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Objective: This study aimed to identify prognostic signatures to predict the
prognosis of patients with stomach adenocarcinoma (STAD), which is
necessary to improve poor prognosis and offer possible treatment strategies
for STAD patients.

Methods: The overlapping genes between the key model genes that were
screened by the weighted gene co-expression network analysis (WGCNA) and
differentially expressed genes (DEGs) whose expression was different with
significance between normal and tumor tissues were extracted to serve as
co-expression genes. Then, enrichment analysis was performed on these
genes. Furthermore, the least absolute shrinkage and selection operator
(LASSO) regression was performed to screen the hub genes among
overlapping genes. Finally, we constructed a model to explore the influence
of polygenic risk scores on the survival probability of patients with STAD, and
interaction effect and mediating analyses were also performed.

Results: DEGs included 2,899 upregulated genes and 2,896 downregulated
genes. After crossing the DEGs and light-yellow module genes that were
obtained by WGCNA, a total of 39 overlapping genes were extracted. The
gene enrichment analysis revealed that these genes were enriched in the
prion diseases, biosynthesis of unsaturated fatty acids, RNA metabolic process,
hydrolase activity, etc. PIP5K1P1, PTTG3P, and SNORD15B were determined by
LASSO-Cox. The prognostic prediction of the three-genemodel was established.
The Cox regression analysis showed that the comprehensive risk score for three
genes was an independent prognosis factor.

Conclusion: PIP5K1P1, PTTG3P, and SNORD15B are related to the prognosis and
overall survival of patients. The three-gene risk model constructed has
independent prognosis predictive ability for STAD.
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1 Introduction

Stomach adenocarcinoma (STAD), as a highly molecularly and
phenotypically heterogeneous gastrointestinal disease, has become
the fifth cancer with high incidence globally after lung, breast,
colorectal, and prostate cancers. The number of new cases is
increasing annually due to aging, with the incidence of STAD in
men being twice as high as in women (Santoro et al., 2014; Bray et al.,
2018; Eusebi et al., 2020; Smyth et al., 2020). Although a variety of
treatment methods, including surgical resection, immunotherapy,
and chemotherapy, have been applied to STAD, the prognosis of
patients is still unfavorable and the survival rate of patients with
STAD is only 30%. The poor prognosis of STAD patients may be
attributed to several reasons. First, STAD patients are hard to
distinguish at an early stage due to the absence of obvious
symptoms. Second, most of the patients were in the middle or
advanced stages when they were diagnosed, and tumor cells have a
strong infiltrate and migrate capacity (Chiurillo, 2015), which made
the treatment difficult. Third is a lack of understanding of STAD
initiation and development, which made us fail to provide timely
guidance for STAD treatment. It follows that the symptoms of
STAD and diagnosis time of patients cannot be controlled. However,
we can extend our understanding of STAD development and
improve the patient’s prognosis as much as possible.

Previous studies have shown that the process, development, and
prognosis of STAD were related to some gene expressions, including
MKI67, PLK1, COL1A1, TPX2, COL1A2, SPP1, LCP1, FN1,
COL1A1, and SERPINE1 (Huang et al., 2020; Zeng Q. et al.,
2021; Zhao et al., 2021). These biomarkers may be promising
targets for the treatment of STAD, which are beneficial to
improving the prognosis of patients with STAD. Therefore, it is
urgent to find more novel biomarkers to reveal the potential
pathogenic mechanisms, provide innovative therapeutic strategies,
and prolong the survival time of patients with STAD. In recent years,
microarray technology, united with bioinformatics analysis, has
emerged as an effective tool for mining cancer-related
biomarkers. Two main methods have been used for biomarker
identification, namely, differentially expressed gene (DEG)
analysis and weighted gene co-expression network analysis
(WGCNA) (Zhang and Horvath, 2005; Langfelder and Horvath,
2008). However, we believe that the application of these two
methods had limitations. First, most WGCNA studies have been
conducted based on the obtained DEGs rather than on all the
expression profiles of biomarkers. Therefore, several important
biomarkers may be omitted. In addition, it is known that the
clinical traits are significantly related to the patient’s prognosis,
such as tumor grade and clinical stage, and they have profound
clinical value. However, most WGCNA studies have only obtained
one module that significantly correlates with the clinical traits of
interest or selected the key module that shows the highest
correlation coefficient with certain clinical traits. Therefore, the
common WGCNA did not consider the various clinical traits as
much as possible. Because of these limitations, we believe that the
methodology for cancer-related biomarker identification needs to
be improved.

In this work, we intended to identify the hub genes associated
with the initiation and development of STAD. We first obtained the
DEGs between normal and STAD groups and performed the

WGCNA to explore the key module. We further conducted a
series of analyses to determine the key hub genes, evaluated their
clinical value, and explored the penitential regulatory mechanism.
What differentiates this study from previous studies is that the
WGCNA was based on the whole expression profile of all genes
rather than the profiles of DEGs; in addition, the key module was
identified if the module showed a significant correlation with most
of the clinical traits. Our analysis considered important biomarkers
and significant clinical traits as much as possible at the same time,
which is the innovation and superiority of this study.

2 Methods

2.1 Data collection

The RNA-seq expression profile and clinical features of STAD
patients were collected from the TCGA-STAD dataset, which
involved 414 STAD patients and 35 normal samples. The RNA-
seq expression profile included 17,455 genes. The clinical features of
STAD patients included age, tumor grade (G), distant metastasis (M
stage), lymph node metastasis (N stage), topography (T stage),
clinical stage, sex, overall survival (OS) status, and OS time. T
stage refers to the primary tumor size and extent of adjacent
tissue involvement, categorized as T1–T4 based on tumor volume
and range. N stage refers to regional lymph node involvement, with
N0 indicating no involvement and N1–N3 indicating increasing
degrees of involvement. M stage refers to distant metastasis, with
M0 indicating no distant metastasis and M1 indicating distant
metastasis. Immunohistochemistry staining in STAD was
analyzed using the Human Protein Atlas (HPA) database.

