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Introduction: Traditional prognostic indicators for head and neck squamous cell
carcinoma (HNSCC), such as clinicopathological features, human papillomavirus
status, and imaging examinations, often lack precision in guidingmedical therapy.
Therefore, discovering novel tumor biomarkers that can accurately assess
prognosis and aid in personalized medical treatment for HNSCC is critical.
Solute carrier family 7, member 11 (SLC7A11), is implicated in ferroptosis, and
various malignant tumor therapies regulate its expression. However, the
mechanisms regulating SLC7A11 expression, the transporter activity, and its
specific role in controlling ferroptosis in cancer cells remain unknown. Thus,
in this study, we aimed to develop an improved computed tomography (CT)
radiomics model that could predict SLC7A11 expression in patients with HNSCC.

Methods: We used patient genomic data and corresponding augmented CT
images for prognostic analysis and building models. Further, we investigated the
potential molecular mechanisms underlying SLC7A11 expression in the immune
microenvironment. Our radiomics model successfully predicted SLC7A11 mRNA
expression in HNSCC tissues and elucidated its association with relevant genes
and prognostic outcomes.

Results: SLC7A11 expression level was high within tumor tissues and was
connected to the infiltration of eosinophil, CD8+ T-cell, and macrophages,
which was associated with poor overall survival. Our models demonstrated
robust predictive power. The distribution of radiomics scores (RAD scores)
within the training and validation sets was markedly different between the
high- and low-expression groups of SLC7A11.
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Conclusion: SLC7A11 is likely an important factor in the prognosis of HNSCC.
SLC7A11 expression can be predicted effectively and reliably by radiomics models
based on enhanced CT.
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head and neck squamous cell carcinoma, SLC7A11, enhanced CT, radiomics,
clinical prognosis

1 Introduction

Over 90% of all head and neck malignant tumors are caused by
head and neck squamous cell carcinoma (HNSCC), which has an
annual incidence of 6,00,000 (Bray et al., 2018). Furthermore,
HNSCC is associated with mortality rates ranging from 40% to
50% (Leemans et al., 2018; Zhou et al., 2021), resulting in it being the
sixth most common cancer worldwide (Johnson et al., 2020).
Metastasis significantly contributes to the morbidity of HNSCC,
and its presence strongly influences treatment decisions (Cramer
et al., 2019; Chow, 2020). However, the molecular mechanisms
underlying HNSCC invasion and metastasis remain unclear.
Traditional prognostic indicators, including clinicopathological
features, human papillomavirus status, computed tomography
(CT), and magnetic resonance imaging (MRI), frequently fail to
provide enough information to guide precise medical therapy.
Therefore, identifying novel tumor biomarkers is essential for
efficiently evaluating HNSCC prognosis and providing
personalized medical treatment.

SLC7A11 is a gene that encodes proteins and belongs to the
solute carrier family 7, member 11. This gene mediates the
transport of cysteine and glutamate independent of sodium ions
(Lin et al., 2020). Kaposi sarcoma-associated herpes viruses can
also be fused and entered through the action of SLC7A11 (Kaleeba
and Berger, 2006). Further, SLC7A11 is involved in various
signaling pathways, including glucose, bile, and metal ion
transport, and responds to increased cytoplasmic Ca2+ levels
(Lin et al., 2020). Furthermore, SLC7A11 is implicated in
ferroptosis, a novel cell death mechanism, and its expression is
regulated by malignant tumor therapies, such as immunotherapy
and radiation therapy (Koppula et al., 2021). However, the precise
regulatory mechanisms governing SLC7A11 expression and
transporter activity and its specific role in controlling
ferroptosis in cancer cells remain unknown, and these gaps in
knowledge have attracted widespread attention in the scientific
community (Feng et al., 2021). Related studies revealed that
expression of SLC7A11, regulated by nuclear factor-erythroid
2 related factor 2, decreases the radiosensitivity of esophageal
squamous cell carcinoma through the suppression of
ferroptosis. Moreover, SLC7A11 upregulates programmed death
ligand 1 (PD-L1) and colony-stimulating factor 1 (He et al., 2021),
highlighting its clinical significance.

