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Background: Acute graft-versus-host disease (aGVHD) is a common
complication after allogeneic hematopoietic cell transplantation (allo-HSCT),
with high morbidity and mortality. Although glucocorticoids are the standard
treatment, only half of patients achieve complete remission. Thus, there is an
urgent need to screen biomarkers for the diagnosis of aGVHD to assist in the
identification of individuals at risk of aGVHD. This study was to construct
prediction models for the occurrence and severity of aGVHD using two
machine learning algorithms based on serum biochemical data.

Methods: Clinical data of 120 patients with hematological diseases who received
allo-HSCT were retrospectively analyzed. Seventy-six patients developed
aGVHD, including 56 grade I/II and 20 grade III/IV. First, 15 serum biochemical
indicators were considered as potential risk factors, and the differences in the
levels of indicators between non-aGVHD and aGVHDwere observed, followed by
evaluation of the diagnostic property. Subsequently, to develop the prediction
models for the occurrence and severity of aGVHD, LASSO and random forest (RF)
analyses were performed with experimental indicators. Finally, Venn diagram
analysis was utilized to obtain shared biomarkers in the two algorithms to
construct the nomogram. The model performance was measured by
calibration curves. Internal and external validations were performed based on
risk score models and ROC curve analyses.

Results: Total 12 of 15 indicators exhibited significant differences between the
aGVHD and non-aGVHD groups, with AUC values > 0.75. In machine learning
analysis, eight features (LAG-3, TLR-2, PD-L1, IP-10, elafin, REG-3α, ST2, TIM3)
and seven variables (LAG-3, TLR-2, PD-1, Flt_3, IL-9, elafin, TIM3) were selected
to distinguish aGVHD vs. non-aGVHD as well as grade I/II vs. III/IV, respectively.
Further, the corresponding nomogram models were established and calibration
curves showed that prediction was in good agreement with the actual probability.
Biomarker-based risk score model was constructed, which obtained AUC
value >0.89 in internal and external datasets.

OPEN ACCESS

EDITED BY

Lin Yang,
Hong Kong Polytechnic University, Hong Kong
SAR, China

REVIEWED BY

Driss Zoukhri,
Tufts University, United States
Jin Yuan,
Sun Yat-sen University, China

*CORRESPONDENCE

Linna Xie,
xielinnadoctor@hotmail.com

RECEIVED 23 April 2024
ACCEPTED 17 October 2024
PUBLISHED 08 November 2024

CITATION

He Q, Li X, Fang Y, Kong F, Yu Z and Xie L (2024)
Two machine learning-derived nomogram for
predicting the occurrence and severity of acute
graft-versus-host disease: a retrospective study
based on serum biomarkers.
Front. Genet. 15:1421980.
doi: 10.3389/fgene.2024.1421980

COPYRIGHT

© 2024 He, Li, Fang, Kong, Yu and Xie. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 08 November 2024
DOI 10.3389/fgene.2024.1421980

https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1421980/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1421980&domain=pdf&date_stamp=2024-11-08
mailto:xielinnadoctor@hotmail.com
mailto:xielinnadoctor@hotmail.com
https://doi.org/10.3389/fgene.2024.1421980
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1421980


Conclusion: Clinical variables screened through learning algorithm can predict the
risk and severity of aGVHD. Our findings may help clinicians develop more
personalized and reasonable management strategies.
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Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is an effective treatment option for many hematological
malignancies and immune diseases (Patriarca et al., 2017). After
transplantation, T-cell activation from allogeneic donors attacks not
only residual malignant cells but also target organs and tissues of the
host, thereby causing graft-versus-host disease (GVHD) and
endangering the patients’ life (Lin et al., 2021). Statistically, acute
GVHD (aGVHD, mainly involving the skin, gastrointestinal tract,
and liver) occurs in about 30%–50% of patients with allo-HSCT, of
which about 14% of patients may develop severe aGVHD (grade III-
IV), resulting in a 1-year survival rate of only 40% in severe patients
(Zeiser and Blazar, 2017). Hence, the emergence of aGVHD greatly
limits the success of allo-HSCT and is a major hurdle to overcome in
improving allo-HSCT safety. Despite the fact that glucocorticoids
and ruxolitinib have been approved by the FDA for the aGVHD
treatment, hormone resistance or unsatisfactory remission rates still
occur in approximately 50% of patients (Martini et al., 2022; Algeri
et al., 2023). Therefore, the search for specific biomarkers to
diagnose aGVHD is a critical step in improving patient prognosis
and developing novel therapeutic strategies.