2.2 DEG identification

The RNA-seq expression data of STAD patients were
normalized using the R package “limma.” The R package
“limma” was then used to screen for DEGs between STAD and
normal tissues, applying a p-value <0.01 and an absolute fold change
(FC) > 1.5 in the TCGA-STAD datasets. The DEGs were presented
with a volcano plot and heat maps using the ggplot2 R package (Chi
et al., 2023; Miao et al., 2023).

2.3 Construction of co-expression gene
modules by WGCNA

The WGCNA was performed to construct co-expression
modules using the whole RNA-seq expression data of STAD
patients. Scale independence and average connectivity degree of
the network with different power values were tested. Then, genes
were classified into different modules based on topological overlap
matrix (TOM)-based dissimilarities. AfterWGCNA, the keymodule
can be identified. It should be stated that the key module
identification in this study was based on the number of clinical
traits that correlated with a certain module. The module showing a
significant correlation with most clinical traits was regarded as the
key module. The correlation between each module and clinical
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features was assessed using the “Pearson” method, with a
p-value <0.05 considered indicative of a significant correlation
(Yuan et al., 2021; Du et al., 2023). Furthermore, the genes
within the key module were used for further analysis.

2.4 Functional enrichment analysis

The overlapping genes between DEGs and key module genes
were screened using the Venn analysis. Then, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed using the “clusterProfiler” R package on the
overlapping genes to explore the enriched pathways. The p-values
were adjusted by the “Benjamin and Hochberg” (BH) method. The
Gene Ontology (GO) analysis on DEGs was also performed using
the “clusterProfiler” R package, and cellular component (CC),
biological process (BP), and molecular function (MF) terms were
annotated. These terms were selected as vital when nominal
p-value <0.05 and false discovery rate q-value <0.05.

In addition, we also explore the single hub gene enrichment
analysis via gene set enrichment analysis (GSEA). Specifically, we
obtained GSEA software (version 3.0) from the GSEA website
(http://software.broadinstitute.org/gsea/index.jsp) and divided the
samples into high-expression groups based on the expression levels
of the hub gene (≥50%) and low-expression group (<50%)
(Subramanian et al., 2005). Subsequently, we downloaded c2.cp.
kegg.v7.4 from the Molecular Signatures database (http://www.gsea-
msigdb.org/gsea/downloads.jsp) (Liberzon et al., 2011). We utilized
the symbols.gmt subset to assess related pathways and molecular
mechanisms based on gene expression profiles and phenotypic
grouping, with a minimum gene set of 5 and a maximum gene
set of 5,000, conducting 1,000 resamplings. Statistical significance
was set at a p-value <0.05 and a false discovery rate (FDA) <0.25.

2.5 Screening of hub genes and survival
analysis on them

Through differential expression analysis, we have obtained the
significant DEGs between tumor and control groups. Through
WGCNA, we have obtained the key module genes that correlate
with the clinical characteristics. Next, we identified the common
genes between significant DEGs and key module genes using Venn
analysis. Regarding the common genes, LASSO analysis was then
conducted to filter the prognosis-related genes using the “glmnet” R
package (https://glmnet.stanford.edu/articles/Coxnet.html). In
addition, we set up a 10-fold cross-validation to obtain optimal
λ. λ is an important parameter value in LASSO analysis. A higher λ
value leads to a higher L1 penalty weight, and the coefficients of
those redundant variables will be compressed to 0. The retaining
genes in the final optimal LASSO model were regarded as the key
hub genes.

To verify the clinical value of hub genes, we performed the PCR
in vitro to test the expression of hub genes in human gastric cancer
cells and normal cells. The procedure of the PCR test is presented in
the following section. In addition, we performed the Kaplan–Meier
(KM) analysis to explore the association between these hub genes
and overall survival (OS) of patients, and the survival difference

between the two groups was analyzed using the log-rank test. All the
patients were divided into high- and low-expression groups based
on the cut-off value of each hub gene. All possible cut-off values
between the lower and upper quartiles are recomputed, and the best-
performing threshold is used as the optimal cut-off. The cut-off
values were obtained via the “maxstat” R package.

2.6 Hub gene-based riskmodel construction
and clinical value assessment

Subsequently, based on the LASSO coefficients of each non-zero
gene and their mRNA expression level, we constructed a prognostic
riskmodel using the following formula (Simon et al., 2011): risk score =
A1coef*X1 expression+ A2coef*X2 expression . . . + Ancoef*Xn expression.
According to this formula, the risk score of each patient was calculated.

We first compared the difference in risk scores among groups
stratified by various clinical characteristics. Then, we conducted the
KManalysis on risk score to explore the association between risk score
and OS both in whole populations and various subgroups stratified by
age, gender, and clinical stage. To reveal the independent role of risk
score on OS, univariable and multivariable Cox regression analyses
were conducted on risk score and clinical characteristics. We also
performed the receiver operating characteristic (ROC) analysis via the
survival R package “ROC” to assess the prediction performance of the
risk score on the 1-, 3-, and 5-year survival, and its prediction
performance was reflected in the area under the curve (AUC)
value of the ROC curve. In addition, the decision curve analysis
(DCA) was conducted to evaluate the obtained clinical net benefit.
Furthermore, a nomogram analysis was conducted via the R package
“rms” to evaluate the performance of the risk score for predicting the
patient’s survival after combining other clinical traits. In addition, the
“calibrate” function of the “rsm” package was used to plot the
calibration curve, which shows the comparison scatter plot of
prediction and occurrence probability and evaluates the accuracy
of prediction probabilities. The C-index value was calculated to
evaluate the effectiveness of the nomogram.

