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Motivation: The interaction between DNA motifs (DNA motif pairs) influences
gene expression through partnership or competition in the process of gene
regulation. Potential chromatin interactions between different DNA motifs have
been implicated in various diseases. However, current methods for identifying
DNA motif pairs rely on the recognition of single DNA motifs or probabilities,
which may result in local optimal solutions and can be sensitive to the choice of
initial values. A method for precisely identifying DNA motif pairs is still lacking.

Results: Here, we propose a novel computational method for predicting DNA
Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach
leverages a composite heterogeneous graph model to identify DNA motif pairs
on paired sequences. Compared with the existing methods, MPCHG has greatly
improved the accuracy of motifs prediction. Furthermore, the predicted DNA
motifs demonstrate heightened DNase accessibility than the background
sequences. Notably, the two DNA motifs forming a pair exhibit functional
consistency. Importantly, the interacting TF pairs obtained by predicted DNA
motif pairs were significantly enriched with known interacting TF pairs,
suggesting their potential contribution to chromatin interactions. Collectively,
we believe that these identified DNA motif pairs held substantial implications for
revealing gene transcriptional regulation under long-range chromatin
interactions.
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1 Introduction

The identification and recognition of DNAmotifs binding to transcription factors (TFs)
are pivotal for comprehending the regulatory mechanisms governing gene expression and
cellular processes (Wong et al., 2013). A DNA motif denotes to a short, similarly repeated
pattern of nucleotides that holds biological significance (Hashim et al., 2019). Deciphering
these binding DNAmotifs provides researchers with insights into the regulation and control
of genes, fostering a deeper understanding of diverse biological phenomena (Liu et al., 2018;
Yang et al., 2019; Li et al., 2024; Wang et al., 2024). With the development of high-
throughput technology, several experimental techniques are available for determining TF
binding DNA motifs, such as Chromatin Immunoprecipitation (ChIP) (Park, 2009),
Electrophoretic Mobility Shift Assay (EMSA) (Hellman and Fried, 2007), DNA Affinity
Purification Sequencing (DAP-seq) (Bartlett et al., 2017), and Systematic Evolution of
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Ligands by Exponential Enrichment (SELEX) (Gold, 2015).
Moreover, researchers can access relevant databases to query for
associated DNA motifs. For instance, JASPAR (Castro-Mondragon
et al., 2022) is a widely utilized DNA motif database for storing and
analyzing transcription factor binding site. TRANSFAC (Wingender
et al., 2000) is a classic database containing DNA motifs of
transcription factors and regulatory elements, offering a wealth of
DNA motif data and associated biological information. Other
databases include UniProbe, Cis-BP, motifMap, ScerTF, TFcat,
and FlyTF (Fulton et al., 2009; Pfreundt et al., 2010; Daily et al.,
2011; Robasky and Bulyk, 2011; Spivak and Stormo, 2012; Weirauch
et al., 2014). However, the action of a single DNA motif is limited,
and actual gene regulation often involves intricate interactions
among multiple DNA motifs, giving rise to DNA motif pairs
(Pilpel et al., 2001). These pairs of DNA motifs play a pivotal
role in maintaining the accuracy and flexibility of gene
expression (Clauss and Lu, 2023).

When two DNA motifs coexist and interact in a specific
manner during gene regulation, they can either cooperate or
compete to influence gene expression. This is pivotal for
unraveling the intricate mechanisms of gene regulation
networks, cell signaling, and biological processes (Kim and
Wysocka, 2023). Moreover, these predictions of the interaction
between DNA motifs find broad applications in bioinformatics,
facilitating genome annotation and the anticipation of protein-
nucleic acid interactions, thereby equipping researchers with
potent tools to decipher biological data (Khodabandelou et al.,
2020; Wang et al., 2022). Lastly, the underlying chromatin
interactions between different DNA motifs are associated with
various diseases (Bhatia and Kleinjan, 2014). Consequently,
predictions based on DNA motif pairs hold promise for
discovering new drug targets and innovations in the field of
biotechnology, deepening our understanding of gene regulation
networks (Makolo and Suberu, 2016).

The essence of DNA motif pairs lies in discerning pattern pairs,
specifically identifying statistically significant pattern pairs within
two correlated sequences, derived from different sequences. Current
methods for identifying DNA motif pairs can be broadly classified
into two types. The first approach is direct, involving the
independent identification of statistically significant DNA motifs
from two correlated sequences. Subsequently, the threshold is
calculated to combine the DNA motifs on both sides of
sequences to select statistically significant DNA motif pairs. This
method may result in the exclusion of DNA motifs capable of
forming pairs but are underrepresented. The second approach is
based on statistical significance and involves predicting DNA motif
pairs through a global optimization model. This method requires
constructing a well-designed model for predicting DNAmotif pairs.
The algorithm developed by Ka-Chun Wong’s research group in
2016, referred to as Wong’s 2016 (Wong et al., 2016), and
EPmotifPair (Wang et al., 2022) both belong to the first category
of methods in existing approaches onHI-C (van Berkum et al., 2010)
data for predicting DNA motif pairs. Wong’s 2016 is presently the
first method for identifying DNA motif pairs on HI-C data. It can
more flexibly learn sequence features in different directions, such
that disturbances in predictions on one side may not affect
predictions on the other side. EPmotifPair (Wang et al., 2022)
predicts DNA motif pairs in a set of sequences integrated from

enhancer sequences and promoter sequences. By comprehensively
considering multiple co-occurring sequence patterns, it reduces the
error rate compared to the separate prediction of DNA motifs.
MotifHyades (Wong, 2017) belongs to the second category of
methods for predicting DNA motif pairs. It adopts the
probability model and utilizes two derived optimization
algorithms to find DNA motif pairs with linear complexities.
However, Wong’s 2016 (Wong et al., 2016) not only overlooks
underrepresented DNA motifs that could have formed pairs but is
also time-consuming. EPmotifPair (Wang et al., 2022) not only fails
to account for potential interactions between DNA motifs but also
requires the specification of numerous parameters, such as the
predetermined number of DNA motifs. MotifHyades (Wong,
2017) improves the computational speed and accuracy compared
withWong’s 2016 (Wong et al., 2016), but it is sensitive to the choice
of the initial value. Additionally, the probability model adopted by
MotifHyades (Wong, 2017) assumes conditional independence
within each sequence pair, disregarding potential interactions
among DNA motifs.