GVHD is a complex process, and its occurrence and progression
involve the excessive release of multiple inflammatory cytokines
(Mohty and Gaugler, 2008). According to the pathology of
aGVHD, potential driver markers implicate various processes,
including acute-phase responses, TH1 (T helper 1) and anti-
inflammatory cytokines, lymphocyte transport molecules, and other
circulatingmarkers (Gooptu andKoreth, 2020). An increasing number
of studies have been devoted to exploring serum biomarkers of
aGVHD. For example, genes engaged in immune cell and
allogeneic responses, including CASP1 (caspase 1), CD52 (cluster of
differentiation 52), FOXP3 (forkhead box P3), and ICOS (inducible
T cell costimulatory), have been identified as the most valuable
biomarkers of aGVHD (Cuzzola et al., 2012); plasma levels of IL
(interleukin) 6, ST2 (suppression of tumorigenicity 2), TIM3 (T cell
immunoglobulin and mucin domain-3), and sTNFR1 (soluble TNF
receptor 1) help to predict severe GVHD and non-relapse mortality
(McDonald et al., 2015); moreover, REG3α (regenerating family
member 3 alpha) and ST2 (also known as MAGIC algorithm) are
considered as plasma markers of gastrointestinal GVHD that predict
the risk of refractory GVHD and resistance to therapy (Hartwell et al.,
2017). These evidences reveal that screening of specific biomarkers
from peripheral blood is a clinically valuable diagnostic tool that both
avoids invasive procedures and helps guide personalized treatment
after transplantation. However, the search for predictive markers in the
serum of patients with aGVHD is still lacking, and the identified
clinical indicators have limited diagnostic information in aGVHD.

At present, machine learning algorithms are an emerging field
that can effectively prevent overfitting caused by multiple variables
and explore disease-related biomarkers. It has been widely applied to
predict the occurrence, development, and prognosis of disease
(Saberi-Karimian et al., 2021). In this study, based on
15 conventional indicators that have been reported to be related
to aGVHD, machine learning algorithms were used to screen
diagnostic biomarkers and construct a nomogram model to
predict the probability of disease occurrence. Moreover,
biomarkers associated with disease severity were also screened
and nomogram was developed. These findings will help guide
clinical practice.

Methods

Subjects collection

This study was approved by the Ethics Committee of Jinan
Military General Hospital, and all patients signed written
informed consent at the time of treatment in our hospital.
From January 2016 to June 2018, patients with malignant and
non-malignant hematologic diseases who underwent allo-HSCT
in the Jinan Military General Hospital were retrospectively
enrolled. Clinical diagnosis and grading of aGVHD were
conducted according to the diagnostic criteria of aGVHD
combined with histological verification (Rowlings et al., 1997).
Meanwhile, according to the maximum grade of aGVHD,
patients were divided into Grade I/II and Grade III/IV groups.
Patients who received the T-cell-depleted graft/cord blood
transplantation, developed primary graft failure, or had a
history of graft rejection were excluded. Finally, 120 patients
were enrolled, including 44 non-aGVHD and 76 aGVHD. In
addition, 76 aGVHD were classified into 56 low (I/II) and 20 high
(III/IV) grades.

Allogeneic hematopoietic cell
transplantation (allo-HSCT)

All the patients received bone marrow or peripheral blood stem
cell transplantation. Before transplant, conditioning regimens were
administered to patients, including high dose cyclophosphamide
with busulfan or low dose busulfan with total body irradiation (TBI)
400 cGy. For GVHD prevention, recipients were given calcineurin
inhibitor combined with methotrexate. In addition, anti-microbial
drugs and ursodiol were used for preventing infection and
cholestasis.
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Blood sample and clinical data collection

Whole blood samples were collected 2 days before
transplantation, day 0, +14, +60 after transplantation. Blood
samples were collected weekly after the diagnosis of aGVHD. In
this research, blood samples within 24 h after transplantation were
used for further analysis.

