connection to breast cancer (Nguyen
et al., 2020; Wang Z.-z. et al., 2023; Sivadas et al., 2022), glioblastoma
(Yuan et al., 2020; Park et al., 2019), hepatocellular carcinoma
(Ouyang et al., 2020), lung adenocarcinoma (Zhao et al., 2021;
Wang et al., 2022), and ovarian cancer (Guo et al., 2020).

Therapeutic designs can also benefif form multiomic analyses
(Celebi et al., 2019; Zielinski et al., 2021). There are examples of the
usefulness of integrating omic analytics in the design of novel drug
combinations to treat drug-resistant multiple myeloma (Kumar
et al., 2022), to identify novel drug targets for clear cell renal
carcinoma immunotherapy (Reustle et al., 2020), to find new
therapeutic targets for esophageal squamous cell carcinoma (Jin
et al., 2021) and even to tackle with muyltiple tumor types using a
pancancer approach (Ali et al., 2018).

These are but a handful of the real world applications of
multiomic integrative analytics, however we hope that these may
help the readers to look up into other applications of these extremely
versatile sets of tools and methods.

5 Conclusion

Along this review article we have discussed some issues on
multi-omic data integration that we considered fundamental when
considering studies on cancer biology. These issues are by necessity
incomplete and biased to our own research experience. However, we
consider that these may serve as a good starting point for scientists
investigating the exciting cues that current omic technologies may
provide on our integrated understanding of molecular oncology.

Among these issues we can mention the following (stated in the
form of research highlights):

• We have introduced concept of multi-omic integration, which
combines data from various omics layers to gain a
comprehensive understanding of biological systems.
Emphasizing the importance of integrating different types
of omics data to uncover complex interactions and
mechanisms underlying biological processes and diseases,
while reviewing some challenges and opportunities in
multi-omic integration, including data heterogeneity,
scalability, and interpretation of integrated results.

• We have introduced the concept of single omic networks,
representing interactions within individual omics layers, such
as gene regulatory networks derived from gene expression
data. While recognizing that the network approach is just one
of several integration alternatives, we discussed various

methods for constructing single-omic networks, including
correlation-based approaches, mutual information, and
machine learning algorithms, and provide examples of
applications of single-omic networks, such as identifying
key regulatory genes and pathways associated with diseases
and biological processes.

• Given the high variability of the underlying biological
phenomena involved in cancer settings and the intrinsic
and extrinsic sources of experimental noise, we have also
stress the relevance of probabilistic modeling approaches.
We mentioned how probabilistic networks are able to
capture uncertainty in biological interactions and enable the
integration of multiple sources of evidence. Introduced
Bayesian networks and Markov random fields as examples
of probabilistic network models used in bioinformatics and
discussed the advantages of probabilistic networks, such as
their ability to handle noisy data, incorporate prior knowledge,
and provide probabilistic inference of biological relationships.

• Full integration implies also considering prior knowledge
available. In this regard, a priori networks, depicting
existing knowledge of biological interactions and pathways
obtained from literature, databases, and experiments were
considered. Examining how a priori networks can serve as
valuable prior information for guiding the integration of
multi-omic data and interpreting integrated results.

• The relatively nascent field of multilayer networks is introduce
as a novel paradigm to fully integrate multiomic data into a
single (somewhat coherent) framework. We briefly considered
algorithms and tools for multilayer network integration, such
as PANDA, PUMA, SPIDER, SNF, and MONET, which
leverage message passing and iterative optimization to
uncover phenotype-specific interactions and classify tumors.

In brief, we have presented a panoramic view of some
contemporary approaches for integrating multi-omic data,
including probabilistic networks, a priori networks, and network
fusion methods, each with its advantages and applications in
understanding the complex biological phenomena related to
tumor biology in the context of biomedical research.

The future of data and network integration in the multi-
omics and cancer research, presents thus vast opportunities for
advancing our understanding of complex biological systems. As
omics technologies continue to generate increasingly large and
diverse datasets, the integration of these datasets through
sophisticated computational and statistical methods will be
essential for extracting meaningful insights. The development
of more robust and scalable integration methods, such as those
that can handle data heterogeneity, noise, and the high
dimensionality typical of multi-omics data, will be crucial.
These methods must be capable of discerning subtle biological
signals from background noise and integrating prior knowledge
to make accurate predictions about disease mechanisms and
therapeutic targets.

Additionally, the integration of network-based approaches
offers exciting prospects for uncovering the intricate web of
interactions that underlie biological processes. The ability to
construct and analyze multilayer networks that incorporate data
from different omic layers—such as genomics, transcriptomics, and
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proteomics—will enable researchers to capture the complexity of
molecular interactions and their impact on phenotypes. Future
developments in this area may include the refinement of
algorithms that can efficiently fuse multiple omic datasets into
cohesive networks, as well as the application of machine learning
techniques to identify key regulatory nodes and pathways. These
advancements could lead to more personalized and effective
treatments by revealing novel biomarkers and therapeutic targets
specific to individual patients or subgroups, thus pushing the
boundaries of precision medicine.

As we look forward, the integration of increasingly complex and
high-dimensional data, alongside the development of more
sophisticated network models, will likely play a pivotal role in
the next- generation of biomedical research and healthcare.
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