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Background: Genome-wide association studies (GWASs) have identified 38 loci
associated with ulcerative colitis (UC) susceptibility, but the risk genes and their
biological mechanisms remained to be comprehensively elucidated.

Methods: Multi-marker analysis of genomic annotation (MAGMA) software was
used to annotate genes on GWAS summary statistics of UC from FinnGen
database. Genetic analysis was performed to identify risk genes. Cross-tissue
transcriptome-wide association study (TWAS) using the unified test for molecular
signatures (UTMOST) was performed to compare GWAS summary statistics with
gene expression matrix (from Genotype-Tissue Expression Project) for data
integration. Subsequently, we used FUSION software to select key genes from
the individual tissues. Additionally, conditional and joint analysis was conducted
to improve our understanding on UC. Fine-mapping of causal gene sets (FOCUS)
software was employed to accurately locate risk genes. The results of the four
genetic analyses (MAGMA, UTMOST, FUSION and FOCUS) were combined to
obtain a set of UC risk genes. Finally, Mendelian randomization (MR) analysis and
Bayesian colocalization analysis were conducted to determine the causal
relationship between the risk genes and UC. To test the robustness of our
findings, the same approaches were taken to verify the GWAS data of UC on IEU.

Results:Multiple correction tests screened PIM3 as a risk gene for UC. The results
of Bayesian colocalization analysis showed that the posterior probability of
hypothesis 4 was 0.997 and 0.954 in the validation dataset. MR was
conducted using the inverse variance weighting method and two single
nucleotide polymorphisms (SNPs, rs28645887 and rs62231924) were included
in the analysis (p < 0.001, 95%CI: 1.45-1.89). In the validation dataset, MR result
was p < 0.001, 95%CI: 1.19-1.72, indicating a clear causal relationship
between PIM3 and UC.

Conclusion:Our study validated PIM3 as a key risk gene for UC and its expression
level may be related to the risk of UC, providing a novel reference for further
improving the current understanding on the genetic structure of UC.
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1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease of the
colon that can affect individuals of any age but is most common to
those aged between 20 and 40 years old (Voelker, 2024). UC has a
high morbidity rate, imposing huge burden to the healthcare system.
The epidemiology of UC has changed over the past few decades, with
developed Western countries showing a relatively high prevalence
rate (Ng et al., 2017). In developing regions such as South America,
Asia, Africa, and Eastern Europe, the incidence of UC is also steadily
increasing (Aniwan et al., 2017; Shouval and Rufo, 2017). UC is
related to immune and genetic factors and it will increase the risk of
developing intestinal tumors. At present, the mechanism of the
disease is not clear and we still face a lack of effective treatment.
Therefore, a better understanding of the underlying mechanisms of
UC is required to help develop effective therapeutic targets.

Family and twin studies revealed a genetic susceptibility to the
pathogenesis of UC. The prevalence of UC among the relatives of
UC patients is significantly higher than that in the background
population (Annese, 2020). Genome-wide association studies
(GWASs) have identified at least 133 UC-associated loci (Wang
et al., 2014), but the exact roles of many loci still remained unknown.
Most GWAS signals are located in non-coding regions, which often
overlap with gene regulatory elements and highly enriched
expression quantitative trait loci (eQTL), suggesting that
transcriptional regulation plays a crucial role in influencing UC
susceptibility.

Multi-marker analysis of genomic annotation (MAGMA) is a fast
and flexible tool for gene and gene set analysis based onGWAS data (de
Leeuw et al., 2015). MAGMA uses multiple regression methods to
effectively integrate linkage disequilibrium (LD) between variants to
discover multi-variant effects. Moreover, this approach also enables
pathway analysis and detection of genes and pathways associated with
disease risk based on gene set analysis using gene-level regression
models (Sniekers et al., 2017). Transcriptome-wide association study
(TWAS) combining eQTL and GWAS data could be used to identify
genes that influence the complex traits and diseases through genetic
regulation of gene expressions (Wainberg et al., 2019; Strunz et al.,
2020). TWAS has been successfully applied to screen risk genes for a
variety of complex human diseases, such as Alzheimer’s disease (Hao
et al., 2018; Luningham et al., 2020), cardiovascular disease (Theriault
et al., 2019), etc., Most of the current TWAS studies calculate the genetic
expression matrix in each tissue, but this may overlook shared local
regulation of gene expression. Some eQTLs have been confirmed to be
able to regulate gene expression in different tissues (Liu et al., 2017). To
overcome such a problem, the unified test for molecular signatures
(UTMOST) has been developed to conduct cross-tissue gene-level
association analysis. Higher statistical efficiency (Hu et al., 2019) of
cross-tissue association analysis allows it to be increasingly applied to
study complex diseases, such as inflammatory bowel disease,
schizophrenia, etc., (Uellendahl-Werth et al., 2022). Fine-mapping of
causal gene sets (FOCUS) is a fine-mapping method that estimates a set
of potentially causative genes by prioritizing null models in null
simulations using predicted eQTL weights, LD, and GWAS
summary statistics, and accurately identifies disease-causing genes
when genes in a certain region affect downstream traits (Mancuso
et al., 2019). It has been well used in the studies of Parkinson’s disease
and lipid metabolism (Mancuso et al., 2019; Shi et al., 2024).