To address the aforementioned challenges, we propose a
graph theory-based approach named MPCHG. The
methodology is elucidated in Figure 1 (This paper takes
Enhancer-Promoter as an example). It helps capture multiple
relationships between different k-mers, including both within-
sequence and between-sequence relationships. Subsequently, a
community detection algorithm is employed to obtain a dense
subgraph, considering not only the topology of the network but
also the practical significance of node connections. Importantly,
we refrain from predefining the length of DNA motifs and the
number of DNA motif pairs, avoiding the loss of some important
DNA motifs or the presence of high noise. We apply MPCHG to
analyze seven sets of HI-C data. The results reveal a higher
proportion of DNA motifs matching existing databases for
predicted DNA motif pairs. The identified paired DNA motifs
demonstrate higher DNase accessibility than the background
sequences, and the functional consistency of DNA motifs
within pairs is evident. Particularly noteworthy is the
acquisition of predicted TF pairs from the predicted DNA
motif pairs, and we discover that the predicted TF pairs are
enriched with the interacting TFs in the STRING database. It can
be seen that predicting DNAmotif pairs on HI-C data can help us
understand the regulatory mechanisms of genes.

2 Methods

2.1 Data collection

The input data comprises of Hi-C data from seven sets derived
from six distinct cell lines, namely,: K562, GM12878, HeLa-S3,
HUVEC, IMR90, and NHEK. Two sets of Hi-C data (referred to
as K562_1 and K562_2, respectively) are obtained from the K562 cell
line, featuring variations in data preprocessing and annotation
approaches. A set of protein-protein interaction data retrieved
from the STRING database (Mering et al., 2003) serves as
benchmark data to assess the performance of predicted DNA
motif pairs. The first set of processed Hi-C data from the
K562 cell line (K562_1) is acquired from the article published by
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Ka-Chun Wong in 2016 (Wong et al., 2016). In this study,
chromatin fragments are classified into four categories: E
(Enhancer), TSS (Promoter), WE (Weak Enhancer), and PF
(Promoter-Flanking Region). These categories collectively form
10 interacting pairs, resulting in a total of 74,552 long-range
regulatory region pairs. The number of each interaction type is
detailed in Supplementary Figure S1A. The remaining six sets of
processed HI-C data are sourced from the article published byWang
in 2022 (Wang et al., 2022). Which are normalized using the Knight
and Ruiz normalization vectors (Lyu et al., 2020) by Rao et al. (Wang
et al., 2022). Notably, their chromatin interaction type is exclusively
Promoter-Enhancer, in contrast to the first set of data. The long-
range regulatory region pairs are summarized in Supplementary
Figure S1B. In pursuit of elucidating the mechanism of DNA motif
interactions, protein-protein interaction data are obtained from the
STRING database, resulting in the extraction of 4,950,896 pairs of
experimentally validated data. By comparing the protein names in
the STRING database with transcription factors (TFs) in the
JASPAR database, experimentally verified TF-TF interactions are
identified, encompassing a total of 65,290 TF-TF interactions,
involving 583 TFs.

2.2 Generation of background sequences

We utilize a third-order Markov model (Eddy, 2004) to create
background sequences corresponding to each sequence (referred to
as the real sequence) within the input sequence pairs. The generated
background sequences are designed to align with the number and
length of the given chromatin sequences, and their composition is
determined by the nucleotide frequencies observed in the dataset.

2.3 Identification of significant k-mers

We enumerate all possible k-mers (with k � 6 by default)
employing a sliding window approach in both the real and
background sequence sets concurrently. Let nF(ki) and nB(ki)
represent the counts of occurrences of a k-mer ki in the real and
background sequence sets, respectively. Similarly, let pF(ki) and
pB(ki) denote the frequency of each k-mer ki in the real and
background sequence sets, respectively. Recognizing the reverse
complementary nature of DNA, we define the frequency of a
k-mer as the sum of the frequencies of the k-mer and its reverse

FIGURE 1
Overview of MPCHG. Enhancer (red)—Promoter (blue) interaction is used as an example for DNA motif pairs identification. p1 denotes the
frequencies of k-mers in the real sequence sets and p2 denotes the frequencies of k-mers in the background sequence sets. z denotes z-score, which is
used to measure the significance of k-mers. The k-mers are arranged in descending order by the size of the z-score. The k-mers framed by the blue
square indicates core k-mers. In section Graph modeling, the black lines represent the heterogeneous edges, which connect different types of k-
mers, and the thickness of the lines indicates the weight of the connected edges, the greater the weight, the thicker the lines. The blue line represents the
homogeneous edge, and theywill connect the overlapping k-mers, and the thickness of the lines indicates theweight of the connected edges, the thicker
the line, the greater the weight of the connected edge. The green arrow is called extension edge, indicating the overlap between the two k-mers, which
can be used to merge and extend the two k-mers in subsequent steps.
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complementary counterpart. Additionally, we exclude k-mers such
as AAAAAA due to insufficient variation and discriminative power.
Including them in the statistics could introduce noise and
compromise the performance of the model. Assuming that the
frequency distribution of k-mers follows a normal distribution,
we retain k-mers with frequencies exceeding one standard
deviation in the real sequences, deeming these k-mers as
significant. Subsequently, we maintain the same selection k-mers
in the background sequences. Following this, we use a two-
proportion z-test with the null hypothesis that the frequencies
pF(ki) in the real sequence sets and pB(ki) in the background
sequence sets are the same to evaluate the significance of k-mers
occurrences (Eqs 1-4):

