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Background: The FCN1 gene encodes the ficolin-1 protein, implicated in the
pathogenesis of various diseases, though its precise role in tumorigenesis remains
elusive. This study aims to elucidate the prognostic significance, immune
signature, and treatment response associated with FCN1 across diverse
cancer types.

Methods: Employing multi-omics data, we conducted a comprehensive
assessment, encompassing tissue-specific and single-cell-specific expression
disparities, pan-cancer expression patterns, epigenetic modifications affecting
FCN1 expression, and the immune microenvironment. Our investigation
primarily focused on the clinical prognostic attributes, immune profiles,
potential molecular mechanisms, and candidate therapeutic agents concerning
FCN1 and acute myeloid leukemia (AML). Additionally, in vitro experiments were
performed to scrutinize the impact of FCN1 knockdown on cell proliferation,
apoptosis, and cell cycle dynamics within the AML cell line U937 and NB4.

Results: FCN1 expression exhibits widespread dysregulation across various
cancers. Through both univariate and multivariate Cox regression analyses,
FCN1 has been identified as an independent prognostic indicator for AML.
Immunological investigations elucidate FCN1’s involvement in modulating
inflammatory responses within the tumor microenvironment and its
correlation with treatment efficacy. Remarkably, the deletion of
FCN1 influences the proliferation, apoptosis, and cell cycle dynamics of
U937 cells and NB4 cells.

Conclusion: These findings underscore FCN1 as a promising pan-cancer
biomarker indicative of macrophage infiltration, intimately linked with the
tumor microenvironment and treatment responsiveness, and pivotal for
cellular mechanisms within AML cell lines.
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1 Introduction

Cancer represents a formidable global health challenge, exerting
a significant impact on populations worldwide (Wang et al., 2023).
Recent projections by the American Cancer Society estimate
approximately two million new cancer cases and 610,000 cancer-
related deaths in the United States for 2024 (Siegel et al., 2024).
Despite notable strides in treatment modalities, the burden of cancer
persists globally (Sabado et al., 2017). The advent of immunotherapy
marks a transformative milestone in cancer management,
particularly with breakthroughs in immune checkpoint inhibitors
and chimeric antigen receptor (CAR) T cell therapy (Feins et al.,
2019; Wang et al., 2020; Sterner and Sterner, 2021). While clinical
outcomes underscore remarkable efficacy across various
malignancies such as non-small cell lung cancer, triple-negative
breast cancer, ovarian cancer, and leukemia, challenges persist,
including tumor heterogeneity, treatment-related adverse effects,
and economic considerations (Bardia et al., 2021; Hu et al., 2021;
Park et al., 2021; Zsiros et al., 2021). The emergence of pan-cancer
analytical approaches enhances our understanding of tumor
diversity, offering a macroscopic viewpoint to unveil underlying
mechanisms of tumorigenesis. By elucidating shared immunological
traits across cancers, these methodologies illuminate potential
therapeutic targets and avenues for innovation in cancer
treatment strategies.

The FCN1 gene encodes ficolin-1, a plasma protein classified
within the immunoglobulin superfamily (Chen et al., 2023). It plays
a pivotal role in the body’s immune defense, particularly in the
identification and elimination of pathogens (Okuzaki et al., 2017).
Through interaction with carbohydrate structures on pathogen
surfaces, the FCN1 protein initiates immune responses, including
complement system activation and inflammation promotion
(Munthe-Fog et al., 2012). Given its significance in disease
pathogenesis, FCN1 gene polymorphisms have been associated
with autoimmune disorders such as systemic lupus
erythematosus and rheumatoid arthritis, highlighting its
involvement in autoimmunity. Additionally, the FCN1 protein
plays a crucial role during infection and inflammation,
facilitating pathogen clearance, including bacteria, fungi, and
viruses, by recognizing and binding to their surface carbohydrate
structures (Vander et al., 2007; Addobbati et al., 2016; MacDonald
et al., 2021).

Considering the pivotal role of inflammation in the tumor
microenvironment, understanding FCN1’s function in
autoimmune diseases, infection, and inflammation is well-
established, but its involvement in cancer remains unclear.
Hence, our study aims to comprehensively analyze FCN1 in
pan-cancer settings from a multi-omics perspective, focusing
on its expression variances, genetic alterations, immunological
attributes, and predictive potential for immunotherapy.
Specifically, we concentrate on investigating FCN1’s clinical
prognostic relevance, distinct immunological features,
potential functional mechanisms, and drug targeting
predictions in acute myeloid leukemia (AML). Furthermore,
we assess its probable impact on AML cell proliferation,
apoptosis, and cycle regulation through cellular experiments.
By elucidating FCN1’s role in tumor immunology, our
research aims to provide insights into its potential

mechanisms and offer avenues for clinical diagnosis and
immunotherapeutic exploration.

2 Materials and methods

2.1 Datasets acquisition

Integrating the normalized expression profiles of The Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) databases, using the GISTIC2.0 method to estimate pan-
cancer copy number variation (CNV) of gene expression, DNA
methylation profiles, Therapeutically Applicable Research To
Generate Effective Treatments (TARGET) AML gene expression
profiles and clinical data were downloaded from UCSC Xena
browser (https://xenabrowser.net/) (Mermel et al., 2011). Human
normal tissue expression profiles were sourced from the Human
Protein Atlas (HPA) database (https://www.proteinatlas.org/), while
cancer cell line expression profile data were obtained from the
Cancer Cell Line Encyclopedia (CCLE). The Beat AML cohort
was derived from prior research (Bottomly et al., 2022).
Microsatellite instability (MSI), Homologous recombination
deficiency (HRD), and Loss of heterozygosity (LOH) data were
extracted from previous studies (Bonneville et al., 2017; Thorsson
et al., 2018). Additionally, we acquired additional datasets from the
Gene Expression Omnibus (GEO) database to assess
FCN1 expression and its association with drug sensitivity. For
detailed information on all datasets, please refer to
Supplementary Tables S1-S3.