2.7 Interaction and mediation analyses
associated with OS

The above analyses all focused on the importance of assessment
of the risk score in OS, and we further explored the potential role of
clinical traits on the association between risk score and OS. We first
performed the interaction analysis to evaluate the interaction effect
between clinical traits and risk scores. Specifically, interaction
analyses were performed using the product of the risk score, each
clinical trait, and both while incorporating multifactor Cox
regression analyses to test for an interaction between them. A
p-value for interaction <0.05 was considered statistically
significant. Next, we conducted the mediation effect analysis to
explore the mediating effects of clinical traits on the association
between risk score and OS via Moment Structure version (AMOS)
24.0 statistical software. The clinical trait interacted with the risk
score on OS. The statistical significance of the mediating effects was
tested using the bootstrap method. A p-value less than 0.05 for total
effects was the basis for assessing the mediation effects.
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2.8 Cell culture

The human AIDS SGC7901 cell line and human gastric
epithelium GES-1 cell line were bought from the Shanghai
Institute of Biochemistry and Cell Biology, Chinese Academy of
Sciences. A549 cell lines were cultured in Roswell Park Memorial
Institute 1640 Medium (Gibco, New York, United States). The
culture methods were used according to the previous literature
(Xu et al., 2023).

2.9 Quantitative real-time PCR test

The PCR test was conducted to explore the expression of hub
genes in STAD cancer cells and normal cells. Total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, United
States) following the manufacturer’s instructions and reverse
transcribed, and quantitative real-time PCR (qPCR) was
performed as described in the reported study (Wolf et al., 2022).
The expression data of the gene was normalized based on the
average mean of the housekeeping genes PIP5K1P1, PTTG3P,
and SNORD15 to control the quality of qPCR data. Primer
sequences of PIP5K1P1: forward 5′- GGCTGGGTCTTAGGG
AAAGG-3′; reverse 5′- ACTAAGAGCCTTGCTTTCTGCT-3′.
Primer sequences of PTTG3P: forward 5′- AATCTGGTTGAG
AGCGGCAA -3′; reverse 5′- CAGCCCATCCTTTGTAGCCA
-3′. Primer sequences of SNORD15: forward 5′- TGACACGAT
GACGAGTCAGA -3′; reverse 5′- AGGACACTTCTGCCAAAG
GA -3′.

2.10 Analysis of immune cell
infiltration levels

To investigate the relationship between the expression of the hub
gene and six types of immune cells, we analyzed immune cell
infiltration levels using the tumor immune estimation resource
(TIMER) methods based on the TIMER2.0 database (http://timer.
cistrome.org/), which is commonly used for studying immune cell
infiltrates in various tumors (Li et al., 2020). The immune cells of
interest included B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells, with the relationship being adjusted
for tumor purity. In addition, IOBR is a computational tool used for
immuno-oncology biology research (Zeng D. et al., 2021). In this
study, we employed expression profiles and utilized the R package
IOBR along with the selected CIBERSORT method to calculate the
scores for 22 immune-infiltrating cells per sample (Zeng D. et al.,
2021). Additionally, patients with STAD were divided into two
groups based on the median risk score, and levels of 22 immune cell
infiltrations were compared between these two groups.

2.11 Statistical analysis

All statistical analyses were performed using R (version 4.0.3),
AMOS (version 24), and SPSS (version 23) software. The expression
differences of genes in different subgroups were analyzed using a
t-test (2 groups) or one-way analysis of variance (ANOVA)

(>2 groups). The correlation between the two variables was
analyzed using the Pearson method. The survival difference
between the two groups was analyzed using the log-rank test.
ROC and DCA analyses were performed to evaluate the
efficiency of the risk model for predicting the survival of STAD
patients. The hazard ratio (HR) and 95% confidence interval (CI)
were used to evaluate death risk. A p-value <0.05 was considered
statistically significant. The research flowchart for this study is
shown in Figure 1.

3 Results

3.1 Baseline characteristics

The baseline characteristics of all STAD patients are presented
in Table 1. There were 267 male and 147 female patients. In
addition, 226 patients aged ≥65 accounted for 54.59%, while
183 patients aged <65 accounted for 44.2%. The number of
patients in G1, G2, G3, and GX was 12 (2.90%), 147 (35.51%),
246 (59.42%), and 9 (2.17%), respectively. The number of patients
at M0, M1, and MX was 367 (88.65%), 27 (6.52%), and 20 (4.83%),
respectively. There were 123 (29.71%) patients in N0, 111 (26.81%)
patients were in N1, 80 (19.32%) patients were in N2, 82 (19.81%)
were in N3, and 17 (4.11%) were in NX. The number of patients at
T1, T2, T3, T4, and TX stages was 22 (5.31%), 88 (21.26%), 179
(43.24%), 116 (28.02%), and 9 (2.17%), respectively. Most of the
patients were in stage III (170 cases; 41.06%) and stage II
(122 cases; 29.47%), followed by stage I (57 cases; 13.77%), and
the smallest number of patients was in stage IV (42 cases; 10.14%).
Among all patients, 250 (60.39%) cases were alive and 121 cases
(29.23%) died of STAD tumors. The patients missing overall
survival time and status were excluded, and 357 STAD patients
were selected for further analysis.

3.2 Identification of DEGs

There were 5,795 DEGs screened between normal and tumor
groups (adj. p-value <0.05 and |fold change| > 1.5), including
2,899 upregulated and 2,896 downregulated genes. The DEGs
were presented with a volcano map, and the top 50 upregulated
and downregulated DEGs were plotted with heat maps
(Supplementary Figure S1).