H0: pF ki( ) � pB ki( ), (1)
H1: pF ki( )>pB ki( ), (2)

zi � pF ki( ) − pB ki( )�����������������������
pi 1 − pi( ) 1∑nF ki( ) + 1∑nB ki( )( )√ , (3)

where,

pF ki( ) � nF ki( )∑jnF ki( ), pB ki( ) � nB ki( )∑jnB ki( ), pi � nF ki( ) + nB ki( )∑nF ki( ) +∑nB ki( ).

(4)
Where the k-mer ki is considered a core k-mer if it corresponds

to a z-score greater than 1.96.

2.4 Construction of composite
heterogeneous graph

We treat each k-mer as a node and construct a composite
heterogeneous graph by establishing edges between them. Based
on the positional information of each type of k-mer in the real
sequence pairs, if two distinct types of k-mers are situated in
different sequences within a sequence pair, we establish a
connection between these two k-mers, referring to this
connection as pair edges. The weights for pair edges are
computed using Eq. 5. The first term in Eq. 5 assesses the
practical significance of the edge connection between nodes vi
and uj based on the number of sequence pairs they co-occur in.
If they appear frequently together, the edge weight will be higher.
The second and third terms in Eq. 5 consider the topological
structure of the graph. They incorporate the number of
neighborhoods for nodes vi and uj, respectively, relative to the
total number of k-mers belonging to enhancers and promoters. This
helps balance the importance of the nodes in the graph. Next, we
introduce the concept of a neighborhood: for k-mers of the same
type (promoter or enhancer), if one k-mer differs from another
k-mer by only one mismatched base or has at least four consecutive
identical bases, we consider the two k-mers as neighbors and
establish a connection between them, denotes as neighborhood
edges. The weights for neighborhood edges are determined using
Eq. 6. It considers the proportion of common k-mers between nodes
vp and vq relative to the total number of k-mers in each node. Higher
weights indicate a higher similarity or overlap between the k-mers,
which signifies a stronger relationship in the graph. Finally, we

normalize the weights for the edges of the graph G using Eq. 7 for
ensuring that the weights are scaled appropriately relative to each
other. In this framework, k-mers, treated as nodes, and the
interconnected edges between k-mers collectively form the
weighted heterogeneous graph G.

ω vi, uj( ) � N vi, uj( ) −Nmin vi, uj( )
Nmax vi, uj( ) −Nmin vi, uj( ) + L vi( )

n E( ) +
L uj( )
m TSS( ), (5)

ω vp, vq( ) � L vp ∩ vq( )
L vp( ) + L vp ∩ vq( )

L vq( ) , (6)

ω′ � ω − ωmin

ωmax − ωmin
, (7)

where, vi is a k-mer belonging to enhancer sequences, uj is a k-mer
belonging to promoter sequences, N(vi, uj) represents the number
of sequence pairs in which vi and uj belong, L(vi) and L(uj)
represent the number of neighborhoods for vi and uj separately,
n(E) and m(TSS) represent the num of k-mers belonging to
enhancers and promoters, respectively. L(vp ∩ vq) represents the
num of union of vp and vq, L(vp) and L(vq) represent the num of vp
and vq, separately. ω denotes the weights of edges in graph G, ωmax

and ωmin represent the maximum and minimum weights of edges in
graph G, respectively.

2.5 The acquisition of dense subgraphs

We apply a community discover detection algorithm to identify
dense subgraphs. Firstly, we define the fitness function for evaluating
the density of a subgraph. Let S be a connected subgraph of graph G,
where V represents the vertex set of subgraphs S, and ES represents
the edge set of S. Let nS� |VS| andmS� |ES|. By adding nS(nS−1)

2 −mS

edges to S, we form a complete graph S′, with the newly added
weights are set to the average weight of graph G. The density of
subgraph S is assessed by considering the difference in weights
between the existing edges in S and the newly added edges. Eq. 8
outlines the community evaluation function f(S) for subgraph S:

f S( ) � ∑
viuj ∈ E S( )

ω viuj( ) − 1
2 E G( )| | nS nS − 1( ) − 2mS( )

·∑
viuj∈E G( )ω viuj( ). (8)

Obviously, the larger f(S), the denser the subgraph S in the
given sense. For a node v ∉ VS, the fitness function δS(v) �
f(S ∪ v{ }) − f(S) for v in S is defined, and the node that the
maximizes fitness function, i.e., δS(v)> 0, is added to the existing
subgraph S.

It is worth noting that when identifying dense subgraphs, we
select the point with the highest number of neighborhoods in the
core pairs, possessing the highest weight, as the initial point. An
iterative process ensues, continuing until no node is found that
satisfies the condition, resulting in the formation of the current
dense subgraph. Subsequently, we select the two nodes from the pair
with the highest weight among the remaining core pairs as the initial
nodes for the iterative process. Nodes that do not belong to any
dense subgraph are considered isolated points and are excluded
from the analysis. For the resulting dense subgraph
C � C1, C2,/, Ct{ }, where t denotes the number of obtained
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dense subgraphs, we define the overlap degree of nodes of subgraph Ci

and subgraph Cj(1≤ i, j≤ t) as |Ci ∩ Cj|/min (|Ci|, |Cj | ). Simply
put, it is the count of shared nodes between both Ci and Cj divided by
the smaller of the two sets’ node counts. If the overlap degree of nodes is
greater than 0.5, we merge the two subgraphs Ci and Cj. Additionally,
during the process of obtaining a dense subgraph, we record the type to
which each k-mer belongs in the subgraph, as well as the weight of a
k-mer pair formed from two types of k-mer.