Omics technologies have become widely accepted as a valuable
tool for the diagnosis and treatment of HNSCC; however, invasive
tissue biopsies often fail to capture tumor heterogeneity. Radiomics,
a noninvasive technique, enables comprehensive tumor assessment
by segmenting and outlining regions of interest in medical imaging
data, extracting numerous feature parameters using automated
algorithms, and analyzing clinical phenotypes. Techniques

encompassed by radiomics include such as ultrasonography,
radiography, CT, MRI, or positron emission tomography.
Radiomics holds promise for assessing patient genotypes,
treatment efficacy, and clinical outcomes (Peng et al., 2021).

This study aimed to use an enhanced CT radiomics model to
noninvasively evaluate and forecast SLC7A11 mRNA levels in
HNSCC tissue samples. Furthermore, we aimed to examine the
link between the radiomics score (RAD score) and ferroptosis-
related gene expression and to identify the potential molecular
biology mechanism of SLC7A11 in the immune
microenvironment through bioinformatics analysis.

2 Materials and methods

2.1 Data processing and
bioinformatics analysis

We noninvasively evaluated and predicted SLC7A11 mRNA
levels in HNSCC tissue samples by incorporating and screening
primary solid tumor data from the Cancer Genome Atlas regarding
HNSCC using transcriptome sequencing data. RNA-sequencing
data were processed through a tour process using UCSC
Xena software.

2.2 Survival analysis

Kaplan–Meier survival curves were generated to estimate
changes in survival rate using landmark analysis over time, with
12, 24, 36, 48, and 60 months used as the time nodes post-surgery
for HNSCC. The period between the initial diagnosis and the time
node was defined as “early,” and that between the time node until
the end of the follow-up period was defined as “late.” The
Kaplan–Meier curves plotted based on the landmark analysis
show the survival time on the x-axis and mortality risk on
the y-axis.

2.3 Univariate and multivariate cox
regression analyses

Overall survival (OS) was the primary outcome variable, and
SLC7A11 expression was the main independent variable. The
threshold value was calculated using the “survivor” package. The
HNSCC tissue samples were divided into groups with high- and low-
expression levels, with the latter being the reference
group. SLC7A11 expression on patient prognosis in various
subgroups was investigated using univariate Cox regression analysis.
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2.4 Correlation analysis of immune cell
infiltration

Using the CIBERSORTx database, we calculated immune cell
infiltration in each HNSCC sample and analyzed the correlation
between SLC7A11 expression and immune cell infiltration.

2.5 Enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and hallmark gene sets were enriched using gene-set
variation analysis for each sample.

2.6 Image target segmentation and feature
extraction

TheCancerGenomeAtlasHNSCCdata and arterial phase-enhanced
CT images in the TCIA data (https://www.cancerimagingarchive) were
analyzed. Cases with missing survival data and clinical transcriptome
variables thatweremissing or had a survival time of less than 30dayswere
excluded from the list. Postoperative images with artifacts in the target
area were excluded from the imaging data. The regions of interest in the
images were defined as the tumor areas, which were identified using
naked-eye observations. Two physicians independently applied three-
dimensional slicer software to segment the regions of interest of the
images from 30 patients and extracted radiomic features using the
“Pyradiomics” package. An interclass correlation coefficient analysis
was performed after the target area was delineated. After verifying
consistency, one of the physicians completed the segmentation and
feature extraction of the remaining samples.

2.7 Image feature filtering

In a ratio of 7:3, the target area image data were randomly
divided into training and validation sets, respectively, and an
intergroup difference analysis of the two sets was performed.
Features with a variance of zero and strong correlations (>0.9)
were removed, and a recursive feature elimination algorithm was
used to obtain the optimal feature subset.