3.3 Construction of the co-expression gene
model and screening of key modules

The WGCNA was used to study the relationship between gene
modules and clinical features. The results indicated that the
constructed gene co-expression network approximated a scale-free
topology distribution with fitting R2 = 0.88 when soft-thresholding
value β and cut height were 3 and 0.25, respectively (Figures 2A, B). A
cluster map of samples with clinical features is shown in Figure 2C.
Then, a gene cluster tree was presented in Figure 3A, and 16 modules
were identified. Heat maps showing the distance between module
genes are shown in Figure 3B.
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The relationships between each module and clinical features are
presented in Figure 3C. It follows that the cyan module significantly
correlated with three clinical traits (age, G, and T; all p-values <0.05).
Three modules, including brown, dark turquoise, and salmon modules,

all correlated with two clinical traits (G and T; all p-values <0.05). The
dark red model only correlated with the G trait (p-value <0.05). The
midnight bluemodule only correlated with age (p-value <0.05). The dark
greenmodel significantly correlatedwith two clinical traits (N stage andT

FIGURE 1
Flowchart of this study.
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stage; all p-values<0.05). The light-yellowmodule significantly correlated
with four clinical traits (age, T stage, N stage, and OS time; all
p-values <0.05). However, the purple module and green model
showed no relationship with any clinical traits. Among all the
modules, the light-yellow module was finally regarded as the key
module since it showed a significant correlation with most of the
clinical traits. There were 68 genes within the light-yellow module.

3.4 Functional enrichment analyses for
overlapping genes

After crossing the DEGs and light-yellow module genes,
39 overlapping genes were extracted (Figure 4A). To further
investigate the cellular functions and molecular mechanisms of
overlapping genes in STAD, these genes were used to perform
KEGG and GO analyses. The results of KEGG enrichment analysis
revealed that 39 genes were related to the herpes simplex virus
1 infection, prion diseases, fatty acid elongation, and biosynthesis of
unsaturated fatty acids (Figure 4B). Moreover, in GO enrichment
analysis, the biological process contains RNA metabolic process,
RNA processing retina homeostasis, transcription RNA-templated,
heat acclimation, cellular heat acclimation, and regulation of RNA
interference, microtubule nucleation, and ribonuclease activity
(Figure 4C). The molecular function analysis indicated that 39 genes
participated in hydrolase activity, RNA-directed 5′-3′ RNA polymerase
activity, C3HC4-type RING finger domain binding myristoyl-CoA
hydrolase activity, palmitoyl-CoA hydrolase activity, protein binding
involved in protein folding, acyl-CoA hydrolase activity, DNA
polymerase binding, CoA hydrolase activity, 5′-3′ RNA polymerase
activity, RNA polymerase activity, and disordered domain-specific
binding (Figure 4D). In cell components, these genes were engaged
in the nucleolus, extracellular exosome, extracellular vesicle,
extracellular organelle, blood microparticle, small nucleolar
ribonucleoprotein, complex RNA-directed RNA polymerase
complex, nascent polypeptide-associated complex, ribonuclease MRP
complex, and box H/ACA RNP complex (Figure 4E).

3.5 Screening of hub gene

The 39 overlapping genes were further enrolled in LASSO
analysis (Figure 5A) to filter the redundant genes by introducing
a tuning parameter (λ). When λ was minimized to 0.05, the optimal
LASSO model was obtained. Finally, three hub genes, namely,
PIP5K1P1, PTTG3P, and SNORD15B, were included in the
optimal LASSO model (Figure 5B).

Then, we explored the association between three hub genes and
OS in STAD patients. All the patients were divided into two groups
according to their optimal cut-off values, and the optimal cut-off
values of PIP5K1P1, PTTG3P, and SNORD15B were 0.362, −0.813,
and 1.510, respectively. Next, the survival difference between the two
groups was compared. Survival analysis showed that three gene
expressions impacted the OS of patients with STAD (p-value <0.05),
and the survival rate of patients in the low-expression group was
higher (Figures 5C, E, G). As shown in Figures 5D, F, H, the
expressions of PIP5K1P1, PTTG3P, and SNORD15B in dead
STAD samples were higher.

TABLE 1 Clinical characteristics of 414 STAD patients from TCGA databases.

Characteristics N (%)

Age

≥65 226 (54.59%)

<65 183 (44.20%)

Miss 5 (1.21%)

Grade

G1 12 (2.90%)

G2 147 (35.51%)

G3 246 (59.42%)

GX 9 (2.17%)

M

M0 367 (88.65%)

M1 27 (6.52%)

MX 20 (4.83%)

N

N0 123 (29.71%)

N1 111 (26.81%)

N2 80 (19.32%)

N3 82 (19.81%)

NX 17 (4.11%)

Miss 1 (0.24%)

T

T1 22 (5.31%)

T2 88 (21.26%)

T3 179 (43.24%)

T4 116 (28.02%)

TX 9 (2.17%)

Stage

I 57 (13.77%)

II 122 (29.47%)

III 170 (41.06%)

IV 42 (10.14%)

Miss 23 (5.56%)

Gender

Male 267 (64.49%)

Female 147 (35.51%)

OS

Alive 250 (60.39%)

Dead 121 (29.23%)

Miss 43 (10.39%)
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3.6 Exploration and validation of hub gene
expression