2.6 Merger and extension of k-mers

We extend the k-mers identified in the dense subgraphs
obtained in the previous step. First, considering that we have
recorded the type to which each k-mer belongs in the subgraph,
we categorize all k-mers in each dense subgraph into two groups:
enhancer k-mers and promoter k-mers. The two k-mers
corresponding to the most weighted k-mer pair in each dense
subgraph serve as the centers for the two types of k-mers. Next,
we compare each k-mer in each type to the central k-mer,
determining the position of each k-mer by assessing whether
the relationship is a mismatch or an overlap. During the
construction the position weight matrix (PWM), the frequency
of each base corresponds to the frequency of its k-mer in the
sequence. The two PWMs obtained from the dense subgraph
constitute the initial DNA motif pairs. Subsequently, we use
FIMO to scan the positions of the two PWMs in the real
sequences. If the two PWMs appear in the sequence pair
respectively, we consider them to be the final DNA motif pairs.

2.7 Evaluation methods for predicted DNA
motif pairs

Three evaluation methods are introduced to assess the
performance of the predicted DNA motif pairs. Two of these
methods are utilized to evaluate the accuracy of the predicted
DNA motif pairs, while the third method is employed to assess
the enrichment of the predicted DNA motif pairs.

The first evaluation method is DNAmotif pair distance (MPD),
which is defined by MotifHyades and computed using Eq. 9 (Wong,
2017). The metric MPD is employed to assess how well the
predicted DNA motif pairs M � (Mi

P,M
i
E) | i ∈ N, i≤K{ } can be

matched to the known DNA motif pairs m �
(mi

P,m
i
E) | i ∈ N, i≤K{ } inserted into simulated sequence pairs:

MPD � 1
K
∑K
i�1
min x D mi

P,M
x
P( ) +D mi

E,M
x
E( )( ), (9)

where D(H1, H2) denoted the standard DNA motif distance
between DNA motif H1 and H2 (Wong et al., 2013).

The second evaluation metric is DNA motif pair found ratio
(MPFR), which is computed by Eq. 10 and used to estimate how
many statistically significant DNAmotif pairs are found correctly. A
DNAmotifH1 is deemed a statistically significant (p< 0.005) match
to another DNA motif H2 when the standard DNA motif distance
D(H1, H2) is less than 0.5 according to the empirical distribution of
random DNA motif patterns (Wong et al., 2013).

MPFR � 1
K
∑K
i�1
I D mi

P,M
x′
P( )< 0.5 ∧ mi

E,M
x′
E( )< 0.5[ ], (10)

where x′ � argmin x(D(mi
P,M

x
P) +D(mi

E,M
x
E)) and I[condition]

is the Iverson bracket used in mathematical notation and represents
logical true-or-false conditions.

The third evaluation metric involves assessing the statistical
significance of the enrichment of the predicted TF pairs with known
TF pairs through hypergeometric testing, as computed using Eqs 11, 12:

pvalue � phyper m,
n n − 1( )

2
,M,

N N − 1( )
2

( ), (11)

where,

phyper x1, y1, x2, y2( ) � ∑min y1 ,x2( )
k�x1

y1! y2 − y1( )!x2! y2 − x2( )!
y2!k! y1 − k( )! y2 − x2 − y1 + k( )!,

(12)

x1, y1, x2 and y2 are any non-negative integers. N corresponds to
the number of TFs in the STRING database, whileM represents the
number of TF pairs. Similarly, n andm denote the number of TFs in
the predicted TF pairs and the number of predicted TF pairs,
respectively.

3 Results

3.1 Benchmarking MPCHG on simulation
datasets and real datasets

To assess the accuracy of predicted motif pairs, we generated a
total of 9000 sets of simulated data for different parameters and
computed both the DNA motif pair distance and DNA motif pair
found ratio for these 9000 sets of simulated data. Additionally, to
explore the biological significance of predicted motif pairs, we
identified that they may contribute to chromatin interactions
based on the transcription factors they bind. Finally, we
compared the accuracy of predicted motifs with existing software
and found MPCHG to exhibit higher accuracy.

3.1.1 The DNA motif pairs predicted by MPCHG
obtained high quality DNA motif pair distance and
DNA motif pair found ratio on different
simulation data

We generate 9000 sets of simulation data to evaluate the
performance of MPCHG. The simulated sequences follow a
Gaussian distribution with a mean of 500 nucleotides and
standard deviation of 20 nucleotides for basic benchmarking. The
number of DNA sequence pairs T) is varied from 100 to 1000.
Subsequently, we randomly select H DNA motif profile matrices
from the JASPAR database, and the number of DNA motif pairs is
varied from 3 to 100 through random combinations. We select the
base-generating string corresponding to the number with the
highest probability based on the distribution of bases at each
position within each profile matrix. Afterward, we randomly
replace the selected strings in the sequence pairs with the
generated string pairs. The complete performance spectrum is
visualized in Figure 2A and Figure 2B. The DNA motif pairs
identified by MPCHG consistently exhibited high-quality DNA
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FIGURE 2
Performance of MPCHG on simulation datasets and real datasets. (A) Line chart for Motif Pair Distances (i.e., MPD). on known DNA motifs from
JASPAR. (B) Line chart for Motif Pair Found Ratio (i.e., MPFR). on known DNA motifs from JASPAR. (C,D) Histogram on the predicted DNA motif pairs
enriched with known interacting TF pairs. The red columns indicate the predicted log10 (TF pairs num) and the blue columns indicate the predicted log10
(TF pairs num supported by STRING database, which is experimentally proven). (E) The TF pair Hic1-SP1 in the network of the TFs corresponding to
the predicted DNA motifs in K562_1 cell line. The green line represents the TFs interacting with TF Hic1 and the blue line represents the TFs interacting
with TF SP1. The red line indicates the interaction betweenHic1 and SP1, leaving out some of the lines between the interacting TFs. (F) The TF pair SOX10-