2.2 Expression landscape, genetic changes
and prognostic value of FCN1 in pan-cancer

The expression profiles of TCGA and GTEx were integrated, and
the differential expression of FCN1 mRNA and transcripts across
33 types of tumors and normal tissues was compared. Validation of
FCN1’s expression in multiple tissues was conducted using the Gene
Expression database of Normal and Tumor tissues (GENT2, http://
gent2.appex.kr/gent2/) (Park et al., 2019). Furthermore, the
University of Alabama at Birmingham Cancer Data Analysis
Portal (UALCAN, https://ualcan.path.uab.edu/) was utilized to
assess FCN1 protein expression levels in tumor and normal
samples (Chandrashekar et al., 2022). The TISIDB database
(http://cis.hku.hk/TISIDB/index.php) was used to evaluate the
expression levels of FCN1 in different subtypes. cBioPortal
(http://www.cbioportal.org/) facilitated the examination of
FCN1 genomic mutations, amplifications, and deep deletions in
pan-cancer datasets. Additionally, CNV levels and methylation
differences of FCN1 across various cancers were evaluated.
Prognostic relevance of FCN1 methylation was assessed through
Kaplan-Meier (KM) curves using the Tumor Immune Dysfunction
and Elimination (TIDE) Methylation module (Jiang et al., 2018).
Pan-cancer receiver operating characteristic (ROC) curves were
generated using the R “pROC” package (Robin et al., 2011).
Patients were stratified based on optimal FCN1 expression cutoff
values, and survival outcomes were compared using KM curves, with
the R “survival” and “survminer” packages employed for their
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generation (Shi et al., 2023). Univariate Cox regression analysis,
conducted using the R packages “survival” and “forestplot”,
evaluated the association of FCN1 expression with pan-cancer
overall survival (OS), disease-specific survival (DSS), progression-
free interval (PFI), and disease-free interval (DFI) (Li et al., 2023).

2.3 Gene set enrichment analysis (GSEA) and
correlation analysis

The GeneMANIA online database (http://genemania.org/) was
utilized to predict the gene function of FCN1, while the STRING
database was employed to construct a protein-protein interaction
network for FCN1 (Franz et al., 2018; Szklarczyk et al., 2023). To
elucidate FCN1-related pathways, tumor samples were categorized
based on median FCN1 expression, followed by Gene Set
Enrichment Analysis (GSEA) using the Hallmarks gene set (h.all.
v7.5.1. symbols.gmt) from the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb).
Additionally, leveraging the 14 functional states of malignant
tumors from CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/
home.jsp), we applied the “z-score” algorithm across these gene
sets using the R package “GSVA” (Hänzelmann et al., 2013). Pearson
correlation analysis was then used to assess the statistical
relationship between FCN1 expression and the z-scores of these
gene sets. Furthermore, the top 30% of samples with the highest
FCN1 expression were designated as the high expression group,
while the bottom 30% were categorized as the low expression group.
Differences in GSVA scores of 73 Kyoto Encyclopedia of Genes and
Genomes (KEGG) database metabolic gene sets between the
FCN1 high and low expression groups were compared using the
limma package.

2.4 Pan-cancer analyses of the
immunological roles of FCN1

We investigated the correlation between FCN1 and immune-
related genes such as MHC, chemokine receptors, chemokines,
immunosuppressive genes, and immunostimulatory genes across
various cancer types. Additionally, correlations between FCN1 and
previously identified immune checkpoint markers were examined at
the mRNA level. Furthermore, the study evaluated the differential
expression of FCN1 across six immunological subtypes (C1: Wound
healing; C2: IFN-γ dominant; C3: Inflammatory; C4: Lymphocyte-
depleted; C5: Immunologically quiet; C6: TGF-β dominant) using
the TISIDB subtype module. The relative proportions of infiltrating
immune cells were quantified using the xCell, EPIC,
MCPCOUNTER, and CIBERSORT-ABS algorithms, with
Spearman’s correlation coefficients utilized to explore the
association between FCN1 expression and the relative abundance
of different types of infiltrating immune cells. Moreover, the
TIMER2.0 database (http://timer.cistrome.org/) was employed to
investigate the correlation between FCN1 expression and
macrophage infiltration. Single-cell resolution analysis of
FCN1 in pan-cancer was conducted using Tumor Immune
Single-cell Hub 2 (TISCH2) (Han et al., 2023). We generated a
heatmap to depict the FCN1 expression profile in different cancer

types at the single-cell level. Using the Uniform Manifold
Approximation and Projection (UMAP) technique, we visualized
these high-dimensional data in a two-dimensional heatmap format.
For the spatial transcriptome data, we used deconvolution analysis
to accurately assess the cellular composition of each spot on the
10xVisium slide and to establish a comprehensive scRNA reference
library. The enrichment score matrix was generated using the get_
enrichment_matrix and enrichment_analysis functions in the
Cottrazm package, and the SpatialFeaturePlot function in the
Seurat package was used to visualize the enrichment score of
each cell type (Mangiola et al., 2021). In addition, Spearman
correlation analysis was performed to calculate the correlation
between cell content and gene expression in all spots and visualized.

The anti-cancer immune status within the tumor immune cycle
comprehensively reflects the diverse activities inherent in cancer
immune responses. The Tracking Tumor Immunophenotype (TIP)
database (http://biocc.hrbmu.edu.cn/TIP/) was utilized to assess the
correlation between FCN1 and the anti-cancer immune status across
various stages of the tumor immune cycle. Furthermore, the Cancer
Immunome Atlas (TCIA) database (https://tcia.at/home) was
employed to investigate the response of FCN1 high and low
expression groups to PD1 and CTLA4 immunotherapies.
Additionally, the TIDE database provided data on the correlation
between FCN1 and Cytotoxic T Lymphocytes (CTL), as well as KM
survival curves in the context of immunotherapy datasets. The
Easier tool, designed for predicting biomarker-based
immunotherapies using cancer-specific immune response models,
facilitated the evaluation of cytolytic activity (CYT), tertiary
lymphoid structure signature (TLS), interferon-γ signature
(IFNy), T cell-inflamed signature, and chemokine signature
(Lapuente-Santana et al., 2021).