In this study, MAGMAwas used for gene annotation, and cross-
tissue analysis of UC was conducted based on integrated data of the
eQTL data (GTExv8) of the Genotype Tissue Expression (GTEx)
project (https://www.gtexportal.org/) and the GWAS data of UC in
the FinnGen database (https://storage.googleapis.com/finngen-public-
data-r9/summary_stats/finngen_R9_K11_UC_STRICT2.gz). In addition,
functional summary-based imputation (FUSION), conditional and
joint analysis and FOCUS were used to process the GWAS data of
UC to screen risk genes. Reliable UC risk genes were obtained by
taking the intersection of the results of the four analyses. In order to
verify the robustness of the results, a GWAS data set of UC on IEU
(https://gwas.mrcieu.ac.uk/) was utilized to conduct the
same analyses.

2 Methods

2.1 GWAS data source of UC

GWAS data of UC, which included 5,034 cases and
371,530 controls of European population, were obtained from the
FinnGen database. The subjects in this dataset were strictly
diagnozed as having UC and had data provided by Finland’s
Kansaneläkelaitos (KELA). There were at least two health data
repositories (HDRs) in this dataset at the same time. Informed
consent, quality control and other information can be found in
published papers.

2.2 MAGMA for gene annotation

MAGMA software is a gene and pathway analysis tool based on
multivariable regression models (Yuan et al., 2024). MAGMA uses
multiple regression models to calculate the cumulative effect of
multiple single nucleotide polymorphisms (SNPs assigned to a
specific gene (±10 kb) but with better statistical power than other
tools (de Leeuw et al., 2015). LD was calculated using data from the
1,000 Genomes European population as a reference panel (Genomes
et al., 2015). To detect biologically relevant pathways in UC etiology,
MAGMA-based gene set analysis was used. In MAGMA, gene set
analysis was built in a linear regression model using the p-values of
genes and gene correlation matrices. BioCarta, KEGG and Reactome
pathways were downloaded from MSigDB data (https://www.gsea-
msigdb.org/gsea/msigdb).

2.3 Cross-tissue and single-tissue
TWAS analysis

Based on the results of gene annotation, risk genes were further
identified. Here, three genetic analysis methods (UTMOST,
FUSION and conditional and joint analysis) were used rationally.
The GWAS data and eQTL data of UC from 44 tissues in
GTExV8 were integrated to estimate the genetic component of
gene expression in each tissue. To analyze the association
between genes and diseases, the UTMOST was employed for
TWAS analysis to obtain TWAS results for individual tissues in
GTExV8. Next, based on the single-tissue analysis, cross-tissue
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TWAS analysis was performed using we used UTMOST to calculate
the cross-tissue joint test correlation results in GTExV8. For each
gene, UTMOST trains a cross-tissue expression imputation model
based on a penalised multivariate regression that accounts for
different directions and effect sizes of eQTL signals across tissues
(Ni et al., 2022). To reduce the risk of noise and false positive rates in
UTMOST cross-tissue association testing, we incorporated the UC
GWAS and eQTL data of whole blood from GTExv8 using the
FUSION software for validation (Gusev et al., 2016). FUSION uses a
variety of penalised linear models (GBLUP, LASSO, etc.) to build
prediction models for significant cis-genetic genes estimated by
SNPs within 500 kb on both sides of the gene boundary and
then selects the best model based on the prediction results. False
discovery rate (FDR) < 0.05 (after Benjamini–Hochberg correction)
indicated a significant TWAS result for both cross-tissue and single-
tissue analyses.