(Continued )
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motif pair distances and DNA motif pair found ratios across diverse
simulation datasets. In addition, we can see from Figure 2A and
Figure 2B that with more sequence pairs, MPD decreases while
MPFR increases, suggesting MPCHG’s better generalization on
larger datasets and its potential for enhanced robustness, leading
to more reliable and accurate predictions.

3.1.2 The interacting TF pairs obtained by predicted
DNA motif pairs were significantly enriched with
known interacting TF pairs and the TF pairs
obtained by predicted DNA motif pairs may
contribute to chromatin interactions

It is widely recognized that the interaction between DNA motifs
is facilitated by transcription factors (TFs). Thus, we predict TF
interactions based on the interactions between DNA motifs (Yu
et al., 2006). Utilizing the JASPAR database, we can retrieve
information about which TFs bind to each DNA motif.
Subsequently, we compare the predicted DNA motifs with DNA
motifs in the JASPAR (NON-REDUNDANT) DNA-JASPARCORE
(2022) vertebrates database to identify the TFs associated with the
predicted DNA motifs. Based on the interactions between DNA
motifs and the TFs bound by each DNA motif, we derive TF pairs.
During the process of obtaining TF pairs from DNAmotif pairs, it is
noteworthy that a DNA motif may bind to multiple TFs. Therefore,
we consider two approaches for the TFs associated with a predicted
DNA motif: one involves including all TFs for the predicted DNA
motif, while the other involves considering only 1 TF. For a given
DNA motif, we first identify the most similar DNA motif in the
database, i.e., the DNA motif corresponding to the lowest p value.
Subsequently, we designate the TF of this most similar DNAmotif as
the TF of our predicted DNAmotif. This yields two types of TF pairs
corresponding to predicted DNA motif pairs.

To assess whether the predicted TF pairs are enriched with
known TF pairs, we collect experimentally validated interacting TFs
in STRING database (Szklarczyk et al., 2023). Then, we use
hypergeometric testing to calculate the pvalue, evaluating the
statistical significance of the enrichment of the predicted TF pairs
with known TF pairs. The findings for the K562_1 cell line are
illustrated in Figure 2C and Figure 2D, while the results for the
remaining 6 cell lines are presented in Supplementary Figures S2A,
S2B. These figures unveil a notable and statistically significant
enrichment of the predicted interacting transcription factor (TF)
pairs with the established TF interactions in the STRING database.

The TF pairs we have predicted are likely to play a role in
chromatin interactions. To illustrate, by comparing our predicted
TF pairs with experimentally validated TF pairs in the STRING
database, we identify a novel predicted TF pair, HIC1-SP1, as
depicted in Figure 2E. HIC1 is a transcription factor (TF)
classified as a member of the BTB/POZ (Broad complex,
Tramtrack, Bric à brac or poxvirus and zinc finger) zinc finger

family. These TFs are characterized by the presence of an N-terminal
POZ domain involved in protein-protein interactions and a
C-terminal zinc-finger binding domain for direct DNA
interaction. A recent report reveals that HIC1 can act as both a
transcriptional repressor and an activator during induction of
human regulatory T cells (Ray and Chang, 2020). SP1, also
known as specificity protein 1*, is a protein that in humans is
encoded by the SP1 gene. The protein encoded by this gene is a zinc
finger transcription factor that binds to GC-rich DNA motifs of
many promoters (Al-Sarraj et al., 2005). Notably, Hypoxia repressed
SIRT1 transcription through promoting the competition between
Sp1 and HIC1 on the SIRT1 proximal promoter in a SUMOylation-
dependent manner (Sun et al., 2013). Based on this, the competitive
relationship between SP1 and HIC1 may regulate gene transcription
by influencing chromatin structure and status. Furthermore,
another novel DNA motif pair, SOX10-SP5, as illustrated in
Figure 2F, is predicted in HUVEC cell line. Sox10 is present in
all neural crest cells and plays a particularly vital role in determining
the fate, viability, and maturation of Schwann cells originating from
neural crest stem cells (Mao et al., 2014). SP5 binds to the GC box, a
DNA motif present in the promoter of a very large number of genes
(Harrison et al., 2000), and is an essential early regulator of neural
crest specification in xenopus (Park et al., 2013). Furthermore,
experimentally validated by Choi et al. demonstrated that
knocking down Sp5 on the initial steps of neural crest
development could result in complete loss or reduction of the
expression of NC markers Sox10 (Park et al., 2013). Thus, it is
likely that the interaction of SOX10-SP5 contributes to chromatin
interactions, allowing their transcripts to co-localize in the neural
crest region (Park et al., 2013).