2.5 Tumor stemness and drug
sensitivity analysis

The tumor stemness score derived from RNA expression
(RNAss) and the epigenetically regulated RNA expression-based
stemness score (EREG.EXPss) were obtained from a prior
investigation (Malta et al., 2018). The mRNA-based stemness
index (mRNAsi) was determined utilizing the one-class logistic
regression machine learning algorithm (OCLR) (Lian et al.,
2019). We integrated stemness index and gene expression data of
AML samples and evaluated the association between FCN1 and
stemness score. Estimation of IC50 values for 198 compounds in
GDSC and their correlation with FCN1 expression were conducted
using the R package “oncoPredict” (Maeser et al., 2021).
Furthermore, the correlation between FCN1 gene expression and
drug sensitivity was assessed utilizing samples from the CellMiner
database (Reinhold et al., 2012).

2.6 Cell culture and quantitative real-time
PCR (qRT-PCR)

U937 cells and NB4 cells were obtained from the Chinese
Academy of Sciences’ Cell Bank in Shanghai, China. The cells
were grown in Roswell Park Memorial Institute (RPMI)-
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1640 medium (Gibco, USA) containing 10% fetal bovine serum
(Vazyme, China), 100 mg/mL streptomycin and 100 U/mL
penicillin. Cells were incubated in a humidified atmosphere with
5% CO2 at 37°C.

Total RNA was isolated using the TRIzol reagent (Invitrogen,
USA), as directed by the manufacturer. 1µg of RNA was used for
cDNA synthesis by the Hiscipt III first strand cDNA synthesis kit
(Vazyme, China). GAPDH was amplified from each sample to
ensure equal cDNA input. Each PCR reaction contained 1 μL of
cDNA, 0.6 μL of forward and reverse primers (10 μM), 7.5 μL of
ChamQ universal SYBR qPCR Master Mix (Vazyme, China), and
6.3 μL of ddH2O. The PCR reaction parameters were as follows:
10 min of pre-denaturation at 95°C, 40 cycles of denaturation for
15 s at 95°C, 1 min of annealing at 62°C, and 15 s of extension at
72°C. A reaction was required at 60°C for 1 minute and 95°C for
15 seconds in the last extension phase. The forward and reverse
primers for GAPDH were GGAGCGAGATCCCTCCAAAAT and
GGCTGTTGTCATACTTCTCATGG, respectively. The forward
and reverse primers for FCN1 were GGCAGGTGTCATTGG
AGAGAG and GTCGCACACGACTGAGACTG, respectively.

2.7 Western blotting

Cells were harvested following treatment with siRNAs. The cells
were then collected by centrifugation after being cleaned three times
with phosphate-buffered saline (PBS). Proteinase inhibitors (Solarbio,
China) were added to RIPA buffer to help create total protein extracts.
FCN1 (Proteintech, China) and GAPDH (Proteintech, China)
antibodies were used in line with the manufacturer’s instructions
for western blot analysis. Goat Anti-Mouse IgG-HRP (Proteintech,
China) and Goat Anti-Rabbit IgG-HRP (Proteintech, China) were the
secondary antibodies used. The protein loading control was GAPDH.
The enhanced chemiluminescence (ECL) reagent (4A Biotech, China)
was used to visualize the signals. SiRNA1 sense: CCGACUGUCAUG
CUUCAAA, antisense: UUUGAAGCAUGACAGUCGG. SiRNA2
sense: GCUAGUCUUGUUCCUGCAU, antisense: AUGCAGGAA
CAAGACUAGC.

2.8 Cell viability assay

Cell viability was evaluated using the Cell Counting Kit-8 (CCK-
8) (APExBIO, USA). U937 cells and NB4 cells transfected with
siRNA2-FCN1 were harvested upon reaching 60% confluency. They
were then seeded onto 96-well culture plates, with five multiple wells
allocated to each group, and 5,000 cells per well. The CCK-8 kit was
used to examine the cells at 0 h, 24 h, 48 h, and 72 h after they were
incubated in an incubator with 37°C and 5% CO2.

2.9 Flow cytometric analysis of apoptosis
and cell cycle

After being harvested, U937 cells and NB4 cells were suspended
in a binding buffer. The cells were then stained in accordance with
the manufacturer’s instructions using the Annexin V-APC/PI
Apoptosis Detection Kit (KeyGen Biotech, China). A Beckman

Cytoflex device was used for the flow cytometry analysis, and
CytExpert Software was used to analyze the data.

The cell cycle of U937 cells and NB4 cells were detected by Cell
Cycle Detection Kit (KeyGen Biotech, China). In brief, cells were
collected and fixed in 70% cold ethanol overnight at 4°C. After
washing with PBS twice, cells were incubated with PI/RNase a
staining buffer for 30 min and subsequently analysed by
Beckman flow cytometry and CytExpert Software.

2.10 Statistical analysis

In addition to online databases, R version 4.2.1 was employed for
all statistical analyses. Unpaired Wilcoxon Rank Sum and Signed
Rank Tests were utilized to assess the significance of differences
between pairs, while kruskal. test was employed for testing
differences among multiple groups of samples. Survival analysis
was conducted using KM curves, accompanied by log-rank tests or
Cox proportional hazards regression models. Pearson or Spearman
correlation coefficients were employed to evaluate variable
relationships. All cellular experiments were conducted in
triplicate, and results are presented as mean ± standard
deviation. Cell experiment data analysis was performed using
GraphPad Prism for Windows (version 9.0.0). A significance
level of p < 0.05 was defined as statistically significant (*p < 0.05,
**p < 0.01, ***p < 0.001; ns: not significant).