Standard biochemical indicators were measured by kits according to
the manufacturers’ protocols. MILLIPLEX MAP Human cytokine/
chemokine magenetic bead panel (Cat. No. HCYTOMAG-60K9) was
used for measuring the concentrations of FMS-like tyrosine kinase-3
(Flt_3), IL-6, IL-7, IL-8, IL-9, IL-17A, interferon-gamma-inducible
protein 10 (IP-10). lymphocyte activation gene 3 (LAG-3), toll like
receptor 2 (TLR-2), programmed cell death protein 1 (PD-1),
programmed death ligand 1 (PD-L1) were assayed by human
immuno-oncology checkpoint protein magnetic bead panel (Cat. No.
HCKPMAG-11K,Millpore). The concentrations of elafin, REG-3α, ST2,
andTIM3were tested by Elisa assay kit (PevivaAB, Stockholm, Sweden).
The receiver operating characteristic (ROC) was used to evaluate the
diagnostic performance of each index for aGVHD and non-aGVHD.

Clinical characteristics screening and
machine learning-based models

According to the different state of the patients, two prediction
models related to disease occurrence (GVHD or non-GVHD) as well
as disease severity (GVHD I-II or GVHD III-IV) were developed. Using
the 15 clinical indicators collected above, twomachine learningmethods
including Least Absolute Shrinkage and Selection Operator (LASSO)
and random forest (RF) model were applied to select important
predictors. As for the LASSO regression, the parameters of algorithm
were optimized by 10-fold cross-validation using the R software glmnet
package (version 4.1-6), and the λ value corresponding to the minimum
error rate was calculated. For the RF model, the RF method in the R
package random Forest (version 4.7-1.1) was used to filter the feature
indicators, and then the obtained factors were sorted according to “Mean
Decrease Accuracy” and “MeanDecrease Gini” (Han et al., 2016; Bénard
et al., 2022). In this study, we opted “Mean Decrease Gini” method for
the top 10 variables selection as previously described (Chen et al., 2022).
Next, the characteristic indicators were obtained through intersection of
the results selected by LASSO and RF algorithms. Next, based on the
LASSO regression method, the risk score of each patient was calculated
based on the expression level of characteristic indicators weighted by
their coefficients (He et al., 2023; Yu et al., 2024). The formula is listed as
follows (Wang et al., 2021; Shen et al., 2023):

Risk score � ∑ βgene × Expgene

β gene indicates gene regression coefficient and Expgene
indicates gene expression level in each sample.

Development and validation of
nomogram model

As a convenient prediction tool, nomogram has become
increasingly popular in medical research. It can assign a value to
each influencing factor and then sum the scores to obtain a total

value, thereby calculating the probability of clinical events (Park,
2018). In this study, nomograms were established using the rms
package (version 3.5.0) based on the obtained predictors. To further
evaluate the clinical application value of the model, the calibration
curve was plotted using the calibrate function in the rms package.

External validation

To further evaluate the predictive capability of the risk score
model to classify aGVHD and non-aGVHD patients, aGVHD I/II
and aGVHD III/IV patients, an external validation in an external
cohort was conducted.

An independent cohort of another 10 non-aGVHD patients,
20 aGVHD patients (10 aGVHD I/II and 10 aGVHD III/IV) in the
Shandong Cancer Hospital and Institute from January 2024 were
recruited. The blood samples were collected in the same standard

TABLE 1 Clinical characteristics of enrolled patients.

Characteristics Non-GVHD (n = 44) aGVHD (n = 76)

Age, y

Median (range) 27 (13–52) 28 (11–59)

Disease, n

Malignant 35 65

Others 9 11

Disease status at allo-HSCT

Low/mediate risk 12 26

High risk 32 50

Donor type

Related 23 45

Unrelated 21 31

Regimen type

Non-myeloablative 10 14

Myeloablative 34 62

Maximum aGVHD grade

I-II — 56

≥III — 20

Organ target at aGVHD onset

Skin — 19

Gut — 13

Liver — 17

Multiple organs — 27

aGVHD diagnosis day after HCT

<15 days — 10

15–42 days — 33

>42 days — 33

Frontiers in Genetics frontiersin.org03

He et al. 10.3389/fgene.2024.1421980

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1421980


condition and the concentration levels of LAG-3, TLR-2, PD-1, Flt_
3, IL-9, elafin, REG-3a and TIM3 were measured as described above.
The risk score model was constructed and the diagnostic
performance was evaluated by ROC curve analysis.