2.8 Building a radiomics prediction model

Support vector machines (SVM) is a binary classification model.
The basic model is to define a linear classifier with the largest interval
in the feature space, and to find a high latitude hyperplane as the
decision boundary through support vectors. The SVM algorithm is
used to model the screened image genomics features, which are used
to predict gene expression.

Logistic regression (LR) transforms linear regression through the
Sigmoid function, making the model output values distributed
between (0,1) and (0,1). The LR algorithm uses the stats package
“glm” to fit the screened image histological features. On this basis, the
established LR model was subjected to two-way stepwise regression
for further feature selection, and based on the AIC criterion, the

feature group with the smallest AIC was selected to construct the final
model for predicting the expression of SLC7A11. Rad score = Feature*
corresponding coefficients (Estimate) + Intercept value (Estimate).

LR and SVM algorithms were employed to construct radiomic
models for predicting gene expression. The model with the best
predictive performance was chosen and executed. To predict gene
expression levels, we devised the RAD score.

2.9 Evaluation of the radiomics
prediction models

The model evaluation indicators included accuracy, specificity,
sensitivity, positive predictive values, negative predictive values,
receiver operating characteristic (ROC) curves, precision–recall
curves, Hosmer–Lemeshow goodness-of-fit test, Brier scores,
decision curve analysis, and the DeLong test (Figure 1).

2.10 Statistical analysis

We used SPSS version 23.0 to perform all statistical and data
analyses. Intergroup difference analysis was performed using "
ggplot2”. “Survival” and “Survivor” packages were utilized for
survival analysis. Subgroup and interaction analyses were
performed using “cmprsk,” “survival,” and “forest plots” packages.
Correlation analyses involved performing Pearson’s correlations.
Enriching gene-set variations was achieved using Limma and gene-
set analysis. Consistency was evaluated using the “irr” package.
“Caret” and “CBCgrps” packages were used for dataset
partitioning. “Caret statistics” and “MASS” were used for feature
filtering and model construction, respectively. “PROC,” “measures,”
“resource selection,” “rms,” and “rmda” packages were used for model
evaluation. Statistical significance was defined by a p-value > 0.05.

3 Results

3.1 Patient characteristics

The survival study involved 483HNSCCpatient samples from the
Cancer Genome Atlas database. The samples were separated into two
groups: low-expression (n = 249) and high-expression (n = 234)
groups. The truncation value was 1.620258. The clinical data of the
patients analyzed in this study can be found in Table 1. Significant
differences in the human papillomavirus status, perivascular infiltrate
distribution, radiotherapy, and primary tumor site location were
observed between the high- and low-expression groups of SLC7A11.

3.2 Relationship between gene expression
levels and clinical features

SLC7A11 expressionwas high in tumor tissues (Figure 2A). The low
and high SLC7A11 expression groups had median survival durations of
48.63 and 65.73 months, respectively. The Kaplan–Meier curve analysis
revealed that elevated SLC7A11 expression strongly correlated with
improved OS (Figure 2B). Additionally, sex, human papillomavirus
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status, T stage, N stage, perivascular infiltrates, and radiation therapy
were significantly associated with higher OS (Supplementary Figure
S1A–F). The landmark analysis was performed 60 months after the
HNSCC diagnosis. Higher SLC7A11 expression was related to poorer
survival rates during the early stages. However, during the late stage, OS
did not show a significant difference between the high and low
SLC7A11 expression groups (Figure 2C). High SLC7A11 expression
was linked to poor OS in the univariate analysis. Additionally, sex and
radiation therapy were protective factors for OS (Figure 2D). After
adjusting for other factors, the multivariate analysis showed that the
expression of SLC7A11 remained a significant prognostic factor.
However, radiation therapy continued to be a protective factor for
OS (Figure 2E). Poor OS was found to be a risk factor due to increased
SLC7A11 expression during the G3/G4/GX subgroup analysis
(Figure 2F). SLC7A11 expression was significantly associated with
the tumor grade, initial tumor site, and N stage (Figure 2G).

