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Glycogen Storage Disease Type VII (GSD VII) is a rare glycogen metabolism
disorder resulting from mutations in the PFKM gene, inherited in an autosomal
recessive manner. It is characterized by exercise intolerance, muscle cramps,
myoglobinuria, compensatory hemolysis, and later onset de novo myasthenia
and mild myopathy, contributing to its clinical heterogeneity and diagnostic
challenges. Here, we report a rare case of a 17-year-old Chinese woman
exhibiting substantial muscle weakness and compensated hemolysis. Muscle
biopsies showed glycogen deposition, and blood tests showed hyperuricemia
and significantly elevated creatine kinase. Whole genome sequencing (WGS) and
whole exome sequencing (WES) identified two compound heterozygous
mutations in the PFKM (NM_000289.6) gene: c.626G>A and c.1376G>A in
exons 7 and 15, respectively. According to the clinical presentation, diagnostic
examination, and WES results, the patient was finally diagnosed with GSDVII. The
discovery of these two new PFKM mutations expands the genetic spectrum, and
understanding the clinical manifestations of these mutations is critical to
preventing diagnostic delays and timely intervention and treatment.
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Introduction

Glycogen Storage Disease Type VII (GSD VII) stands out as an exceedingly rare
autosomal recessive glycogen storage disorder resulting from homozygous or compound
heterozygous mutations in the PFKM gene, responsible for encoding the muscle
phosphofructokinase (PFK) enzyme (Uyeda, 1979; Musumeci et al., 2012). PFK, the
pivotal regulator of glycolysis, plays a crucial role by catalyzing the committed step,
converting fructose-6-phosphate to fructose-1,6-bisphosphate (Webb et al., 2015). The
human PFK is comprised of three isoenzyme subunits (muscle [M], liver [L], and platelet
[P]), each encoded by distinct genes (Vora et al., 1983b).

In GSD VII, the deficiency of the muscle isoenzyme (PFK-M) manifests as exercise
intolerance and compensated hemolytic anemia, with symptom severity linked to individual
enzyme activity levels (Vora et al., 1983a). This disorder exhibits four distinctive clinical
forms: a severe infantile form with rapidly progressing myopathy and childhood fatality; the
classic childhood form marked by muscle weakness, exercise intolerance, myoglobinemia,
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and myoglobinuria due to varying degrees of rhabdomyolysis; a
delayed-onset form observed in individuals aged 40–50,
characterized by mild proximal weakness; and an exceptionally
rare hemolytic form without muscle involvement, identified in a
limited number of individuals (Raben and Sherman, 1995; Nakajima
et al., 2002).

This study presents a detailed exploration of the clinical,
biochemical, and molecular genetic features of GSD VII observed
in a 17-year-old Chinese girl. Highlighted clinical manifestations,
including muscle weakness and rhabdomyolysis, as well as the
discovery of novel mutations in the PFKM gene, which
contribute to a more comprehensive insight into the
manifestations of GSD VII.

Case description

We present the case of a 17-year-old female patient admitted to
the hospital due to recurrent bilateral lower extremity soreness and
weakness persisting for 3 years, with aggravation noted in the past
week. The patient’s medical history revealed the onset of generalized
weakness without apparent cause 3 years ago, particularly noticeable
after physical activity, especially in the lower limbs. She experienced
diminished motor ability, limited participation in sports, and could
climb stairs up to three floors with bilateral calf pain and nausea. In
September 2021, the patient sought consultation at a local
gastroenterology department, where blood tests indicated elevated
creatine kinase (2735 U/L), total bilirubin (82 umol/L), AST (64 U/
L), and LDH (276 U/L). Despite the diagnosis of hepatic
insufficiency and rhabdomyolysis, no specific treatment was

initiated at the external hospital. One week prior to admission to
our hospital, her condition worsened, marked by increased weakness
in both lower extremities, accompanied by soreness. She could only
tolerate climbing two flights of stairs.

Upon admission, the patient’s parents, who are first-degree
cousins, reported no family history of hereditary conditions or
similar diseases. Physical examination revealed yellow scleral
discoloration, bilateral gastrocnemius pressure pain, and graded
muscle strength of 5/5 in both upper limbs and 4/5 in both
lower limbs. The patient demonstrated the ability to maintain
upper limb planks for 1 minute and perform squats for ten
repetitions.

Laboratory tests revealed a significant elevation of creatine
kinase, hyperuricemia, and mild hemolysis, with specific
parameters detailed in Table 1. Notably, an MRI scan of both
thighs exhibited no abnormalities. This comprehensive clinical
presentation underscores the complexity of the patient’s
symptoms, necessitating a thorough diagnostic evaluation.