Statistical analysis

All statistical analyses were conducted using the R package and
GraphPad software. Results were expressed as mean ± standard
deviation, and t test was used for comparison between two groups.
For all analyses, P < 0.05 was considered statistically significant.

Results

Baseline and biochemical characteristics
of patients

Detailed information on the baseline data of patients is listed in
Table 1. Of the enrolled 120 allo-HSCT patients, 76 developed aGVHD,

containing 56 patients with I/II grade and 20 patients with III/IV grade.
The median age of aGVHD patients was 28 years (range 11–59 years).
Compared with non-aGVHD patients, more aGVHD patients were in
high risk (50 vs. 32) and malignant (65 vs. 35) status at the time of
transplantation. Compared to the non-aGVHD group, the levels of IL-
7, IL-9, IL-17a, Flt-3, IP-10, LAG3, REG-3α, TLR-2, PD-1, PD-L1, and
ST2 were significantly elevated in the aGVHD group (P < 0.05, Figures
1, 2). ROC analysis showed that theAUC values of these indicators were
all greater than 0.75, indicating excellent diagnostic performance
(Figures 1, 2). However, no significant differences were observed in
TIM3, IL-6, and IL-8 between two groups (Figures 2E–G).

Clinical screening model for aGVHD
prediction

Based on the values of 15 clinical indicators from 120 samples,
the LASSO regression prediction model was constructed to screen
the characteristic variables. As shown in Figures 3A, B, eight
significant variables were finally determined to be included in the
LASSO model, containing LAG-3, TLR-2, PD-L1, IP-10, elafin,

FIGURE 1
Comparison of serum indexes between non-aGVHD and aGVHD groups and evaluation of their diagnostic performance by ROC curve. (A) IL-7. (B)
IL-9. (C) IL-17a. (D) Flt-3L. (E) IP-10. (F) LAG3. (G) REG-3α. (H) Elafin. T test was used for comparison between two groups.
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REG-3α, ST2, and TIM3. In the RF model, ten important factors in
the RF regression were selected according to theMean Decrease Gini
rank, including LAG-3, IP-10, PD-L1, ST2, elafin, REG-3a, TLR-2,
PD-1, TIM3, and Flt_3 (Figures 3C, D). Next, Venn diagram
displayed the intersection of variables screened using LASSO and
RF methods, and finally eight variables were obtained: LAG-3, TLR-
2, PD-L1, IP-10, elafin, REG-3α, ST2, and TIM3 (Figure 3E).

Diagnostic model based on nomogram

The eight variables selected above were included in the
nomogram model, with PD-L1 and ST2 contributing more to
event occurrence (Figure 4A). Calibration curve showed that the
nomogram prediction results were in general agreement with the
actual occurrence (Figure 4B).

Clinical screening model for severity of
GVHD (low and high grades)

In order to further distinguish early and advanced GVHD diseases,
two machine learning algorithms (LASSO and RF) were also used to
screendiagnostic features. A total of 56 and 20GVHDI-II andGVHDIII-
IV samples were included for analysis, respectively. As shown in Figures
5A, B, LASSO regression screened out the independent predictors of
disease severity, and 8 of the 15 potential predictors were recommended:
LAG-3, TLR-2, PD-1, Flt_3, IL-9, elafin, REG 3a, and TIM3. For the RF
analysis, the top 10 most significant characteristic variables in the RF
model were LAG-3, IL-8, TLR-2, TIM3, IP-10, PD-L1, IL-9, Flt_3, IL-7,
and elafin, in order of Mean Decrease Gini (Figure 5C). Finally, seven
optimal predictors of disease severity were selected by combining the
results of the two detailed analyses above. These factors included LAG-3,
TLR-2, PD-1, Flt_3, IL-9, elafin, and TIM3 (Figures 5D, E).

FIGURE 2
Comparison of serum indexes between non-aGVHD and aGVHD groups and evaluation of their diagnostic performance by ROC curve. (A) TLR-2.
(B) PD-1. (C) PD-L1. (D) ST2. (E) TIM3. (F) IL-6. (G) IL-8. T test was used for comparison between two groups.
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Development of the predictive nomogram

Based on the seven optimal predictors, a nomogram was
constructed. As shown in Figure 6A, LAG-2, TLR-2, and PD-1
contributed higher values to the results. Meanwhile, the calibration
curve showed that the bias-corrected line almost overlapped with the
ideal line, indicating a satisfactory agreement between the predicted
and observed results of disease severity (Figure 6B).