To explore the expression of hub genes in different tumors, the
expression analysis in pan-cancer was performed. The results
showed that PIP5K1P1 was highly upregulated in 12 types of
cancers (GBM, glioblastoma multiforme; LUAD, lung

adenocarcinoma; COAD, colon adenocarcinoma; COADREAD,
colorectal cancer; BRCA, breast invasive carcinoma; ESCA,
esophageal carcinoma; STES, stomach and esophageal carcinoma;
STAD, stomach adenocarcinoma; HNSC, head and neck squamous
cell carcinoma; LUSC, lung squamous cell carcinoma; LIHC, liver
hepatocellular carcinoma; and CHOL, cholangiocarcinoma) and
downregulated in five types of cancers (KIRP, kidney renal

FIGURE 2
Construction of the co-expression network via WGCNA based on the TCGA-STAD dataset. (A) Analysis of the scale-free fit index for various soft-
thresholding powers (β = 3). (B) Mean connectivity for various soft-thresholding powers. (C) Cluster map of samples with clinical features. Each vertical
line represents a sample. The color depth changes of legend in the right represent the categories of each feature. Abbreviation: G, tumor grade; M, distant
metastasis, N, lymph node metastasis; T, topography; OS, overall survival.
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papillary cell carcinoma; KIPAN, pan-kidney cohort; KIRC, kidney
renal clear cell carcinoma; THCA, thyroid carcinoma; and KICH,
kidney chromophobe). PTTG3P and SNORD15B were significantly
upregulated in STAD and NHSC and downregulated in THCA with
a statistically significant difference (Supplementary Figure S2).

We compared gene expression levels in subgroups with
different clinical traits to explore the expression of three hub
genes in different clinical traits. The expression of the three hub
genes in different stages, N, M, G, and T, was not different.
Notably, the expression of PTTG3P was different in gender
subgroups and was higher in the female group than in the male

group. The expression of SNORD15B differed in age subgroups and
was higher in the <65 group than in the ≥65 group (Supplementary
Figure S3). In addition, we also explored the expression of the hub
gene at the protein level via the Human Protein Atlas Database.
Supplementary Figure S4 shows that SNORD15B protein
expression differs between stomach cancer tissue and normal
tissue. The HPA database lacks PTTG3P gene expression at the
protein level, and PIP5K1P1 does not encode a protein because it is
a pseudogene of PIP5K1A.

We further performed the PCR test to verify the expression of
hub genes. The results of PCR showed that the mRNA expression

FIGURE 3
Screening of the key modules correlated with clinical traits of STAD patients via WGCNA. (A) Dendrogram of genes clustered based on the
dissimilarity measure. Each color represents a module in the constructed gene co-expression network by WGCNA. (B) Heat map showing the distance
between the modules. Red color represents lower overlap, and blue represents higher overlap. (C) Heat map showing the relationship between each
module and each clinical feature. Abbreviation: G, tumor grade; M, distant metastasis, N, lymph nodemetastasis; T, topography; OS, overall survival.
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levels of PIP5K1P1, PTTG3P, and SNORD15B in the cancer cells
were significantly higher than those in normal cells (Figures 6A–C).

3.7 Construction and evaluation of a three-
gene signature

Through LASSO analysis, three biomarkers have been obtained.
According to their coefficients in the LASSO model and mRNA
expression level, a risk model was constructed, and the risk score of
each patient was calculated according to the formula: Risk score =
0.0043*the expression level of PIP5K1P1 + 0.096*the expression
level of PTTG3P + 0.029*the expression level of SNORD15B.
Survival analysis showed that the patients with a high-risk score
had a low survival rate (p-value <0.001) (Figure 7A). The AUC value
of the risk score for predicting the survival status was 0.61
(Figure 7B). The AUC values for predicting the 1-, 3-, and 5-year
survival were 0.61, 0.71, and 0.81, respectively (Figure 7C). The
result of DCA showed that the risk model had a good clinical net
benefit in the prediction of STAD prognosis (Figure 7D). Those
results indicated the model had a good predictive capability. To

verify its effect on survival in different races, we performed subgroup
analysis in different races. The results showed that in White and
Asian populations, the high-risk group remained unfavorable for
patient prognosis, which was consistent with the results in the entire
population (Supplementary Figure S5) (due to the small number of
Black or African American/Native Hawaiian or other Pacific
Islander patients, KM analysis was not performed).

3.8 Exploring the prognosis value of hub
genes in pan-cancer

The above results showed that three genes were related to the
prognosis of patients with STAD. Therefore, we further explore the
prognosis value of the three genes via survival analysis in different
cancers. The result showed that PIP5K1P1 had important
significance in evaluating the prognosis of patients with some
types of cancer. Those types of cancer included BLCA, KIRC,
UCEC, GBM, HNSC, PCPG, READ, and STES (all p < 0.05,
Supplementary Table S1). In addition, PTTG3P had significant
prognosis value in patients with different cancers, including

FIGURE 4
Functional enrichment analyses. (A) Thirty-nine overlapping genes between DEGs and the light-yellow module genes are shown in the Venn
diagram. (B) KEGG pathway analysis on 39 genes. GO enrichment analysis on 39 genes including the (C) biological process, (D) molecular function, and
(E) cellular component.
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KIPAN, BRCA, KICH, KIRC, COADREAD, ESCA, LIHC, LUAD,
LUSC, KIRP, and PRAD (all p < 0.05, Supplementary Table S2).
Similarly, SNORD15B also had prognosis value in some types of
cancer, including KICH, KIRC, LIHC, and STES (all p < 0.05,
Supplementary Table S3). Those results indicated that three hub
genes had different prognoses in different types of cancer.