3.1.3 MPCHG achieved a higher accuracy than
existing methods in identifying DNA motifs

We finally assess the accuracy of the DNAmotifs obtained in the
intermediate process to understand the degree of overlap with
existing DNA motifs. We conduct a comparative analysis of
MPCHG against six state-of-the-art DNA motif-finding tools,
namely, DREME (Bailey, 2011), HOMER (Heinz et al., 2010),
MEME (Bailey et al., 2006), ProSampler (Li et al., 2019),
XSTREME (Grant and Bailey, 2021), and XXmotif (Hartmann
et al., 2013). All these tools utilize the JASPAR database as a
reference and employed the TomTom software (Gupta et al.,
2007) with default parameters for assessment. In particular,
MEME requires user to specify the number of DNA motifs, and
after systematic testing at output settings of 50, 100, 150, and
200 DNA motifs, the optimal parameter of 50 is determined
(yielding the highest accuracy in comparison with the JASPAR
database). The remaining parameters of the above-mentioned
algorithm are set to their default values, the accuracy of each
method can be observed in Figure 2G. The results show that the

FIGURE 2 (Continued)

SP5 in the network of the TFs corresponding to the predicted DNA motifs in HUVEC cell line. The green line represents the TFs interacting with TF
SOX10 and the blue line represents the TFs interactingwith TF SP5. The red line indicates the interaction between SOX10 and SP5, leaving out some of the
lines between the interacting TFs. (G) Histogram of the accuracy comparison between MPCHG and other six methods on seven datasets. The horizontal
axis represents different methods, while the vertical axis indicates the accuracy of predicted DNA motifs.
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FIGURE 3
Functional and Spatial-level analysis of identified motif pairs. (A). Box plots on the DNase hypersensitivity peak fraction of the DNA motifs found on
different region types (i.e., WE (Weak Enhancer), E (Enhancer), TSS (Promoter), PF (Promoter-Flanking Region), R (Regulatory Region Background), BG
(Background)) on different chromosomes. The horizontal axis represents different type of DNA motifs, while the vertical axis, DNase Peak Fraction,
represents the ratio of the number of DNA motifs that overlap with DNase hypersensitive sites to the total DNA motifs. (B). Box plots on the DNase
hypersensitivity peak fraction of the DNAmotifs found on different region (i.e., E (Enhancer) and TSS (Promoter)) with varying numbers of enriched Gene
Ontology (GO) terms. (C). Histogram of GOMO gene ontology enrichment results, with DNAmotifs identified and sorted by type (horizontal axis), and the
vertical axis is converted to 7+log(probability the proportion of DNA motifs with at least one GO term in each type). For each DNA motif, the term “GO
Enriched” indicates that it has at least one statistically significant GO term identified by GOMO, while the term “Silent” indicates that there is no statistically
significant GO term identified by GOMO. (D). Boxplot on the overlap coefficients (Szymkiewicz-Simpson coefficients) between the enriched GO terms of

(Continued )
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accuracy of motifs predicted by MPCHG on 7 sets of data ranges
from 75.0% to 88.7%. In contrast, the accuracy of the other six
methods range from 28.0% to 66.7%. Where, MotifHyades exhibits
the lowest accuracy at 28.0% on K562_1 cell line. Overall, MPCHG
demonstrates an improvement of around 60% in accuracy compared
to the other six methods. Notably, the accuracy of MPCHG averaged
around 80% across various cell lines, indicating its high robustness.

3.2 DNA motif spatial accessibility and
functional correlations provide insights into
predicted DNA motif pairs

Exploring the spatial accessibility of motif pairs can unveil their
mechanisms of action in gene regulation. By assessing the spatial
accessibility of these motif pairs, we can determine which gene regions
are more prone to transcription factor binding, thus gaining deeper
insights into key nodes within the gene regulatory network.
Furthermore, investigating the functional correlations between
motif pairs can reveal their synergistic roles and functional
regulations in biological processes, thereby understanding their
functions and regulatory mechanisms in specific biological processes.

3.2.1 DNA motifs predicted by MPCHG are spatial
accessible and DNase peak fractions of different
type of DNAmotifs have different correlation to the
number of enriched GO terms

Exploring the accessibility of DNA motifs is instrumental in
identifying gene regions prone to transcription factor binding,
offering insights into the underlying mechanisms of gene
regulation. To investigate DNA motifs accessibility, we download
the DNase Chip-seq peak-calling data (Supplementary Table S1)
from the ENCODE consortium (Dunham et al., 2012) across 6 cell
lines. We calculate how many DNA motifs overlap with DNase
hypersensitive sites on the reference hg19 human genome. To
measure the significance of DNase Peak Fraction, we adopt the
approach used by Wong in 2016 (Wong et al., 2016). For each DNA
motif instance, we randomly sample 100 sites of the same width
from both the regulatory region and the entire region of the same
chromosome. This process yields regulatory region background
DNase peak fractions (denoted as R) and overall background
DNase peak fractions (denoted as BG) for each chromosome,
respectively. The result (Figure 3A) for K562_1 cell line and the
result (Supplementary Figures S3–S8) for other 6 cell line illustrate
the DNase Peak Fraction for different types of DNA motifs on each
chromosome individually. As depicted in the Figure 3A, the DNase
Peak Fraction consistently follows a pattern across various DNA
motif types: WE motifs exhibit the highest DNase Peak Fraction,
followed by TSS motifs, and the lowest PF, except for the 22nd
chromosome. E motifs and TSS motifs have relatively almost the
same size DNase Peak Fraction, but both are higher than R and BG

motifs. This suggests that WE motifs are more inclined to be open,
followed by TSS motifs, and this overlapping fraction is statistically
significant. We conduct t-tests and Mann-Whitney tests to measure
the statistical significance of the difference between the identified
DNA motifs and those in the background region. The result
indicates that all p − values are less than 0.01, signifying a
significant overlap between DNA motifs predicted by our method
and DNase hypersensitive sites.