2.4 Conditional and joint analysis

The problem of only selecting the most significant SNP in a
region could be solved by performing conditional and joint analysis,
which uses summary-level statistics from a meta-analysis of GWAS
and estimates LD from a reference sample with individual-level
genotype data (Yang et al., 2012). Genome-wide FDR-corrected
conditional joint analysis of significant TWAS signals was used to
evaluate GWAS association signals after removing TWAS
association signals. We selected SNPs based on PFDR < 0.05 and
estimated the joint effect of all the selected SNPs after model
optimization.

2.5 FOCUS for precise gene location

FOCUS software was used for fine-mapping transcriptome-
wide correlation study statistics to genomic risk regions. The
software aggregates GWAS data and eQTL weights as inputs and
a set of credible genes as outputs to interpret the observed
genomic risk (Mancuso et al., 2019). FOCUS provides a pre-
built database of weights from multiple tissues, multiple eQTL
reference combinations, including GTExv8 weights from
PrediXcan. In our study, risk genes were screened based on
the Marginal posterior inclusion probability (PIP) of 0.8 and
P < 5e-8.

2.6 The intersection of the four analysis
results and MR analysis

The risk genes obtained by the above four analyses (MAGMA,
UTMOST, FUSION and FOCUS) were intersected to obtain key
genes, which were then subjected toMendelian randomization (MR)
analysis and Bayesian colocalization analysis.

MR is a causal inference method that indirectly evaluates the
causal relationship between exposure and clinical outcomes by using
genes closely related to certain specific traits as instrumental
variables (IVs) to replace exposure factors in the regression
model (Hemani et al., 2018). To identify eligible IVs, three key

assumptions must be met. Specifically, Assumption one states that
genetic variation is directly associated with exposure. To achieve
this, we defined SNPs as being directly associated with the exposure
at P < 5E-08 (genome-wide significance threshold). Assumption two
states that genetic variation should not be directly related to
confounding factors. Assumption 3 states that genetic variation
should not be directly related to outcomes. The latter two
hypotheses are manifested as horizontal pleiotropy in post-MR
(Hemani et al., 2018).

Qualified IVs were clustered within a distance of 10,000 kb with
an LD of r2 < 0.3. Following this, IVs were extracted from the
outcome features and these IVs were harmonized in exposure and
outcome GWAS datasets. Finally, Wald ratio was used in the MR
analysis method if only one independent IV was included, and if two
or more IVs were included, inverse variance weighting (IVW) was
used in the MR analysis method (Sanderson et al., 2022). p <
0.05 was considered as statistically significant. When 3 or more
IVs were available, sensitivity analyzes including MR-Egger,
weighted mode, weighted median mode, and simple mode
analysis were performed to assess the robustness of the results.
The horizontal pleiotropy (MR Egger’s intercept test), heterogeneity
(Cochran’sQ test) and outliers (MR-PRESSO test) (Hemani et al.,
2018) were tested by post-MR analysis. Finally, as only 2 IVs were
obtained and we therefore could not perform subsequent sensitivity
analysis or post-MR analysis. The above-mentioned analysis
approaches were all implemented in the R package
“TwoSampleMR”.

2.7 Bayesian colocalization analysis

Bayesian colocalization analysis could be use to estimate
whether two associated signals are consistent with shared causal
variation (Giambartolomei et al., 2014). The COLOC package in R
(with default parameters) was used for analysis and for testing the
posterior probabilities of 5 hypotheses as follows: H0: phenotype
1 and phenotype 2 are not significantly associated with any SNP
locus in a genomic region; H1: associated with phenotype 1 but not
with phenotype 2; H2: associated with phenotype 2 but not with
phenotype 1; H3: phenotype 1 and phenotype 2 are significantly
associated with a SNP loci in a genomic region but are driven by
different causal variant loci; H4: phenotype 1 and phenotype 2 are
significantly associated with a SNP loci in a genomic region driven
by the same causal loci. The posterior probability of hypothesis 4
(PPH4) > 0.8 is considered to be able to indicate that the two
associated signals are consistent with a shared causal variant
(Giambartolomei et al., 2014).