3.9 GSEA

The GSEA was performed to explore the important pathways
related to the hub gene. According to p < 0.05 and FDR <0.25, we
found no pathway associated with the expression of PIP5K1A and
PTTG3P. Four pathways associated with high expression of

FIGURE 5
Screening of the hub genes and survival analysis on them. (A) Cross-validation plot for the term of penalty. (B) Hub genes included in the optimal
LASSO model. (C, E, G) Association between PIP5K1P1, PTTG3P, and SNORD15B expressions and OS. (D, F, H) Visualization of PIP5K1P1, PTTG3P, and
SNORD15B expression levels and survival condition.
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FIGURE 6
mRNA expression verification of hub genes in normal and tumor cells. (A) PIP5K1P1. (B) SNORD15B. (C) PTTG3P. Data are represented as themean ±
SD. * p-value < 0.05; ** p-value < 0.01.

FIGURE 7
Effectiveness analysis of the risk model in STAD. (A) Survival analysis. (B) ROC analysis for predicting the survival status. (C) Time-dependent ROC
analysis for predicting 1-, 3-, and 5-year survival. (D) DCA curve.
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SNORD15B, including oxidative phosphorylation (ES = 0.7288 and
FDR = 0.0112), RNA polymerase (ES = 0.6060 and FDR = 0.2002),
folate biosynthesis (ES = 0.6978 and FDR = 0.2038), and glutathione
metabolism (ES = 0.4939 and FDR = 0.2319)
(Supplementary Figure S6).

3.10 Survival analysis of the three-gene
risk score

The importance of the risk score in OS has already been proved.
Furthermore, we explored the independent role of the risk score in
OS. In the univariable and multivariate Cox analyses, the risk score
was related to prognosis (p-value < 0.001), while other clinical traits
were insignificantly associated with prognosis (Table 2). The result
further indicated the importance of the three-gene model in OS.
Subsequently, the KM subgroup analysis on the risk score was also
performed, grouped by gender, age, and stage. The KM analysis
indicated that a low-risk score was related to a longer survival time,
regardless of clinical traits (Figures 8A–F, p-value < 0.001).

3.11 Interaction effect analysis and
mediating analysis

Although no independent prognostic value of other clinical
variables was found in our multivariable Cox regression, we

noted that there were differences in the risk score between
groups under different clinical characteristics (data not shown).
Therefore, we further explored whether there was an interaction
effect between clinical features and risk scores via interaction
analysis. The results showed that only the N stage and clinical
stage had an interaction effect with the risk score (Table 3).
Because of the important role of gene marker expression in
tumor progression, we further explored whether markers can
affect the prognosis of patients by promoting N and clinical
stages via mediation analysis. Mediation analysis showed that
only the N stage played a mediating role in the correlation
between the risk value and prognosis (Table 4).

Then, we performed the KM analysis in four groups, namely,
N1–3 and high-risk score, N1–3 and low-risk score, N0 and high-
risk score, and N0 and low-risk score for exploring the precise
crowd. We found that the risk score mainly correlated with the
prognosis in patients with lymph node metastasis
(Figures 9A–D).

3.12 Analysis of immune cell
infiltration levels

The correlations between immune cell infiltration levels and
expression of the hub genes in STAD were explored via TIMER.
The results showed that the expression of hub genes had a
different association with the infiltration level of the different

TABLE 2 Cox regression analysis based on the risk score and overall survival in STAD patients.

Subject B p-value HR Lower limit Upper limit Hazard ratio (95% CI)

Univariable Risk score 3.52 <0.001 33.87 6.22 184.54 33.87 (6.22–184.54)

Age 0.01 0.30 1.01 0.99 1.03 1.01 (0.99–1.03)

G 0.00 0.99 0.99 0.71 1.40 0.99 (0.71–1.40)

M 0.02 0.94 1.02 0.64 1.63 1.02 (0.64–1.63)

N −0.05 0.55 0.95 0.80 1.13 0.95 (0.80–1.13)

T 0.00 1.00 1.00 0.80 1.25 1.00 (0.80–1.25)

STAGE −0.04 0.73 0.96 0.77 1.20 0.96 (0.77–1.20)

Sex 0.31 0.12 1.36 0.92 2.00 1.36 (0.92–2.00)

Age group 0.10 0.60 1.12 0.75 1.63 1.12 (0.75–1.63)

Multivariable

Risk score 3.63 <0.001 37.70 6.58 215.97 37.70 (6.58–215.97)

Age 0.02 0.34 1.02 0.98 1.05 1.02 (0.98–1.05)

G −0.10 0.58 0.91 0.64 1.28 0.91 (0.64–1.28)

M −0.02 0.95 0.98 0.60 1.62 0.98 (0.60–1.62)

N −0.02 0.84 0.98 0.78 1.22 0.98 (0.78–1.22)

T 0.08 0.60 1.09 0.80 1.49 1.09 (0.80–1.49)

STAGE −0.04 0.83 0.96 0.67 1.38 0.96 (0.67–1.38)

Sex 0.29 0.15 1.34 0.90 1.99 1.34 (0.90–1.99)

Age group −0.19 0.61 0.83 0.40 1.71 0.83 (0.40–1.71)
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types of immune cells. Notably, the expression of PTTG3P had a
positive association with the infiltration level of the CD8+ T cell
(r = 0.1 and p < 0.001), macrophage (r = 0.146 and p < 0.001), and

neutrophil (r = 0.18 and p < 0.001). The abundance of 22 immune
cell infiltrates calculated by the CIBERSORTmethod showed that
the levels of eosinophils and neutrophils were significantly higher
in the high-risk group than in the low-risk group
(Supplementary Figure S7).

3.13 Construction of a nomogram model

The nomogram was constructed according to various clinical
traits and risk scores to assess the performance for predicting the 1-
, 3-, and 5-year survival probability (Figure 10). The C-index was
0.660, hazard ratio was 95% CI (0.598–0.721), and p-value was
3.785e-07. The nomogram showed that tumor grade and risk
scores had higher contributions to survival than other features.
The result also indicated that the model had an excellent ability to
assess disease progression and predict survival for every
STAD patient.