3 Results

3.1 Pan-cancer expression landscape
of FCN1

The expression of FCN1 in normal human tissues exhibits high
specificity, with FCN1 mRNA predominantly expressed in bone
marrow and lymphoid tissues (Supplementary Figure S1A). Cancer
cell line profiling revealed FCN1 expression in cancer cell lines
(Supplementary Figure S1B). Assessment of FCN1 expression across
33 tumor datasets from TCGA revealed dysregulated expression in
over one-third of tumor types compared to normal tissue
(Supplementary Figure S1C). Paired sample analysis
demonstrated low FCN1 expression in multiple tumor samples,
such as bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), and colon adenocarcinoma (COAD), while it
exhibited high expression in clear renal cell carcinoma (KIRC)
(Supplementary Figure S1D). Integration of samples from TCGA
and GTEx unveiled dysregulated FCN1 expression in 21 of 33 cancer
types, particularly prominent in AML (Figures 1A, B). Additionally,
we corroborated FCN1 expression imbalances using the
GENT2 database (Figure 1C). Furthermore, we observed
unbalanced expression of the FCN1 protein transcript in
20 cancers, with significantly elevated expression in AML and
markedly reduced expression in most other cancers (Figure 1D).
Protein-level analysis revealed significantly decreased FCN1 levels in
BRCA, Ovarian serous cystadenocarcinoma (OV), Lung
adenocarcinoma (LUAD), and Liver hepatocellular carcinoma
(LIHC), whereas it was significantly elevated in COAD, clear cell
renal cell carcinoma (ccRCC), Uterine Corpus Endometrial
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Carcinoma (UCEC), Pancreatic adenocarcinoma (PAAD), Head
and Neck squamous cell carcinoma (HNSC), and Glioblastoma
multiforme (GBM) (Figure 1E). Furthermore, FCN1 expression
exhibited significant associations with molecular subtypes and
clinical stages across various tumors (Supplementary Figure S1E;
Supplementary Figure S2A), suggesting that dysregulated
FCN1 expression in diverse cancers may contribute to
tumorigenesis and progression.

3.2 Mutations, epigenetic alterations, and
genomic heterogeneity of FCN1 in
pan-cancer

The mutation rate of FCN1 varies across different cancer types,
with notably higher rates observed in UCEC and Skin Cutaneous
Melanoma (SKCM) (Supplementary Figure S3A, B). Furthermore,
Missense Mutations are predominant in FCN1 alterations. Copy

FIGURE 1
(A) TCGA combinedwith GTEx analysis of pan-cancer FCN1 expression organogram; (B)Differential expression of FCN1 in normal tissues and tumor
tissues (TCGA + GTEx); (C)GENT2 database analyzes differential expression of FCN1 between normal and tumor samples across a wide range of tissues;
(D) Differential expression of transcripts encoding FCN1 protein between pan-cancer normal and tumor tissues; (E) UALCAN analyzes FCN1 protein
expression levels between pan-cancer normal and tumor samples.
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number variation (CNV) analysis reveals an increased frequency of
amplifications in Adrenocortical Carcinoma (ACC) and HNSC,
while deletions are more prevalent in Cholangiocarcinoma
(CHOL), OV, Uterine Carcinosarcoma (UCS), and other cancers
(Supplementary Figure S3C). Genomic heterogeneity analysis
reveals significant positive correlations between FCN1 and MSI
and Mutant-Allele Tumor Heterogeneity (MATH) in AML,
contrasting with negative correlations observed in TGCT
(Supplementary Figure S3D, E). HRD status, a critical indicator
for treatment selection and prognosis in various tumors,
demonstrates significant positive correlations with FCN1 in
Basal-like BRCA and OV, while displaying negative associations
with Mesothelioma (MESO) and Lung Squamous Cell Carcinoma
(LUSC) (Supplementary Figure S3F). Furthermore, FCN1 exhibits
significant positive correlations with LOH in BRCA and negative
associations with DLBC, KIRC, and MESO (Supplementary Figure
S3G). Collectively, these findings underscore a pivotal relationship
between FCN1 and genomic instability across diverse cancer types.
Additionally, we conducted a comprehensive examination of
FCN1’s epigenetic modifications. Supplementary Figure S3H
illustrates the methylation probe levels of FCN1 across various
cancers. Differential analysis highlights a significant decrease in
FCN1 methylation levels in BLCA, HNSC, LIHC, and other cancers,
particularly notable at Transcription Start Sites (TSS)
(Supplementary Figure S3I). Correlation analysis reveals a
significant positive relationship between FCN1 mRNA expression
and methylation across multiple cancers (Supplementary Image
4A). Moreover, this correlation varies across cancer types, with
positive associations observed in BLCA, COAD, and SKCM, and
negative correlations in AML, Testicular Germ Cell Tumors
(TGCT), and Thymoma (THYM) (Supplementary Figure S4A-E).
Survival analysis indicates that hypermethylation of FCN1 is
significantly associated with longer OS in Lymphoid Neoplasm
Diffuse Large B-cell Lymphoma (DLBC), GBM, Kidney Renal
Papillary Cell Carcinoma (KIRP), Uveal Melanoma (UVM), and
other cancers (Supplementary Figure S4F-I). Additionally,
FCN1 methylation shows significant positive correlations with
Cytotoxic T Lymphocytes (CTL) in Basal-like BRCA, HNSC, and
Melanoma, while displaying negative associations in AML
(Supplementary Figure S4J-M).

3.3 FCN1 linked to inflammation and
immune response in cancer

Gene set enrichment analysis reveals significant associations
between FCN1 and several pathways in pan-cancer analysis,
including INFLAMMATORY_RESPONSE, INTERFERON_
ALPHA_RESPONSE, INTERFERON_GAMMA_RESPONSE,
ALLOGRAFT_REJECTION, and TNFA_SIGNALING_VIA_
NFKB (Figure 2A). Conversely, certain cancers exhibit a notable
negative correlation with pathways such as MYC_TARGETS_V2,
MYC_TARGETS_V1, and G2M_CHECKPOINT. CancerSEA data
further corroborates these findings, demonstrating significant
relationships between FCN1 and pan-cancer pathways such as
Angiogenesis, Apoptosis, Differentiation, Epithelial-Mesenchymal
Transition (EMT), Inflammation, and Metastasis (Figure 2B).
Moreover, metabolic pathways, including Glycosphingolipid

biosynthesis and degradation, Tryptophan metabolism, and
Arachidonic acid metabolism, are activated in the FCN1 high-
expression group across multiple cancers such as BRCA, COAD,
AML, and LUAD. Conversely, pathways such as Lysine degradation
and the Citrate cycle (TCA cycle) are inhibited in the FCN1 high-
expression group in select cancers (Figure 2C; Supplementary
Figure S5A, D).