2.8 Validation of genetic analysis results
using GWAS data from IEU

To explore the robustness of the risk genes for UC obtained
by the above analyses, the UC GWAS data (ieu-a-32) on the IEU
OpenGWAS project (https://gwas.mrcieu.ac.uk/) was processed
for verification following the same steps as above. The GWAS
dataset contained 6,968 cases and 20,464 controls of European
population.
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3 Results

3.1 Gene-based association study and
pathway enrichment analysis

MAGMA was used to annotate UC-related risk genes. A total of
412 significant genes were obtained after FDR correction (p < 0.05)
(Supplementary Table S1), and then the most important genes in

each chromosome were labeled in a Manhattan plot (Figure 1A). In
terms of tissue-specific enrichment (Figure 1B), a total of seven
tissues showed positive results after FDR correction (p < 0.05) and
the terminal ileum of the small intestine, transverse colon, and whole
blood can be seen. Pathway enrichment analysis by MAGMA
identified a total of 165 significantly enriched gene sets (PFDR <
0.05), and Figure 1C displayed the top 50 pathways with the most
significant p-values. Among the top 50 significant pathways, there

FIGURE 1
Results plot after MAGMA software screening. (A) is a Manhattan plot marking significant genes for each chromosome, (B) is the tissue-specific
enrichment results, and (C) is the pathway enrichment results.
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were pathway signals such as transplant rejection, asthma,
autoimmune thyroid disease, regulation of natural killer cell (NK
cell) proliferation, and IgA production in the intestinal immune

network. These pathways were closely related to immune diseases
and inflammatory diseases, suggesting that the risk genes annotated
by MAGMA were reliable. In the validation dataset, 350 significant
genes were obtained after FDR correction (p < 0.05) (Supplementary
Table S2). Pathway enrichment analysis revealed a total of
70 significant pathways after FDR correction (p < 0.05), and the
top-ranking pathways included those related to inflammatory bowel
disease, immune cells, inflammatory factors, and others
(Supplementary Figure S1). Tissue-specific enrichment analysis
detected a total of significant eight tissues after FDR correction
(p < 0.05) (Supplementary Figure S2), including whole blood and
intestinal tissues. The trends in the validation dataset were
consistent with the current results.

3.2 Transcriptome-wide association study
results of UC

Cross-tissue findings revealed that a total of 35 genes showed
statistically significant signals after FDR correction (p < 0.05)
(Table 1). For single-tissue internal validation, 148 of all
8,756 genes modeled in the genotype data with significant cis-
genetic expression in whole blood of the GTExv8 dataset had
significant TWAS association signals after FDR correction (p <
0.05) (Supplementary Table S3). The Manhattan plot displayed the
most significant genes on each chromosome (Figure 2). In summary,
six overlapping candidate genes were identified by cross-tissue and
single-tissue testing (Supplementary Table S4). In the validation
dataset, after FDR correction (p < 0.05), the cross-tissue analysis
screened a total of 28 significant genes (Supplementary Table S5). In
the single-tissue analysis, a total of 178 significant genes were
identified after FDR correction (p < 0.05, Supplementary Table
S6). There were 5 common genes exsiting in all the results of the
above analyses (Supplementary Table S7).

3.3 Conditional and joint analysis

As shown in Table 2 4 loci, namely, 2q21.3 (TMEM163), 2q35
(CXCR2), 2q37 (DUSP28) and 22q13.33 (PIM3) (conditional p <
0.05), represented independent signals of multiple important genes.
We observed that some GWAS signals were driven by genetically
regulated gene expression. For example, CXCR2 accounted for most
of the signal at 2q35 locus, whereas the TWAS signal of PNKD was
significantly reduced if conditioned on the predicted expression of
CXCR2 (Figure 3A). Similarly, PIM3 accounted for most of the
signal at the 22q13.33 locus (Figure 3B). In the validation dataset,
there were two loci [2q35 (CXCR1) and 22q13.33 (PIM3)]
representing independent signals for multiple important genes
(Supplementary Table S8).

3.4 The results of FOCUS precision
positioning

We used FOCUS software fine-grained mapping of TWAS
associations to analyze the data of single european ancestral
population. A total of 17 positive genes were obtained from

TABLE 1 The significant genes for UC risk in cross-tissue TWAS analysis.