A muscle biopsy was performed on the medial head and fascia of
the patient’s left gastrocnemius muscle. Hematoxylin and eosin (HE)
staining revealed marked morphological abnormalities, including
muscle fibers of variable size, predominantly small polygons and
rounded shapes, with vacuole formation observed in the subplasma
membrane of the muscle (Figure 1A). Periodic Acid-Schiff (PAS)
staining uncovered pools of glycogen-like material of varying sizes
and locations within a subset of muscle fibers. Additionally, some of
these fibers, along with others lacking evident glycogen stores, exhibited
signs of atrophy (Figure 1B). Nicotinamide adenine dinucleotide
(NADH) staining showed no obvious abnormalities (Figure 1C).
Succinate dehydrogenase (SDH) staining displayed a proliferation of

TABLE 1 Laboratory findings of the patient on hospitalizations. TP, Total Protein; AST, Aspartate aminotransferase; LDH, Lactate Dehydrogenase; HBDH,
hydroxybutyrate dehydrogenase; HDL, High-Density Lipoprotein; APTT, activated partial thromboplastin time; FIB, focused ion beam; AT III,
Antithrombin III.

Normal values Hospitalization

Creatine Kinase (U/L) 40–280 U/L 2005

Uric acid (umol/L) 155–357 404.5

TP (g/L) 68–88 66.1

Direct bilirubin (umol/L) ≤16.2 16.4

Indirect bilirubin (umol/L) 0–6.8 56.6

Total bilirubin (umol/L) ≤23.0 73

AST 10–31 34

LDH (U/L) 100–230 288

HBDH (U/L) 72–182 261

HDL (mmol/L) ≥1.0 0.81

Plasma APTT (sec) 25.0–31.3 23.9

Plasma FIB (g/L) 1.8–3.5 1.55

Plasma Activity changes of AT III (%) 103.2–113.8 88

CD3+CD8+ (%) 18.1–29.6 32.13

ACA-IgM (MPLU/mL) ≤12 19.408

GP210 Positive (+)
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mitochondria beneath the sarcolemma (Figure 1D). Skeletal muscle
biopsy showed the presence of myogenic injury and the presence of
vacuoles and glycogen staining under the muscle plasma membrane
suggests a possible glycogen metabolism-related myopathy, but other
myogenic injuries such as myositis and mitochondrial myopathy need
to be ruled out.

Subsequently, a serum immunoassay revealed a high percentage of
32.13% CD3+CD8+, and autoimmune liver disease antibodies were
detected. The autoimmune myositis antibody profile test
demonstrated positivity for GP210, and the anti-cardiolipin antibody
assay (ACA) reported an ACA-IgM level of 19.408 MPLU/mL. These
findings provide a comprehensive understanding of the patient’s
immunological and autoimmune profile, serving as a crucial
component in the diagnostic evaluation. The patient was admitted to
the hospital and given ursodeoxycholic acid for hepatoprotective
treatment, and oral dose is 0.25 g/capsule BID.

For further diagnosis, whole genome sequencing (WGS) and whole
exome sequencing (WES) were performed to identify the genetic lesions
responsible for the disease phenotype. The majority ofWGS +WES was
conducted by the Beijing Zhiying Eastern Translational Medicine
Research Center. The main steps are as follows: firstly, DNA is
extracted and sequencing libraries are constructed by random
interruption method. The constructed sequencing libraries are up-
sequenced with no less than 99% genome coverage. Finally, the data
were analyzed using bioinformatics and clinical information analysis

techniques. Approximately 99.72% of the sequencing reads mapped to
the human genome hg19, revealing two compound heterozygous
disease-associated variants of PFKM (NM_000289.6) in the preclears:
thematernally inherited variant c.1376 (exon15) G>A and the paternally
inherited variant c.626 (exon7) G>A. The c.1376G>A variant in exon
15 resulted in amutation of amino acid Trp toTer (p. Trp562Ter, 322) at
position 562 of the protein encoded by the PFKM gene, while the c.626
(exon7) G>A variant in exon 7 resulted in Gly to Asp (p. Gly312Asp)
(Figures 2A,D). We also performed Sanger sequencing of her parents.
The 1376 (exon15) G>A on exon15 and 626 (exon7) G>A on exon 7
come from the mother and father, respectively. (Figures 2B–C,E–F).

The variants c.1376 (exon15) G>A and c.626 (exon7) G>Awere not
reported in the 1,000Genomes database, GenomeAggregationDatabase
(gnomAD), and the HGMD professional database. Additionally, these
mutations were not identified in 100 healthyChinese control individuals.
Following the American College of Medical Genetics and Genomics
(ACMG) guidelines (2019), evidence for pathogenic or potentially
pathogenic variants is categorized into four levels: very strong
(PVS1), strong (PS1-4), moderate (PM1-6), and supportive (PP1-5).
In this case, the missense mutation in c.1376 (exon15) G>A, leading to
the amino acid Trp variant becoming Ter at protein position
562 encoded by the PFKM gene, is classified as pathogenic
(PVS1+PM2+PM3) (Richards et al., 2015). When considering the
patient’s clinical characteristics, the deleterious nature of the PFKM
gene variant in this case aligns with the observed phenotype.