3.4 The immunological landscape of FCN1 in
pan-cancer

Initially, we found that FCN1 was significantly associated with
multiple immune subtypes of cancer (Supplementary Figure S6).We
conducted an analysis of the correlation between FCN1 and
150 immune regulatory factors encompassing chemokines (41),
receptors (18), MHC molecules (21), immunoinhibitors (24), and
immunostimulators (46) across various cancer types. Notably,
several inflammatory chemokines, such as CCL2, CCL3, and
CCL5, exhibited significant upregulation in the FCN1 high-
expression cohort, thereby facilitating the phagocytic activities of
monocytes and macrophages as well as inducing inflammatory
responses within tissues. Moreover, MHC molecules, including
HLA-DOA, were markedly upregulated in the FCN1 high-
expression group, indicative of enhanced antigen presentation
and processing capabilities within this subset. Concurrently,
immunostimulators such as CD48 were also found to be elevated
in the FCN1 high-expression cohort (Figure 3A). Additionally,
several common immune checkpoint molecules, such as CD86,
TIGIT, CTLA4, and PDCD1, exhibited significant positive
correlations with FCN1 (Figure 3B). Subsequent immune
infiltration analyses revealed a substantial positive correlation
between FCN1 expression and immune cell infiltration, including
immune score, myeloid dendritic cells, monocytes, macrophages,
CD8+ central memory T cells, and cancer-associated fibroblasts,
while demonstrating a significant negative correlation with common
lymphoid progenitors (Figure 3C; Supplementary Figure S7A).
Furthermore, validation of these findings across multiple
algorithms and datasets, including the TIMER2.0 database,
provided additional support (Figure 3D; Supplementary Figure
S7G). Single-cell transcriptional data sourced from TISCH
corroborated the expression of FCN1 primarily in macrophages
across various cancer types (Figure 4A). Notably, FCN1 exhibited
significantly elevated expression levels in macrophages across
several cancers, including AML, BRCA, CHOL, NSCLC, PRAD,
and SKCM (Figure 4B). Additionally, the comparison of cell type
proportions between FCN1-positive and -negative groups revealed a
higher abundance of macrophages in the FCN1-positive cohort
(Supplementary Figure S8A). Pathway analysis conducted on the
AML_GSE116256 dataset unveiled distinct pathway differences
between FCN1-positive and -negative cell types, with immune
and signaling pathways exhibiting higher scores in the FCN1-
positive group, while proliferation-related pathways scored higher
in the FCN1-negative group (Supplementary Figure S8G). Lastly,
analysis of four spatial transcriptome datasets for COAD (CRC_
WholeTranscriptomeAnalysis_10x), OV (GSE203612-
GSM6177614), KIRC (GSE175540-GSM5924030_ffpe_c_2), and
LUAD (BrainMetastasis_GSE179572-GSM5420754) revealed a
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significant albeit not overwhelmingly strong correlation between
FCN1 expression and macrophages in COAD, OV, KIRC, and
LUAD (Figures 4C–F). Furthermore, comparative analysis of
FCN1 expression levels in malignant cells, mixed malignant cells,
and non-malignant cells unveiled significantly higher expression in
non-malignant cells (Supplementary Figure S8H).

The immune status against cancer within the tumor immune
cycle inherently mirrors the diverse activities encompassed in the
cancer immune response (Chen and Mellman, 2017). Our
investigation delved into the relationship between FCN1 and
various stages of the cancer immune cycle. Apart from the
notable inverse association observed with T cell recognition of
cancer cells (Step 6), FCN1 exhibited a significant positive
correlation with other stages, notably the recruitment of
multiple immune cells during immune cell trafficking towards
tumors (Step 4) (Figures 5A, B). Leveraging TCIA data, we
assessed FCN1’s responsiveness to immunotherapy. Notably,

FCN1 displayed a significant positive correlation with ips_
ctla4_neg_pd1_pos and ips_ctla4_pos_pd1_pos across diverse
cancer types (Figure 5C; Supplementary Figure S9).
Furthermore, noteworthy positive correlations between
FCN1 and CTL were observed across multiple immunotherapy
datasets (Figure 5D). Survival analysis underscored a significant
association between high FCN1 expression and prolonged OS in
PD1-treated ccRCC and CTLA4-treated melanoma cohorts
(Figures 5E, F). Additionally, we scrutinized the predictive
capacity of FCN1 in gauging immunotherapy response.
Notably, FCN1 exhibited variable prediction performance
across datasets, with superior performance observed in the
melanoma dataset PRJEB23709 (AUC: 0.737; 95%CI:
0.631–0.837) (Figures 5G, H). Moreover, a higher proportion
of patients in the FCN1 high expression group within the
melanoma dataset PRJEB23709 demonstrated responsiveness to
immunotherapy (Figure 5I).

FIGURE 2
(A) Potential function analysis of FCN1 in human cancers using GSEA.; (B) Pearson correlation between FCN1 and 14 tumor states collected by
CancerSEA database; (C)Differences inmetabolic pathwayGSVA scores between FCN1 high-expression group and low-expression group in pan-cancer.
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3.5 FCN1 offers diagnostic and prognostic
Utility in different cancers

Through univariate Cox and log-rank test analyses, we
discerned that FCN1 exhibited prognostic significance across a
spectrum of cancers, excluding BRCA, KICH, KIRP,
Pheochromocytoma and Paraganglioma (PCPG), Rectum
adenocarcinoma (READ), Thyroid carcinoma (THCA), and
UCEC (Supplementary Figure S10A). Subsequent scrutiny

revealed FCN1’s role as a protective factor in multiple cancers,
with heightened FCN1 expression significantly correlating with
extended OS and Progression-Free Interval (PFI) in ACC, CHOL,
HNSC, LIHC, and SKCM. Conversely, heightened
FCN1 expression correlated significantly with abbreviated OS in
COAD, GBM, KIRC, LUSC, STAD, TGCT, and THYM. Notably,
FCN1 also displayed varied associations with DSS and DFI across
multiple cancer types (Supplementary Figures S10B, C).
Additionally, ROC curves hinted at FCN1’s potential as a

FIGURE 3
(A) Correlation between FCN1 and 150 immune regulatory factors in pan-cancer; (B) Correlation between FCN1 and immune checkpoints in pan-
cancer; (C) XCELL algorithm evaluates the correlation between FCN1 and immune cell infiltration; (D) TIMER2.0 database evaluates the correlation
between FCN1 and macrophage infiltration.
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diagnostic biomarker in select cancers (Supplementary Figure
S11A-L).