Furthermore, DNase peak fractions exhibit distinct correlations
with the number of enriched GO terms for different type of DNA
motifs. As illustrated in Figure 3B, for enhancer motifs, the DNase
peak fraction displays a positively correlation with the number of
enriched GO terms, while for TSS motifs, it remains almost
unchanged. This observation may be attributed to the fact that
enhancers, responsible for gene expression regulation, are typically
located in open chromatin regions known as DNase hypersensitive
sites. These sites, susceptible to nucleases like DNase I, represent
chromatin regions that are not tightly bound in the nucleus, allowing
easier access to DNA structures by regulatory elements such as
transcription factors. Consequently, the increase in the number of
GO terms associated with enhancer motif enrichment and their
overlap ratio with DNase hypersensitive sites may be attributed to
the likelihood of these enhancers being situated in open chromatin
regions. This accessibility facilitates interactions with regulators,
influencing the enrichment of GO terms. On the other hand, TSS
motifs are commonly found in the promoter region of a gene,
associated with the transcription start site. While these motifs play a
crucial role in gene initiation, an increase in their number does not
lead to a significant change in the overlap ratio with TSS. This is
because the location of TSS motifs in the promoter region is
relatively fixed, and there is no direct correlation with an
increase in the number of GO terms. Despite the increase in
enriched GO terms for enhancer motifs, these terms do not
directly impact the distribution of TSS motifs. Therefore, the
overlap ratio with TSS remains largely unchanged. This
phenomenon underscores the importance of distinguishing
between various regulatory elements and factors in the study of
gene regulation. It emphasizes the necessity of considering their
intricate interactions within the gene expression regulatory network.

3.2.2 DNA motifs predicted by MPCHG are
enriched with GO terms and the two DNA motifs
coupled within one DNA motif pair are functional
consistency

Ontology enrichment analysis serves as a crucial bioinformatics
tool, facilitating the identification of significant enrichment in a
group of genes or gene-associated entities in biological functions and
processes (Peng et al., 2019). This analysis provides comprehensive
insights into the functional characteristics of the study subject,
shedding light on its significant roles in biology. To conduct this
analysis, we use GOMO software for Gene Ontology enrichment on

FIGURE 3 (Continued)

the first DNA motif and those of the second DNA motif within each DNA motif pair. The arrangement is sorted by type on the horizontal axis. A
horizontal red dashed line serves as a reference for the expected overlap coefficient under the null hypothesis. This assumption posits that the overlap is
entirely random, featuring a uniform hit distribution for all identified GO terms in this study conducted by GOMO.
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each DNA motif obtained (Buske et al., 2010). In short, GOMO
scans all promoters using the provided DNA motifs to determine if
any DNAmotif is significantly associated with genes linked to one or
more Gene Ontology (GO) terms. This process is significant for
understanding the biological roles of the DNA motifs. The results
are depicted in Figure 3C and Supplementary Figures S9–S14.
Notably, on average, more than 97% of DNA motifs exhibit
enrichment for at least one GO term. This observation suggests

that the predicted DNA motifs play a discernible role in gene
regulation, cellular processes, or other biological functions, and
their functions may be relatively extensive and universal. Among
the top frequent terms, we observe the DNA motifs-related GO
terms such as (GO:0048731 system development) (GO:
0048513 animal organ development), (GO:0030154 cell
differentiation), and (GO:0003700 DNA-binding transcription
factor activity).

FIGURE 4
The num and spatial distribution relationship of identified DNA motif pairs. (A). Histogram on the number of predicted motif pairs annotated to
different types by ChromHMM and Segway (i.e., E (Enhancer), WE (Weak Enhancer), TSS (Promoter), and PF (Promoter-Flanking Region)). (B). Histogram
on the number of predicted motif pairs annotated by six cell lines. Their chromatin interaction type is exclusively Promoter-Enhancer. (C). Boxplot on the
average genomic distance between themotif instances of the first DNAmotif and those of the second DNAmotif within each DNAmotif pair, sorted
by type (horizontal axis).
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Furthermore, our interest extends to the functional roles
between the two DNA motifs within each DNA motif pair. To
explore this, we calculate the overlap coefficient (Szymkiewicz-
Simpson coefficient) between the enriched GO terms of the first
DNA motif and those of the second DNA motif within each DNA
motif pair. The results of the overlap coefficient are illustrated in
Figure 3D and Supplementary Figure S15. The observed overlap
coefficients are higher than expected, indicating a substantial
overlap between the two DNA motif-related GO term set. This
suggests a potential functional or biological correlation between the
two motifs. Notably, the overlap coefficient for TSS-TSS interaction
is the highest, implying that interactions between promoters may be
functionally more closely related, involved in more common
biological processes, and exhibit stronger functional correlations.
These findings provide valuable insights for a deeper understanding
of promoter interaction in gene regulatory network and biological
processes. Additionally, they offer guidance for further functional
annotation and research into regulatory mechanisms.

3.3 DNA motif pairs predicted by MPCHG
unveiled genomic distance characteristics in
human cell lines

To analyze genomic distance signatures within chromatin
structures, we first counted the motif pairs predicted by MPCHG
on seven cell lines. Through genomic distance analysis of the
predicted motif pairs, MPCHG reveals the spatial relationships
and interactions between the regulatory elements. Notably, these
findings highlight the universality of long-distance regulatory
mechanisms, and in particular enhancers play a key role in
facilitating precise gene regulation.

3.3.1 DNA motif pairs were discovered by MPCHG
on seven human cell lines

MPCHG has run on the seven cell lines (K562_1, GM12878,
HeLa-S3, HUVEC, IMR90, K562_2, NHEK) to obtain ten thousand
of DNA motif pairs. We counted the number of DNA motif pairs of
10 chromatin interaction types on the K562_1 cell line and the
number of promoter-enhancer-pairs on the remaining six cell lines.
The discovered DNA motif pairs are visualized Figure 4A
and Figure 4B.