Gene Chr Test score P PFDR

SATB2 2 21.22 7.82E-10 1.90E-06

AC021016.7 2 20.28 1.02E-09 1.90E-06

PIM3 22 17.22 8.36E-09 1.04E-05

ARPC2 2 15.43 5.94E-08 5.55E-05

PNKD 2 15.72 1.03E-07 7.72E-05

WNT10A 2 15.48 2.53E-07 1.57E-04

CXCR2 2 12.79 1.05E-06 5.61E-04

TNS1 2 13.10 1.89E-06 8.81E-04

PASK 2 11.80 2.53E-06 8.89E-04

TMEM163 2 12.16 2.36E-06 8.89E-04

COPS9 2 12.89 2.62E-06 8.89E-04

LINC01494 2 12.59 2.95E-06 9.18E-04

KIAA1841 2 11.39 5.16E-06 1.48E-03

CNOT11 2 11.29 1.13E-05 3.02E-03

HSPD1 2 11.27 1.58E-05 3.93E-03

BIN1 2 10.48 1.76E-05 4.04E-03

CTDSP1 2 10.43 1.84E-05 4.04E-03

GPR35 2 9.06 2.08E-05 4.31E-03

AC097468.4 2 10.66 2.71E-05 5.05E-03

SATB2-AS1 2 10.33 2.70E-05 5.05E-03

CCNT2-AS1 2 9.96 3.42E-05 6.07E-03

CCNT2 2 8.19 5.04E-05 8.55E-03

RP11-681L4.1 2 52.97 5.90E-05 9.58E-03

FAP 2 9.47 6.67E-05 1.03E-02

IFIH1 2 9.19 7.49E-05 1.11E-02

MPP4 2 8.86 1.33E-04 1.91E-02

ETNPPL 4 8.79 1.42E-04 1.96E-02

DUSP28 2 8.57 1.61E-04 2.15E-02

AAMP 2 7.99 1.88E-04 2.42E-02

RNA5SP122 2 19.52 2.70E-04 3.36E-02

RP11-399F2.2 4 −3.63 2.81E-04 3.39E-02

AC016747.3 2 7.05 2.99E-04 3.49E-02

PUS10 2 6.92 3.27E-04 3.71E-02

AC017002.2 2 7.58 3.77E-04 4.15E-02

HORMAD2 22 7.32 3.94E-04 4.21E-02

UC, ulcerative colitis; TWAS, transcriptome-wide association study.

NOTE: “Test score” refers to the evaluation score obtained from the UTMOST software.
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whole blood tissue (Supplementary Table S9) under the screening
conditions of PFDR < 0.05 and PIP >0.8. FOCUS was able to generate
a plot for each region containing predicted expression correlations.
The TWAS summary statistics and PIP for each gene and the results
were shown in Figure 4. In the validation dataset, 19 positive genes
were obtained under the same selection criteria
(Supplementary Table S10).

3.5 Intersection and MR results

Venn diagram displayed nominally significant genes obtained by
the four analyses (Supplementary Figure S3). PIM3 was the significant
genes after taking the intersection of the four analyses (Supplementary
Table S11). MR analysis was conducted to screen qualified SNPs, and a
total of 75 eligible IVs were included in subsequent analyses
(Supplementary Table S12) (P < 5E-08). These 75 IVs clustered
over a distance of 10,000 kb with an LD of r2 < 0.3 and were
harmonized in both exposure and outcome GWAS datasets. A total
of 2 IVs met the criteria (rs28645887, rs62231924). Therefore, MR
analysis was performed using the IVW method, and 2 SNPs were
included as IVs (p < 0.001,95%CI: 1.45-1.89) (Figure 5). In the
validation dataset, the intersection of positive results from the four
analyses also identified the same risk gene PIM3 (Supplementary Figure
S4). IVs were the same and the MR analysis also applied the IVW
method (p < 0.001, 95%CI: 1.20-1.72) (Figure 5).

3.6 Bayesian colocalization results

Bayesian colocalization analysis was performed on PIM3. The
windows for colocalization analysis were set to 10 kb (Leclerc et al.,
2018), and the result of PPH4 was 0.997 (Table 3). In the validation
dataset, windows for colocalization analysis were set to the same
parameters and the result for PPH4 was 0.953 (Table 4).