Given the aberrant expression and dysregulation of FCN1 in
leukemia, our investigation primarily focused on elucidating its
association with clinical characteristics and prognosis in AML.
Through meticulous examination across six datasets containing
survival data of AML patients, we consistently observed a
significant correlation between elevated FCN1 expression and
reduced OS in AML cohorts (Figures 6A–C; Supplementary
Figure S12A-C). Furthermore, we meticulously analyzed FCN1’s
relationship with various clinical features of AML. In the Beat

AML dataset, FCN1 exhibited notable associations with clinical
relapse, disease transformation, FAB blast subtype, FLT3-ITD
mutations, and NPM1 mutations (Figure 6D; Supplementary
Figure S12D). Employing logistic regression analysis on the
TCGA-LAML dataset, FCN1 emerged significantly correlated
with Race, Age, Bone Marrow (BM) blasts, and Peripheral
Blood (PB) blasts (Figure 6E; Supplementary Figure S12I).
Subsequent univariate and multivariate Cox regression analyses
on the Target-AML dataset underscored the robust association
between heightened FCN1 expression and diminished OS in AML
patients, establishing FCN1 as an independent prognostic

FIGURE 4
(A) Single cell expression of FCN1 in pan-cancer (TISCH2 database); (B) UMAP maps of single cell data sets from AML, BRCA, CHOL, NSCLC, PRAD,
SKCM and single cell localizationmaps of FCN1; (C–F) From left to right: Cell positioning after spatial transcriptome deconvolution, themaximumvalue of
each spot cell component, FCN1 spatial transcriptome positioning, spearman correlation between FCN1 expression and microenvironmental
components at idle resolution.
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indicator (Figure 6F). To facilitate clinical prognostication, we
developed a nomogram predicting one-, three-, and 5-year survival
probabilities for AML patients (Figure 6G). Calibration curves and

decision curve analysis further validated the efficacy of FCN1 in
prognosticating three- and 5-year survival outcomes in AML
(Figures 6H–J).

FIGURE 5
(A) Heat map showing correlation between FCN11 expression and the cancer immune cycle in pan-cancer; (B) Representative boxplots display the
correlation analysis of the cancer-immunity cycle in BRCA, LAML, TGCT, and THCA; (C) TCIA database evaluates association between FCN1 and
immunotherapy; (D) TIDE database evaluates the correlation between FCN1 and CTL in immunotherapy datasets; (E) KM curves evaluated the association
between FCN1 expression and OS of PD1-treated ccRCC; (F) KM curves evaluated the association between FCN1 expression and OS of CTLA4-
treated Melanoma; (G) Pan-cancer FCN1 expression predicts ROC-AUC values in immunotherapy response and non-responder patients; (H)
FCN1 expression predicts immunotherapy response and non-responder patients ROC curve (Melanoma-PRJEB23709 data set); (I) Chi-square test
detects the significance of the difference in the proportion of patients with immunotherapy response and non-response between the FCN1 high
expression group and the low expression group (Melanoma-PRJEB23709 data set).
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3.6 Functional enrichment analysis of
FCN1 in AML

We investigated the correlation between effector genes of tumor-
associated immune cells (CD8 T-cell, NK cell, macrophage, Th1 cell,
Dendritic cell) and FCN1 expression. Our analysis revealed a

significant and positive correlation between multiple effector
genes of macrophages and dendritic cells with FCN1 expression
(Supplementary Figure S13A). Considering the substantial
correlation observed between FCN1 and immune inflammation,
we further assessed the relationship between FCN1 and various
immune-inflammatory gene sets, which demonstrated a positive

FIGURE 6
(A–C)High expression of FCN1 is significantly associated with shorter OS in AML patients; (D)Correlation between FCN1 and clinical features of AML
(Beat AML cohort); (E) Logistic regression analysis of the correlation between FCN1 and clinical characteristics (TCGA-LAML cohort); (F) Univariate and
multivariate cox regression analysis to evaluate the independent prognostic value of FCN1 (Target-AML cohort); (G) Nomogram constructed based on
FCN1 and clinical factors; (H)Calibration curves evaluate prognosticmodel accuracy at 1, 3, and 5 years; (I, J) TheDCA curve evaluates the predictive
value of the model for 3 and 5 years.
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correlation (Supplementary Figure S13B). Utilizing EaSIeR, we
evaluated five scores indicative of response to immune
checkpoint blockade (ICB) treatment and found significant
positive correlations between FCN1 and CYT, TLS, IFNy, Tcell_
inflamed, and chemokines in AML (Supplementary Figure S13G).
Moreover, we observed that the FCN1 high expression group in
AML exhibited lower TIDE scores, suggesting potential benefits
from ICB treatment (Supplementary Figure S13H). These findings
underscore the critical role of FCN1 in modulating the immune
microenvironment of AML.

At the genetic level, FCN1 exhibited interactions with FCN2,
FFAR2, and MASP2 proteins (Supplementary Figure S14A).
Moreover, FCN1 demonstrated interactions with FCN2, FCN3,
and COLEC11 proteins (Supplementary Figure S14B). Through a
comprehensive analysis of the FCN1 high- and low-expression
groups within the LAML dataset, we identified 773 upregulated
genes and 349 downregulated genes (Supplementary Figure S14C).
Spearman correlation analysis revealed 559 genes exhibiting
significant positive correlation with FCN1, alongside 15 genes
displaying significant negative correlation (Supplementary Figure
S14D). Integration of these findings delineated 391 overlapping
genes, which were designated as pivotal in FCN1 functionality
(Supplementary Figure S14E). Functional enrichment analysis,
focusing on biological processes, highlighted the enrichment of
hub genes in pathways associated with positive regulation of
cytokine production, immune response-regulating signaling
pathways, among others. Additionally, cell component annotation
revealed enrichment of differential genes in pathways inclusive of
secretory granule membranes, while molecular function annotation
indicated enrichment in pathways involving immune receptor
activity, among others (Supplementary Figure S14F). KEGG
analysis further elucidated the enrichment of differential genes in
various immune and cancer-related pathways, including neutrophil
extracellular trap formation, cytokine-cytokine receptor interaction,
and apoptosis (Supplementary Figure S14G).