3.3.2 The genomic distance between DNA motifs
pairs predicted by MPCHG revealed the interaction
and relative position between the
regulatory elements

Analyzing the distances between DNA motifs provides insights
into the relative positioning and interactions of gene regulatory
elements, indicating whether they are in close proximity or distantly
located within the three-dimensional chromatin structure (Dekker
and Misteli, 2015). This analysis enhances our understanding of the
organization and spatial regulation of gene expression at the
chromatin level. Therefore, Accordingly, we have computed the
distance between DNA motifs of different interaction types. As
depicted in Figure 4C, the interaction distance between E-E is the
greatest, followed by E-WE, E-TSS, and E-PF and Supplementary
Figure S16 also indicate that enhancers are far away from Promoters.

This observation aligns with the widely accepted notion that
enhancers are typically situated in regions far away from the
genes they regulate, sometimes spanning millions of base pairs
(bp). This long-distance regulatory action is facilitated through
the establishment of chromatin loops, enabling effective and
precise regulatory interactions.

4 Discussion

Identifying DNA motifs is of paramount importance in biology
and computational biology. DNAmotifs are short sequence patterns
in protein or nucleic acid sequences that are functionally relevant.
They are crucial for functional annotation, structure prediction,
evolutionary relationships, and regulatory element recognition.
Furthermore, the identification of DNA motif pairs in interacting
sequences is also significant as it aids in predicting protein-protein
interactions, drug design, and disease research. In conclusion, DNA
motifs and their pairs play pivotal roles in biological research and
medical applications.

Hence, we propose the MPCHG algorithm to identify tens of
thousands of DNA motif pairs in the long-range chromatin
interaction sequences. First, we use a 3-order Markov model to
generate background sequences that matches the length and
composition of the original sequence, ensuring statistical
significance and rationality for k-mer seeds. In contrast to many
algorithms that exhaustively determine DNA motif length within a
specific range, our method extends the core DNAmotif to both ends
using a double-sample z-test. This approach aligns the predicted
DNA motif more closely with real scenarios. At the same time,
algorithms that set the DNAmotif length in advance may miss some
important DNA motifs or introduce high noise. Furthermore, we
construct a composite heterogeneous graph for different types of
k-mers (enhancer k-mers from enhancer sequences and promoter
k-mers from promoter sequences). This graph connects k-mers of
different types present in the same sequence pair. Simultaneously, it
captures complex relationships among k-mers of the same type with
mismatched or overlapping connections. To obtain a dense
subgraph related to k-mers, we define the fitness function of the
subgraph to assess its density. Nodes meeting specific conditions are
extended to the current seed. Finally, we merge and extend the
obtained subgraph to extract DNA motifs. Subsequently DNA
motifs scanning enables the identification of DNA motif pairs.

Regarding the predicted DNA motif pairs, we conducted a
thorough analysis covering various aspects. The accuracy rate,
measured by comparing predicted DNA motifs with the JASPAR
database using TOMTOM software, the accuracy of predicted DNA
motifs ranged from 75.0% to 88.7%. Additionally, we employed
GOMO software to explore the gene ontology enrichment of these
predicted DNA motifs. The findings revealed that, on average, over
97% of DNA motifs are enriched for at least one GO term. This
indicated that the predicted DNA motif play essential roles in gene
regulation, cellular processes, or other biological functions, and their
functions may be relatively extensive and universal. To further
validate our predictions, we compare the predicted DNA motifs
with DNase Chip-seq peak-calling data. The analysis demonstrated
a significant overlap between DNA motifs predicted by our model
and DNase hypersensitive sites. Notably, DNAmotif pairs involving
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enhancer or weak enhancer regions exhibited greater distance,
aligning with the common understanding that regulatory
components in enhancer regions are typically located far from
their interacting partners, often spanning a large genomic distance.
We extended our analysis to predict TF interactions based on the
predicted DNA motif pairs. The result indicated that the predicted
interacting TF pairs are significantly enriched with the known
interacting TF pairs in STRING, as determined by hypergeometric
testing. Moreover, we unveiled new TF interaction information, such
as the interaction between HIC1 and SP1, suggesting a potential role
in facilitating chromatin interactions and promoting gene
transcription. Finally, to evaluate the generalization performance of
our model, we tested it on six additional E-TSS datasets representing
different cell lines (GM12878, HeLa-S3, HUVEC, IMR90, K562, and
NHEK). The results demonstrated consistently good performance
across these diverse datasets.

The prediction of DNA motif pairs stands as a critical
challenge in bioinformatics, offering valuable insights into
various biological processes, including gene regulation, protein-
protein interactions, and RNA structures. While significant strides
have beenmade in this field, the future holds immense potential for
further advancements. Firstly, the continuous evolution of deep
learning and artificial intelligence techniques, including innovative
algorithms and graph neural networks, is expected to elevate the
accuracy and reliability of DNA motif pair predictions. Secondly,
the exploration of cross-species DNA motif pair prediction
presents an intriguing challenge, offering opportunities to
uncover conserved sequence patterns and explore evolutionary
variations. Thirdly, the integration of diverse data sources, such as
epigenetic data and protein interaction information, will
contribute to more comprehensive annotations for predicted
results, enhancing our understanding of the intricacies of
biological systems. Additionally, applying DNA motif pair
predictions in disease research and precision medicine holds
promise for identifying potential disease markers or
therapeutic targets. Lastly, the combination of DNA motif pair
predictions with network interactions and systems biology
approaches will enable the construction of comprehensive
biological regulatory network models. This integrative
approach has the potential to deepen our understanding of the
fundamental principles of biology. In conclusion, ongoing
research in predicting DNA motif pairs has significant
potential to drive breakthroughs in biotechnology and medical
advancements, fostering progress in the fields of biology
and medicine.
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