3.3 SLC7A11 expression affects immune cell
infiltration in HNSCC

According to our findings, the high SLC7A11 expression group
showed a increase in the level of 4 types of immune cells infiltration
(p < 0.05). The immune cell infiltration of eosinophils and dendritic
cells activated was significantly positive associated with the high
SLC7A11 expression (p < 0.001). Further, We found 9 types of
immune cells was significantly negatively associated with

SLC7A11 expression (p < 0.05). The immune cell infiltration of
T cells follicular helper, macrophages M1 and T cells CD8 was
significantly negatively associated with the low SLC7A11 expression
(p < 0.001) (Figure 3A).

3.4 Differentially expressed genes (DEGs) in
the groups with high and low SLC7A11
expression

The p53 signaling network was significantly enriched with DEGs
from the high SLC7A11 expression group, as demonstrated by the
KEGG enrichment analysis. In contrast, the peroxisome
proliferator-activated receptor signaling pathway was more
prevalent among those in the low SLC7A11 expression group
(Figure 3B). The hallmark enrichment analysis demonstrated that
DEGs in theWnt/β-catenin and the high SLC7A11 expression group
had higher levels of proteins involved in DNA repair signaling
pathways, while the low SLC7A11 expression group had lower levels
of proteins involved in KRAS signaling pathways (Figure 3C).

3.5 Patient clinicopathological features and
radiomic analysis

The entire dataset was split into a training set with 98 patients
and a verification set with 41 patients (Table 2). When analyzing

FIGURE 1
Workflow used in the study to identify a radiomics-related prognostic signature and perform correlation analysis in head and neck squamous cell
carcinoma (HNSCC).

Frontiers in Genetics frontiersin.org04

Lv et al. 10.3389/fgene.2024.1418578

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1418578


intergroup differences, the baseline conditions of the patients in
both sets remained the same and demonstrated that the two groups
were comparable (p > 0.05). In addition, eight radiomic features
were identified (Figure 4A).

3.6 Radiomic model construction and
evaluation

According to the law of minimum AIC, we further filtered from
8 radiomics features and obtained 4 features to construct the LR
model. LR rad_score = (original_glcm_Imc1) * 0.651 + (original_
ngtdm_Busyness) * 0.435 + (original_glszm_SmallAreaEmphasis) *
0.355 + (original_glszm_LargeAreaEmphasis) * 0.989 + 0.049.

We developed SVM and LR radiomics models and assessed the
significance of selected features (Figures 4B, C). The ROC analysis
showed that the radiomic models had good predictive power. For
the training and validation sets, the SVM area under the curve
(AUC) values were 0.718 and 0.74, respectively (Figure 4D); the
corresponding LR AUC values were 0.711 and 0.74, respectively
(Figure 4E). The calibration curve analysis (Figures 4F, G) and
Hosmer–Lemeshow goodness-of-fit test (Figures 4H, I) indicated
that the models accurately predicted gene expression levels,
aligning closely with the true values. The decision curve
analysis showed that these models have clinical utility. The
validation and training sets (SVM, p = 0.818; LR, p = 0.766)
indicated that the models fit well. Furthermore, the interclass
correlation coefficients of all selected radiomic features

TABLE 1 Patient characteristics.

Variables Total (n = 483) Low (n = 249) High (n = 234) p

Age n (%) 0.217

≤59 years 211 (44) 116 (47) 95 (41)

≥60 years 272 (56) 133 (53) 139 (59)

Sex n (%) 0.916

Female 128 (27) 67 (27) 61 (26)

Male 355 (73) 182 (73) 173 (74)

Chemotherapy n (%) 0.385

No 322 (67) 161 (65) 161 (69)

Yes 161 (33) 88 (35) 73 (31)

Radiotherapy n (%) 0.451

No 234 (48) 116 (47) 118 (50)

Yes 249 (52) 133 (53) 116 (50)

HPV status n (%) <0.001
Negative 68 (14) 27 (11) 41 (18)

Positive 30 (6) 25 (10) 5 (2)