3.7 Correlation between FCN1 and AML
stemness score and drug sensitivity

The stemness score is intricately linked to the emergence of drug
resistance and sustained proliferation in tumor cells during the
treatment of malignant tumors. Prior research suggests that the
maintenance of AML is mediated by rare leukemia stem cells (LSCs)
(Ma et al., 2021; Gudmundsson and Du, 2023). Our analysis revealed
a significant negative correlation between FCN1 and RNAss and
EREG. EXPss in AML (Figure 7A). Notably, the FCN1 low
expression group exhibited a higher tumor stemness score
(Figure 7B). Elevated FCN1 expression potentially suppresses the
stemness characteristics of AML cells, indicating that patients in the
low FCN1 expression group might display heightened resistance to
traditional anticancer therapies. To further elucidate the relationship
between FCN1 and drug sensitivity, we curated multiple datasets on
leukemia drug treatments from literature sources. FCN1 exhibited
significant differential expression across various drug treatment
groups, including Brequinar, BAY155, CS2, CS1, EPZ004777, and
Azacitidine, compared to the control group (Figure 7C). We
calculated the IC50 values of 198 compounds from the GDSC

database for each AML sample and conducted Spearman
correlation analysis, revealing 120 drugs positively correlated with
FCN1 and 17 negatively correlated drugs. Notably, Trametinib and
Selumetinib, inhibitors of the ERK MAPK signaling pathway,
displayed the largest negative correlation coefficients (Figure 7D).
We synthesized the signaling pathways and therapeutic targets of the
17 identified drug candidates (Figure 7E). Furthermore, a boxplot
illustrated the IC50 values of the top 10 drugs in both FCN1 high-
and low-expression groups (Figure 7F). Leveraging the Cellminer
dataset, we assessed the correlation between FCN1 gene expression
and drug activity, revealing significant positive associations with
multiple drugs (Figure 7G). Notably, the top eight drugs included
megestrol acetate, isotretinoin, imiquimod, imexon, nandrolone
phenpropionate, oxaliplatin, ixabepilone, and
hydroxyurea (Figure 7H).

3.8 FCN1 regulates the proliferation and
apoptosis of AML cells

U937 cells and NB4 cells underwent transfection with two
distinct siRNA constructs, followed by RT-PCR and western blot
analyses. The mRNA expression levels were markedly reduced in the
transfected group compared to the control, but protein expression
levels was only markedly reduced in the siRNA2 transfected group
compared to the control (Figure 8A). Consequently, siRNA2 was
chosen for subsequent investigations. Notably, the CCK-8 assay
revealed a significant inhibition of cell proliferation upon
FCN1 deficiency in U937 cells and NB4 cells, in contrast to cells
transfected with an empty vector (siRNC) (Figure 8B). Moreover,
the proportion of cells in the G0/G1 phase substantially increased in
the FCN1-knockdown group, indicative of cell cycle arrest and
proliferation suppression (Figures 8C, D). Intriguingly,
FCN1 knockdown led to a notable rise in the apoptosis rate of
U937 cells and NB4 cells (Figures 8E, F), contrary to prior analyses.
Consequently, we delved into the correlation between FCN1 and
genes associated with apoptosis pathways. Our findings revealed
significant positive correlations between FCN1 and several anti-
apoptotic genes, including LGALS3, IFNGR1, and MCL1, while
displaying significant negative correlations with various pro-
apoptotic genes such as CASP6, CASP3, and BIK (Supplementary
Figure S14H). This observation rationalizes the observed increase in
apoptosis rate upon FCN1 knockdown in U937 cells and NB4 cells,
indicating the regulatory role of FCN1 in fundamental biological
processes such as proliferation, apoptosis, and cell cycle regulation.

4 Discussion

Numerous prior investigations have thoroughly elucidated the
significance of FCN1, highlighting its pivotal involvement in
inflammatory response and immune defense mechanisms
(Vander et al., 2007; Munthe-Fog et al., 2012; Addobbati et al.,
2016; Okuzaki et al., 2017; MacDonald et al., 2021; Chen et al., 2023).
More recently, attention has been drawn to its potential prognostic
implications in hepatocellular carcinoma, endometrial cancer, and
gastric adenocarcinoma (Kaur et al., 2021; Khan et al., 2022; Sun
et al., 2022). Building upon these foundational studies, the current
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research endeavors to comprehensively examine the expression
patterns, prognostic value, and functional roles of FCN1 across
various cancer types, with a particular emphasis on its
relevance in AML.

This study presents a pioneering evaluation of FCN1’s distinct
expression profiles at mRNA, transcript, and protein levels across
33 tumors, marking the first pan-cancer analysis of its kind. Notably,
FCN1 expression demonstrates dysregulation across most tumor

FIGURE 7
(A) FCN1 is significantly negatively correlated with RNAss and EREG. EXPss in AML; (B) The FCN1 low expression group in AML had a higher stemness
score; (C) Multiple GEO datasets assess dysregulation of FCN1 expression in drug-treated and control groups; (D) Evaluating the correlation between
FCN1 and 19 drugs based on GDSC2; (E) Signaling pathways and target genes corresponding to 17 drugs with significant negative correlations; (F)
Difference IC50 of the top 10 drugs in FCN1 high and low expression groups; (G) Evaluation of the relationship between FCN1 and drug sensitivity
based on Cellminer; (H) Scatter plot of correlation between top drugs and FCN1.
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types, particularly in AML. Post-translational modifications, such as
methylation, hold potential to influence protein stability and
consequently affect expression levels (Xu et al., 2021).
Discrepancies between FCN1 mRNA and protein expression in
COAD, OV, suggest a potential mediation by methylation

alterations, known to play pivotal roles in tumor initiation and
progression. Nevertheless, rigorous experimental validation is
imperative to elucidate the specific regulatory mechanisms
involving FCN1 and methylation modifications, thus providing a
promising avenue for subsequent research into FCN1’s oncogenic