FIGURE 8
Survival analysis on the risk score in various subgroups. (A) Female, (B) male, (C) age <65, (D) age ≥65, (E) stages 1 and 2, and (F) stages 3 and 4.

TABLE 3 Interaction effect analysis between the different clinical
characteristics and risk score in affecting the survival status.

Subject F p-value

Stage 2.94 0.02

Sex 0.47 0.51

Age 2.21 0.14

G 1.71 0.16

M 1.22 0.31

N 4.44 0.001

T 1.95 0.19
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TABLE 4 Mediating analysis for the relationships between underlying variables.

Path Coefficient se p-value CI [2.5%] CI [97.5%] Sig

Stage as the mediator

Stage ~ risk score −0.09 0.36 0.81 −0.80 0.62 No

OS time ~ stage −28.84 20.19 0.15 −68.48 10.80 No

Total −735.97 201.74 0.00 −1,132.00 −339.94 Yes

Direct −738.57 201.60 0.00 −1,134.31 −342.82 Yes

Indirect 2.60 15.58 0.80 −17.47 47.98 No

N as the mediator

N ~ risk score −0.94 0.47 0.05 −1.87 −0.01 Yes

OS time ~ N −46.52 15.42 0.00 −76.78 −16.26 Yes

Total −735.97 201.74 0.00 −1,132.00 −339.94 Yes

Direct −783.65 200.96 0.00 −1,178.14 −389.16 Yes

Indirect 47.68 27.69 0.04 4.70 116.59 Yes

FIGURE 9
Survival analysis in various subgroups after combining risk score and lymph node metastasis status. (A) N1-3 and high-risk score; (B) N1-3 and low-
risk score; (C) N0 and high-risk score; and (D) N0 and low-risk score.
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4 Discussion

STAD is a common cancer with a high mortality, and it is
necessary to find more biomarkers for revealing the pathogenic
mechanism (Guo et al., 2022). In the present study, 39 genes that
both correlated with STAD initiation and clinical traits of patients
were initially extracted. The overlapping genes were mainly enriched
in prion diseases and the biosynthesis of unsaturated fatty acids.
Prions have adhesion molecular properties that promote the
development, progression, and epithelial–mesenchymal transition
of tumors by affecting the ERK2 signaling pathway. Moreover,

prions were highly expressed in gastric, pancreatic, colon, and
breast cancers. They can enhance cancer cell metastasis and
proliferation and induce drug resistance (Diarra-Mehrpour et al.,
2004; Pan et al., 2006; Du et al., 2013). Regarding the unsaturated
fatty acid pathway, a large number of studies have reported that
abnormal lipid metabolism was related to the occurrence and
development of tumors (Menendez and Lupu, 2007). Tumors
generally stimulate the fatty acid synthase to promote lipid
synthesis and meet the lipid requirement for tumor cell
proliferation (Kim and DeBerardinis, 2016). The synthesis of
unsaturated fatty acids in tumor cells leads to lipid peroxidation

FIGURE 10
Nomogramestablished using clinical features and risk scores. (A)Nomogram. (B) correction curve. In the nomogram, the line corresponding to each
variable is marked with a scale, which represents the range of the variable, and the length of the line segment reflects the contribution of the factor to the
clinical outcome event. The point represents the individual score corresponding to each variable under different values. Total point represents the total
score of the sum of the individual scores corresponding to all variables. Prediction probability represents the risk of suffering from STAD.
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and mitochondrial damage, resulting in mitochondrial DNA
leakage, ultimately activating the cGAS-STING innate immune
pathway (Xiang et al., 2023). cGAS-STING is the main pathway
responsible for recognizing cytoplasmic DNA immune responses.
As a cytoplasmic DNA receptor, cGAS can be activated by DNA
and/or Mn2+ to synthesize the second messenger 2′3′-cGAMP
using ATP and GTP, which further activates STING and induces
the production of type I interferons and other cytokines, thereby
eliciting tumor immune responses (Chen and Xu, 2023).
Additionally, research indicates a correlation between the
unsaturated fatty acid synthesis pathway and ferroptosis. Long-
chain fatty acid-CoA ligase 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) facilitate the
binding of polyunsaturated fatty acids (PUFAs) to phospholipids,
forming phospholipids containing PUFAs (PUFA–PLs), which are
susceptible to oxidation mediated by lipoxygenases (ALOX),
resulting in iron-dependent regulatory cell death (Chen et al.,
2021). Studies have shown that in gastric cancer cells, the
expressions of long-chain fatty acid protein 5 (ELOVL5) and
fatty acid desaturase 1 (FADS1) discriminate the cellular
susceptibility to ferroptosis (Lee et al., 2020).