4 Discussion

Based on the GWAS datasets of UC, we systematically evaluated
genetically predicted associations between gene expression and UC
risk. MAGMA was used to annotate UC risk genes, and then
UTMOST, FUSION and conditional and joint analysis were used
to identify UC risk genes. To further improve the accuracy of the
results, FOCUS was used to fine-map the UC risk genes. PIM3 was
the common gene after taking the intersection of four genetic
analysis methods (MAGMA, UTMOST, FUSION and FOCUS).
Finally, MR and Bayesian colocalization analyses were performed
on PIM3 to determine the obvious causal relationship between the
gene and UC. This result was verified using the GWAS dataset of UC
from the IEU. The current findings could improve our
understanding on the genetic inheritance and etiology of UC.

Previous research results showed that the cross-tissue TWAS
analysis method can effectively obtain more significant risk genes

FIGURE 2
Manhattan plot of significant genes after FUSION screening. The Manhattan plot displays significant genes identified after FUSION screening, with
the topmost gene labeled as the most significant. Gene highlighted in red is the focus of this study.

TABLE 2 The significant genes for UC risk in Conditional and joint analysis.

Gene TWAS.Z TWAS.P Joint.Z Joint.P

CXCR2 −4.90 8.90E-07 −4.90 8.90E-07

TMEM163 4.40 1.00E-05 4.40 1.00E-05

DUSP28 −3.70 2.10E-04 −3.70 2.10E-04

PIM3 6.90 4.60E-12 6.90 4.70E-12

NOTE: Joint.Z is the Z value after conditional joint analysis, and Joint.P is the P value after 621 conditional joint analysis.
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(Zhu et al., 2021). Our research is innovative as currently there is no
study performed to identify risk genes for UC using cross-tissue
TWAS analysis. The eQTL data used in this study was the
GTExv8 version. With the expansion of GTEx project data, our
research results could be more stable and accurate.

PIM kinases (Provirus Integration site for Moloney leukemia
virus) are a family of serine/threonine protein kinases that play
important roles in cell development, immune regulation, and
tumorigenesis (Bellon and Nicot, 2023). As the third member of
this kinase family, PIM3 could catalyze histone phosphorylation and

FIGURE 3
Regional associations of transcriptome-wide association study (TWAS) hits. (A) Association plot of the chromosome 2q35 region. (B) Association
plot of the chromosome 22q13.33 region. The top panel highlights all genes in this region. Marginally related TWAS genes are shown in blue, and co-
significant genes are shown in green. The figure shows a Manhattan area plot of genome-wide association study (GWAS) data before (gray) and after
(blue) regulating the predicted expression of a green gene.
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autophosphorylation (Feldman et al., 1998). Previous studies
considered PIM3 as a gene closely related to the occurrence of
various cancers such as colon cancer, liver cancer, pancreatic cancer,
prostate cancer, gastric cancer, and breast cancer (Brault et al., 2010;

Du et al., 2015; Qi et al., 2019; Wang et al., 2019; Marayati et al.,
2022). Our study found that PIM3 was also highly correlated with
the risk of UC. Evidence also showed that that the incidence of

FIGURE 4
Results plot after FOCUS software precision positioning. PIP, Posterior Inclusion Probability. (A) shows themost significant gene DARG1 in the region
of chromosome 3 (49316972-51832015) drawn by FOCUS software; (B) shows the most significant gene PIM3 in the region of chromosome 22
(49824534-51243298) drawn by FOCUS software.

FIGURE 5
Mendelian randomization (MR) result. 95%CI,95% Confidence Interval. Figure 5 shows the Mendelian randomization (MR) results with PIM3 as the
exposure and UC as the outcome.

TABLE 3 Results of Bayesian colocalization analysis.

Gene PPH0 PPH1 PPH2 PPH3 PPH4

PIM3 1.36E-26 2.31E-08 2.4E-21 3.10E-03 9.97E-01

TABLE 4 Results of Bayesian colocalization analysis [validation dataset (ieu-
a-32)].

Gene PPH0 PPH1 PPH2 PPH3 PPH4

PIM3 2.39E-20 4.11E-02 3.96E-21 5.84E-03 9.53E-01
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colorectal cancer in UC patients is approximately 2–3 times higher
than that in the normal population (Shah and Itzkowitz, 2022).
Chronic inflammation is a driving factor in tumor progression, and
PIM3 is significantly overexpressed in UC-related colorectal cancer
(Zhou et al., 2021). Hence, our study provided a gene with the
potential to predict the progression from UC to colorectal cancer.