FIGURE 8
(A) Verification of the knockout efficiency of FCN1 in U937 cells and NB4 cells by RT-PCR and Western blot; (B) CCK8 experiment to analyze the
effect of knocking out FCN1 on cell proliferation; (C) Flow cytometric analysis of the cell cycle changes of U937 and NB4 cell lines after FCN1 knockdown;
(D) The percentage of G0/G1 phages in U937 cells and NB4 cells after knockdown of FCN1; (E) Flow cytometric analysis of changes in apoptosis in
U937 and NB4 cell lines after FCN1 knockdown; (F) The apoptosis rates of U937 cells and NB4 cells after knockdown of FCN1.
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mechanisms. Our findings also unveil FCN1’s dual prognostic role,
acting as a protective factor in ACC, LUAD, SARC, and SKCM,
while posing as a prognostic risk factor in ESCA, LUSC, STAD, and
AML. This dual prognostic behavior may stem from the inherent
tumor heterogeneity (Lawson et al., 2018). Sokołowska et al.
identified FCN1 as a candidate complementary biomarker for
AML based on clinical samples (Sokołowska et al., 2020). Our
investigation underscores FCN1’s significant association with
various clinical features of AML, establishing FCN1 as an
independent prognostic indicator for this malignancy.

The tumor microenvironment and infiltration of immune cells
play pivotal roles in tumor development and the response to
immunotherapy (Xiao and Yu, 2021). FCN1 likely participates in
regulating the tumor microenvironment, influencing tumor
initiation and progression. Monocytes and macrophages are
crucial constituents of the immune system, pivotal for tumor
immune surveillance and eliciting anti-tumor immune responses
(Chen et al., 2019). Our analysis, incorporating transcriptomics,
single-cell omics, and spatial omics, identified FCN1 as a potential
pan-cancer biomarker for macrophage infiltration. Notably,
FCN1 exhibited a significant positive correlation with monocyte
and macrophage infiltration, indicative of its crucial role in
modulating the immune response in tumor patients and shaping
the tumor microenvironment. FCN1’s impact on tumor
development likely involves its regulatory influence on tumor-
associated inflammatory responses. FCN1 expression positively
correlates with various immune regulatory factors, including
immunosuppressive factors and chemokines, suggesting its ability
to modulate immune system function, thereby impacting tumor
onset and treatment efficacy. The anticancer immune cycle
delineates the pivotal stages of the immune system’s battle
against cancer (Chen and Mellman, 2013). In the high-expression
group of FCN1, multiple steps of the anti-cancer immune response
were significantly upregulated, likely attributable to FCN1’s pro-
inflammatory effects within tumors, which activate and regulate the
immune system, thereby fostering an anti-cancer immune response.
The study by Wang et al. highlighted that FCN1+Tumor-associated
macrophages were strongly associated with inflammation induction,
which is consistent with our study (Wang et al., 2024). We postulate
that increased FCN1 expression augments the inflammatory
response within tumors, thereby facilitating antigen release and
presentation by cancer cells. Upregulation of FCN1 potentially
enhances immune cell activation (e.g., CD4 T cells, CD8 T cells,
NK cells, Th1 cells, and MDSC) and their infiltration into tumors by
modulating the expression of chemokines, their receptors, and cell
adhesion molecules in the tumor microenvironment. Validation of
our analysis revealed a higher T cell inflammation score in the
FCN1 high-expression group, further affirming our findings. AML
patients with elevated FCN1 expression exhibited lower TIDE
scores, indicative of enhanced efficacy and prolonged survival
with ICB therapy, underscoring FCN1’s role in modulating
tumor inflammation and immune responses by regulating
immune cell infiltration, expression of immune regulatory
factors, and tumor-associated immune activity.

The stemness score is closely associated with tumor
aggressiveness and treatment response (Zhang et al., 2023).
Patients with elevated stemness scores often display inferior
responses to immunotherapy, potentially stemming from

diminished immune cell infiltration in the tumor
microenvironment. Our findings unveiled a notable negative
correlation between FCN1 expression and the stemness score in
AML, indicating that tumor cells with reduced FCN1 expression
harbor heightened stemness and may develop resistance to
treatment. We investigated the interplay between FCN1 and drug
sensitivity using GDSC2 data and pinpointed 17 promising
compounds, with trametinib and selumetinib emerging as the top
contenders. Both compounds act as inhibitors of the ERK-MAPK
signaling pathway, implying a potential linkage between FCN1 and
this pathway, thereby influencing drug sensitivity. This association
offers valuable insights into the intricate functionality of FCN1 and
its implications for disease treatment.

We assessed the potential mechanisms underlying FCN1 action
in AML. Functional enrichment analysis revealed significant
associations between FCN1 and multiple immune and cancer-
related pathways. These findings underscore FCN1’s crucial roles
in immune regulation, inflammation modulation, and cytokine
signaling, pivotal for normal immune function and inflammation
regulation. GSEA further demonstrated significant enrichment of
FCN1 in various pathways implicated in AML pathogenesis,
encompassing apoptosis regulation, cell proliferation,
differentiation, and cell survival, alongside its involvement in
immune response regulation and inflammation. Studies from
liver cancer also highlighted the significant association between
FCN1 and its immune response and apoptosis (Sun et al., 2022).
To validate these findings, we conducted in vitro experiments.
Knockdown of FCN1 led to decreased cell proliferation, inhibited
cell cycle progression, and increased apoptosis in U937 cells.

In this study, we comprehensively examined the clinical
prognosis, immune signature, treatment response, and underlying
molecular mechanisms associated with FCN1 across various cancer
types, marking the first investigation of its kind. Our analysis
indicates that FCN1 serves as an independent prognostic
indicator in AML. It appears to modulate inflammation and
immune responses within tumors by influencing immune cell
infiltration, expression of immune regulatory factors, and tumor-
associated immune activity. Furthermore, knockdown of
FCN1 alters proliferation, apoptosis, and cell cycle dynamics in
AML cell lines. These findings significantly advance our
understanding of FCN1’s molecular functions and mechanisms,
as well as its clinical prognostic relevance, thus laying
groundwork for future investigations into immunotherapeutic
strategies for affected patients.
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