FIGURE 1
Histopathologic manifestations of the patient muscle. (A) Hematoxylin-eosin (HE) staining revealing vacuole formation beneath the myoplasmic
membrane. (B) Glycogen deposition in muscle fibers, identified as PAS-positive in glycogen staining. (C) NADH staining indicating an absence of evident
positive areas. (D) No abnormalities observed in COX + SDH double staining. PAS, Schiff periodic acid shiff; NADH, Nicotinamide adenine dinucleotide;
COX, cytochrome c oxidase; SDH, Succinate dehydrogenase.
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Discussion

In this study, we identified two novel compound heterozygous
mutations in the PFKM gene, c.1376 (exon15) G>A and c.626
(exon7) G>A, in a patient diagnosed with GSD VII (also known
as PFKM deficiency), by utilizing WGS and WES. GSD VII is a rare
autosomal recessive genetic metabolic disorder characterized by a
high degree of clinical heterogeneity in the form of exercise
intolerance, muscle cramps, compensated hemolysis,
hyperuricemia, and potentially myoglobinuria (Sherman et al.,
1994; Nakajima et al., 1995; Raben et al., 1995).

We successfully revealed two previously unreported
mutations by applying WES and WGS, thus broadening our
understanding of the genetic status of GSD VII-related genes.
The PFKM gene is located at chromosome 12q13 and includes
23 exons spanning approximately 30 kb (Yang et al., 2022). To
date, 27 mutations in the PFKM gene have been reported in the
human genome database, including deletions, duplications,
intronic deletions, insertions, and single nucleotide changes
(Nakajima et al., 1990; Richards et al., 2015). Vives-Corrons JL
et al. first described a case of GSDVII with a novel mutation in
PFKM: c.926A>G; p. Asp309Gly, which the authors hypothesized
would severely affect enzyme catalysis and thus explain the
observed enzyme deficiency (Vives-Corrons et al., 2013).
Auranen et al. reported on two patients with GSD, both of
whom had adolescent-onset impaired motor performance with
spasticity and rare myoglobinuria. Muscle biopsies showed
glycogen accumulation, but GSD was ruled out due to
phosphofructokinase immunohistochemistry. However, WES
testing confirmed the diagnosis of GSDVII by showing the

pathogenic, pure PFKM gene defect, R39Q, in both siblings
(Auranen et al., 2015). There are also historical cases, such as
those reported by Layzer et al. (1969) and Tsujino et al. (1994),
which have played a key role in elucidating the complexity of
muscular PFK deficiency and associated erythrocyte hemolysis
(Layzer et al., 1969; Tsujino et al., 1994). It is shown that
mutations in the PFKM gene can suggest disease onset in GSD
VII as well as help us to diagnose it in time.

Presently, there exists no effective treatment for GSD Type VII, but
the evolving field of gene therapy holds promise for future
interventions. Despite the generally benign nature of GSD VII, the
potential complication of rhabdomyolysis can pose life-threatening
risks. The clinical presentation of our patient aligns with previously
reported cases, reinforcing the need for consideration of hereditary
metabolic disorders in individuals exhibiting such symptoms
(Agamanolis et al., 1980). Comprehensive diagnostic measures,
including blood biochemical tests, skeletal muscle biopsy, and
enzymatic tests, are instrumental in achieving an accurate diagnosis.
Subsequent genetic testing serves as a crucial confirmation step, as
highlighted in our study (Danon et al., 1981; Servidei et al., 1986;
Auranen et al., 2015). Presently, there exists no effective treatment for
GSD Type VII, but the evolving field of gene therapy holds promise for
future interventions (Kishnani et al., 2019).

Conclusion

In conclusion, our study contributes novel insights into the
genetic basis of GSD VII by identifying two previously unreported
mutations in the PFKM gene. The patient improved with treatment,

FIGURE 2
Whole genome sequencing (WGS) andwhole exome sequencing (WES)were performed on the proband and her parents. (A, D) The results indicated
that the proband had compound heterozygous mutations in the PFKM gene: (C)1376 (exon15) G>A variant in exon 15 and (C)626 (exon7) G>A variant in
exon 7. (B, C and E, F) Sanger traces for PCR of her parents. The (C)1376 (exon15) G>A on exon15 and (C)626 (exon7) G>A on exon 7 come from the
mother and father, respectively. The arrows in the figure indicate exonic regions.
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with no generalized muscle tenderness and grade 5 muscle strength
in the extremities. These findings advance our understanding of the
disorder and may have implications for genetic diagnosis,
counseling, and potential therapeutic avenues in the future. The
comprehensive approach to diagnosis and management outlined in
our study reinforces the importance of considering hereditary
metabolic disorders in clinical practice.
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