Internal and external validation

To further determine the validity of the candidate
biomarkers, the biomarker-based risk score model was
constructed and the predictive performance of the models was
evaluated by ROC curve analysis. To distinguish aGVHD and
non-aGVHD patients, eight biomarkers-based model was
constructed. The model obtained an AUC of 0.999 in internal

FIGURE 3
Predictor selection between non-aGVHD and aGVHD using LASSO and RF models. (A) Lasso coefficient profiles of the 8 clinical features. (B)
Screening of optimal penalization coefficient lambda value in the LASSO model. (C) Correlation between error and tree number in the RF model. (D)
Importance ranking of clinical features. (E) Venn plot revealing the intersection of biomarkers selected by LASSO and RF.

FIGURE 4
Nomogram based on 8 serum biomarkers to predict the occurrence of aGVHD. (A) Nomogram for predicting aGVHD probability. (B) Calibration
curve for evaluating the predictive accuracy.
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dataset and 0.995 in external dataset (Figures 7A, B). The seven
biomarker-based model for classifying the severity of aGVHD
was constructed. ROC analysis showed that AUC of the
diagnostic model was 0.898 in internal dataset and 0.930 in
external dataset (Figures 7C, D). These suggested that the
biomarker markers obtained by machine learning methods
exerted promising diagnostic value for aGVHD and its severity.

Discussion

GVHD is a serious complication after hematopoietic cell
transplantation, accompanied by increased morbidity and
mortality (DiMaggio, 2020). Currently, the clinical benefits of
GVHD treatment or prevention are limited (Holtan and
MacMillan, 2016), and there is still a need to develop new

FIGURE 5
Identification of serum biomarkers related to aGVHD severity. (A) Lasso coefficient profiles of the 8 clinical features. (B)Optimal parameters selected
by the LASSO model. (C) Relationship between error and tree number in the RF model. (D) Variable importance ranking in RF model. (E) Intersection of
variables screened using RF and LASSO.

FIGURE 6
Seven factors establish a nomogram for aGVHD severity. (A) Nomogram model. (B) Assessment of predictive accuracy using calibration curve.
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methods for assessment and prediction of aGVHD. Clinical
applications of biomarkers have been reported to be incorporated
in the early stages after transplantation to aid detection and
prediction of long-term clinical outcomes; biomarkers are also
recognized as measures to predict the severity of aGVHD
(Presland, 2017). However, single biomarker is limited for the
sensitivity and specificity for the diagnosis or predictive value for
aGVHD. A combination of several biomarkers for the diagnosis of
aGVHD may be pressing.

The machine learning algorithms (such as LASSO and RF) have
attracted widespread attentions in biomarker screening for the
diagnosis and prediction of diseases (Wu et al., 2023). Cocho
et al. have constructed the logistic regression model and
identified the predictive biomarkers for ocular chronic GVHD
(Cocho et al., 2016). LASSO regression and RF methods affords
good predictive accuracy by running ten-fold cross validation, which
may enhance the clinical diagnosis. The use of machine learning
algorithms in identifying the serum biomarkers for aGVHD is rare.
Thus, we developed models containing different serum indices

through machine learning algorithms (LASSO and RF) to predict
the biomarkers for the diagnosis and severity of aGVHD.

Our analysis revealed that LAG-3, TLR-2, PD-L1, IP-10, elafin,
REG-3α, ST2, and TIM3 were diagnostic biomarkers for aGVHD.
Part of the antitumor effect associated with allo-HSCT results from
immune-mediated effects of donor T cells, which is commonly
referred to as graft-versus-tumor (GVT) (Marmont, 1993). As
attractive targets for modulating immune response, immune
checkpoints (ICs) have been implicated in GVHD (Nguyen et al.,
2020). Recent review has indicated that analogues of ICs exhibit
anti-GVHD effects, and targeted drugs of ICs are a promising
approach to balance the risk of GVHD with the effects of GVT
(Zhu and Chen, 2023). As expected, we also found that several ICs,
including PD-L1, LAG-3 and TIM-3, had diagnostic value for
aGVHD. PD-L1 has been shown to selectively enhance T cell-
mediated immune responses (Tumeh et al., 2014). Saha et al.
revealed that in mice receiving PD-L1 −/− donor cells, reduction
in inflammatory cytokine production, increase in apoptosis, and
decline in aGVHD mortality without affecting graft-versus-