Furthermore, three genes, namely, PIP5K1P1, PTTG3P, and
SNORD15B, were determined via the LASSO analysis. Moreover,
three genes’ expression affected the STAD patients’ prognosis
significantly. PIP5K1P1, phosphatidylinositol-4-phosphate 5-kinase
type 1 pseudogene 1, resembles the PIP5K1A functional gene that
plays a role in the upstream of the P13K/AKT signaling pathway and
is involved in cell differentiation, cell migration, and so on.
Pseudogenes are fragments that are very similar to known
sequences of coding genes called parent or true genes.
Pseudogenes lack the function of encoding a protein or peptide
due to premature stop codons, deletions, insertions, and mutations.
Therefore, it was once considered to be an insignificant gene fragment
in biomolecular processes (Pei et al., 2012). However, there are
currently no studies on the role of this gene in tumors, and its
mechanism of action in tumors needs to be further explored. PTTG3P,
pituitary tumor transforming 3, pseudogene, is a member of the
PTTG family, and its parents are PTTG1 and PTTG2. It is involved in
the progression of many cancers. PTTG3P promoted cell proliferation
and glycolysis in colorectal cancer (Wang et al., 2021) and also
promoted metastasis by sponge-absorbing microRNA-155-5P (Liu
et al., 2020). In breast cancer, there is a positive relationship between
PTTG3P and PTTG1 expression, with high expression indicating a
poor prognosis (Lou et al., 2019). In this work, we found that its low
expression favored prognosis in STAD. This result is identical to the
previously reported research. Weng et al. (2017) indicated that the
expression of the pseudogene PTTG3P was higher in stomach tumors
than in normal tissues and that high expression of PTTG3P facilitated
proliferation, migration, and invasion of gastric tumor cells and was
associated with poor prognosis (Weng et al., 2017). This is because
PTTG3P can upregulate the YAP1 gene, which can promote cell
growth (Johnson and Halder, 2014; Shimomura et al., 2014) and
inhibit apoptosis (Zhao et al., 2009). SNORD15B is a C/D box
snoRNA encoded in the ribosomal protein S3 gene (Tycowski
et al., 1993). Some snoRNAs are the impact of the tumor of
proliferation, clonality, migration, and invasion in some previous
studies (Zhang et al., 2020). In this work, its lower expression showed
a better prognosis for patients with STAD.

In addition, we also found that pathways related to cancer cell
proliferation (oxidative phosphorylation and RNA polymerase)
were enriched in the SNORD15B high-expression group. This
may be because it enhances the proliferation and colony
formation of stomach tumor cells via those pathways (Shen
et al., 2022).

Based on three genes, we first built the risk score model. The
low-risk score was helpful for STAD patient prognosis and
demonstrated a good predictive capability for patients with
STAD. Consistent with this, the KM plot indicated that a low-
risk score was associated with better prognosis for STAD patients
when grouped by gender, age, and stage. Moreover, the three-gene
risk score was proved to be an independent prognostic risk factor of
STAD via Cox regression analyses. In addition, we found an
interaction association between the risk score and N and clinical
stages, with the N stage mediating the effect of the risk score on the
prognosis of the patients with STAD. We speculated that lymph
node metastasis may be related to the elevation of the risk score.
Finally, a nomogram based on the three-gene risk score and other
clinical features (G, M, N, T, stage, sex, and age) was constructed for
predicting the prognosis of patients with STAD.

Compared with published STAD prognosis prediction models,
including the three-gene model established by Wu et al. (2018), the
five-gene model by Song et al. (2019), the eight-gene model by Wei
et al. (2020), the four-gene model by Guo et al. (2022), and the four-
gene model by Fu et al. (2022), we found no overlap in key genes
between our model and theirs. The differences in the genes identified
may be due to variations in gene screening processes and the types of
genes emphasized. For instance, Fu et al. (2022) focused on
mutation-related prognostic genes, while Guo et al. (2022)
focused on invasion-related genes. We compared the C-index of
the models [Guo et al. (0.62) vs. Wu et al. (0.57) vs. Song et al. (0.58)
vs. Wei et al. (0.54) vs. Fu et al. (0.59) vs. our study (0.61)] and the
results of the time-dependent ROC curve in predicting the 1-year
survival rate of patients. Our AUC ranked second, just behind Fu
et al.’s study [AUC of 1 year: Guo et al. (0.62) vs. Wu et al. (0.58) vs.
Song et al. (0.60) vs. Wei et al. (0.51) vs. Fu et al. (0.64) vs. our study
(0.61)]. In predicting the 3-year survival rate of patients, our AUC
was the highest [3-year: Guo et al. (0.66) vs. Wu et al. (0.58) vs. Song
et al. (0.66) vs. Wei et al. (0.60) vs. Fu et al. (0.64) vs. our study
(0.71)]. In predicting the 5-year survival rate, our AUC was very
close to Guo’s, both exceeding 0.8 [5-year: Guo et al. (0.82) vs. Wu
et al. (0.62) vs. Song et al. (0.66) vs. Wei et al. (0.60) vs. Fu et al. (0.64)
vs. our study (0.81)]. Those results indicated that our model showed
good performance, and with fewer key genes, it is relatively easier
to detect.

The three-gene model might play a vital role in the prognosis of
patients with STAD by regulating important pathways. It can assess
the prognosis of gastric cancer patients and provide a reference for
the development of subsequent treatment plans. Additionally, we
identified PIP5K1P1 as a pseudogene. Pseudogenes were previously
considered useless genes, resulting in limited research on them. This
study indicates that pseudogenes also play an important role in the
occurrence and development of diseases and should be given more
attention. However, this study has some limitations. First, there was
a limited sample size. Second, the TCGA database is not
comprehensive because that database only contains patients from
America. Third, we did not consider incorporating potential
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confounding factors, including lifestyle factors (for example,
smoking and alcohol consumption) and comorbidities, due to a
lack of that information from the TCGA database. In addition, we
are not conditioned to collect this information from patients.
Fourth, there was no experiment to study the function of three
genes in STAD-related signaling pathways because of the lack of
clinical patients and realistic conditions. Furthermore, the specific
regulatory mechanisms of three genes for STAD need to be further
explored experimentally. Therefore, our future research will focus
on validating the conclusions of this study, both in terms of clinical
application and molecular mechanisms.

5 Conclusion

In this study, the constructed three-gene signature (PIP5K1P1,
PTTG3P, and SNORD15B) has an independent predictive
probability for prognosis. It can provide a model to predict the
prognosis for patients with STAD. Specific related mechanisms need
to be further explored.
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