The PIM kinase family plays a crucial role in the inflammatory
process. Studies have shown that the three PIM family kinases also
fulfil broader pathological functions in cardiovascular diseases,
including in inflammation, thrombosis and cardiac injury (Nock
et al., 2023). In a transcriptomic study of inflammation in psoriasis,
PIM3 kinase is located among key regulator transcripts (Garshick
et al., 2023). Similarly, another study on chronic obstructive
pulmonary disease (COPD) showed that the mRNA and protein
levels of PIM3 were upregulated in COPD tissue as compared to
normal lung tissue, which was also verified using animal
experiments. Lung damage in COPD patients could be improved
through inhibiting the expression of PIM3 (Yang et al., 2017). For
UC, animal experiments have shown that PIM1 and PIM3 play an
important regulatory role in the differentiation and proliferation of
CD4+ T cells, and that a higher activity of these two kinases may help
sustain the disease severity (Jackson et al., 2012). It has been reported
that PIM3 could regulate the downstream of the JAK/STAT
pathway, and that the gene is upregulated in Th17 cells via the
IL6/STAT3 axis (Buchacher et al., 2023). IL6 can induce the
expression of PIM3 in the experiment, and a lack of
STAT3 downregulates all the three PIMs. These findings
suggested a strong potential of studying PIM3 in the
pathogenesis of inflammatory diseases.

PIM3 has also been found to be associated with ferroptosis, which is
a recently discovered mode of cell death distinct from apoptosis and
autophagy. Ferroptosis is characterized by the accumulation of iron-
dependent lipid peroxidation to lethal levels (Dixon et al., 2012;
Stockwell et al., 2017; Galluzzi et al., 2018). Our knowledge on the
role of ferroptosis has been extended from tumors to gastrointestinal
diseases (Song et al., 2019; Xu et al., 2020). Researches have shown that
ferroptosis is abnormally active in UC patients, and that blocking the
ferroptosis process can effectively alleviate UC symptoms and promote
the repair of the intestinal mucosal barrier (Chen et al., 2020; Xu et al.,
2020). The basic features of ferroptosis are the accumulation of lipid
peroxidation, iron deposition, GPX4 inactivation, GSH depletion,
among which the most significant characteristic is the substantial
increase in reactive oxygen species (ROS). Noticeably, all these
features are closely associated with the risk of UC (Wang et al.,
2020; Chen et al., 2021; Tang et al., 2021). Li et al. (2024) validated
the relationship between PIM3 and ferroptosis using a rat model of
myocardial ischemia/reperfusion (I/R) injury and a cell model induced
by oxygen-glucose deprivation/reoxygenation (OGD/R). Their findings
showed that myocardial I/R modeling or OGD/R treatment can
upregulate the expression of PIM3, which in turn promotes the
levels of ferroptosis, evidenced by increased ROS and iron content
as well as downregulated SOD and GPX4. Silencing PIM3 can suppress
ferroptosis and reduce ROS levels, thereby improvingmyocardialmodel
injury and promoting cell survival rates. Based on these results, we can
reasonably speculate that there was a close relationship between
PIM3 and ferroptosis, and that ferroptosis was related to the onset
of UC. This could be a potential direction for expanding our
understanding on the pathogenesis of UC and treating UC.

However, some limitations in this study should be noted. Firstly,
due to the criteria for selecting significant cis-heritable genes in TWAS
analysis, genes were not all included in the study and some UC-related
SNPs but were irrelevant to the cis-expression were not considered.
Secondly, the race of our GWAS data and the reference GTExv8 version
eQTL data were European population, which may have certain impact
on applying the current results to other races. Thirdly, with the
continuous release of high-throughput data from more tissues and
UC GWAS datasets from diverse ancestral populations, cross-tissue
correlation analysis combined with other GWAS analysis strategies is
expected to show stronger statistical power and provide deeper insights
into UC genetics. Finally, the underlying mechanism of PIM3 has not
been verified using experiments.

5 Conclusion

In summary, we discovered PIM3 as a key risk gene for UC
applying four genetic analyses, providing novel insights into the
underlying genetic structure of UC. However, further experimental
studies are still needed to elucidate the mechanism of action
of PIM3 in UC.
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