FIGURE 7
ROC curve analysis for the biomarker-based model for predicting aGVHD and its severity. Eight biomarkers-based diagnostic model for aGVHD in
internal dataset (A) and external dataset (B). Seven biomarker-based model for the severity of aGVHD in internal dataset (C) and external dataset (D).
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leukemia response were observed, suggesting that interference with
the PD-L1 pathway could serve as a potential therapeutic strategy to
control or improve aGVHD (Saha et al., 2016; Schuchmann et al.,
2008). The existence of homozygous T allele (rs870849) in LAG-3
impairs the inhibitory potential of the LAG-3 molecule in the
allogeneic transplantation environment, leading to the increase of
T cell response, which elevates the risk of severe aGVHD and
reduces the survival rate of transplant patients (Cruz et al., 2023).
TIM-3 is involved in the regulation of effector Th1 response, and its
level was detected to be dramatically upregulated in liver CD8(+)
T cells of aGVHD mice, indicating that it is implicated in the
immune regulation of this disease (Oikawa et al., 2006). Increased
TLR-2 contributes to rapid implantation and immune
reconstitution after transplantation in mice, and it is a valuable
target for improving transplantation efficiency without exacerbating
aGVHD (Lee et al., 2015). IP-10 (also known as CXCL10) plays a
central role in the pathogenesis of skin aGVHD by recruiting its
ligand CXCR3(+) T cells to the sites of inflammation (Piper et al.,
2007). Elafin, an epithelial protein secreted by keratinocytes in
response to IL-1 and TNF-α, is overexpressed only in inflamed
epidermis (Tanaka et al., 2000). It has been demonstrated to be an
effective plasma biomarker for cutaneous aGVHD (Paczesny et al.,
2010). REG3α is a biomarker of GVHD in the lower gastrointestinal
tract, and plasma REG3α concentration also can predict the
response to GVHD treatment and non-relapse mortality (Ferrara
et al., 2011). Besides, soluble ST2 drives the transformation of helper
T cells from type 2 to type 1 and is remarkably overexpressed in
patients with aGVHD, indicating that it can be served as a predictive
biomarker for aGVHD (Aladağ Karakulak et al., 2021). Taken
together, these above evidences suggested that these factors may
be directly involved in the pathogenesis of aGVHD.

Importantly, we also found that LAG-3, TLR-2, PD-1, Flt_3,
IL-9, elafin, and TIM3 could be utilized as molecular markers of
aGVHD severity. Among these, IL-9 and elafin have been
confirmed to be significantly elevated in patients with grade
III/IV aGVHD, which can be employed in the diagnosis and
grading of aGVHD (Ito et al., 2020; Li et al., 2019). PD-1
expression in CD4(+) T cells was markedly correlated with the
severity of aGVHD (Gallez-Hawkins et al., 2009). Besides, the
upregulation of TIM3 on T cells is related to the severity of
intestinal aGVHD, and extracorporeal photopheresis therapy can
restore the immune system by reducing cytokines such as
TIM3 and ultimately improve inflammation (Ni et al., 2022).
These studies further confirmed that the markers we selected
were indeed associated with the severity of aGVHD.

In this study, serum data from 120 patients were used to select
the optimal aGVHD risk model. Our work has several strengths.
First, few studies have evaluated the occurrence and severity of
aGVHD using common hematological indicators. Second, two
machine learning algorithms are applied to analyze the data,
increasing the accuracy of the results. Finally, the constructed
nomogram, especially the model for disease severity, can exhibit
excellent predictive ability, which can provide a reference for
clinicians in the diagnosis of aGVHD.

This work still has some limitations. First, retrospective studies
may have led to subjective and selection biases that cannot be
ignored. Second, all data came from a single hospital, which
limited the predictors that could be included in the study.

Finally, the clinical sample was limited and external validation of
the model was lacking. Therefore, large-scale population samples
need to be enrolled in the future to evaluate the diagnostic value of
the constructed model for aGVHD patients.

Conclusion

In short, the present findings suggest that the nomogram based
on serum indicators for predicting the risk and severity of aGVHD
has good calibration. Specially, seven key predictors were of great
significant for diagnosis, including LAG-3, TLR-2, elafin, and TIM3.
This model is expected to provide support for clinical practice and
future research.
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