Unknown 385 (80) 197 (79) 188 (80)

Primary tumor site n (%) <0.001
Larynx 109 (23) 45 (18) 64 (27)

Oral cavity 297 (61) 144 (58) 153 (65)

Oropharynx/hypopharynx 77 (16) 60 (24) 17 (7)

Perineural invasion n (%) 0.44

No 181 (37) 89 (36) 92 (39)

Unknown 141 (29) 79 (32) 62 (26)

Yes 161 (33) 81 (33) 80 (34)

Grade n (%) <0.001
G1/G2 348 (72) 160 (64) 188 (80)

G3/G4/GX 135 (28) 89 (36) 46 (20)

T stage n (%) 0.231

T1/T2 173 (36) 96 (39) 77 (33)

T3/T4/TX/unknown 310 (64) 153 (61) 157 (67)

N stage n (%) 0.007

N0 164 (34) 70 (28) 94 (40)

N1/N2/N3/NX/unknown 319 (66) 179 (72) 140 (60)

M stage n (%) 0.82

M0 174 (36) 88 (35) 86 (37)

M1/MX/unknown 309 (64) 161 (65) 148 (63)

Abbreviation: HPV, human papillomavirus.
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were >0.8, suggesting that these radiomic features had good
agreement (Table 3).

3.7 Correlation analysis

The distribution of the RAD scores in the two sets of the SVM
and LR models varied significantly between the different SLC7A11
expression groups (p < 0.05). The RAD score was higher in the
group with high SLC7A11 expression (Figures 5A, B). Furthermore,

SLC7A11 expression and the RAD score were positively related to
the gene expression levels of NQO1, VDAC2, HIF1A, SLC2A1, and
ALOXE3 (Figure 5C).

4 Discussion

One of the major purposes of this study was to use an enhanced
CT radiomics model to forecast the expression of SLC7A11 in
HNSCC and evaluate its clinical prognostic significance. Our

FIGURE 2
The association between gene expression and clinical characteristics. (A) Solute carrier family 7, member 11 (SLC7A11) expression in normal and
tumor tissues. (B) Correlations between SLC7A11 expression and the overall survival (OS) of patients with head and neck squamous cell carcinoma
(HNSCC). (C) Landmark analysis. (D) Univariate Cox regression analyses. (E) Multivariate Cox regression analyses. (F) Subgroup analysis and interaction
test. (G) Correlation analysis between SLC7A11 expression and clinical parameters of HNSCC.
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investigation showed a correlation between tumor grading and
SLC7A11 expression. Imaging feature discrepancies between the
different SLC7A11 expression groups were verified, along with the
validation of the construction of SVM and LR prediction models.
Further, SLC7A11 expression and the RAD score positively
correlated with ferroptosis-related genes (correlation coefficients:
0.270 and 0.307, respectively; p < 0.01).

SLC7A11 is a protein-coding gene that encodes a sodium-
independent amino acid transport system that mediates cysteine
and glutamate transport. SLC7A11 is a key component of the
cystine/glutamate exchange system xc−, crucial in maintaining
high glutathione levels within cells. Structurally, SLC7A11
comprises 12 putative transmembrane domains, possesses a
molecular weight of 55 kDa, and exhibits high hydrophobicity
and substrate-specificity (Lim and Donaldson, 2011).
Functionally, the system xc

− negatively regulates ferroptosis (Xie
et al., 2016). Inhibition of SLC7A11 reduces cystine uptake and
compromises the antioxidant defenses of cells, which induces
ferroptosis (Dixon et al., 2012; Lang et al., 2019). Unlike other
cell death processes such as necrosis, autophagy, apoptosis, and
others, ferroptosis is an oxidizing mechanism that requires iron
(Tang et al., 2019). The buildup of toxic lipid reactive oxygen species
during ferroptosis is most likely a result of the suppression of
glutathione synthesis or the action of glutathione peroxidase 4,
which deactivates cellular glutathione-dependent antioxidant
defenses (Dixon et al., 2012; Cao and Dixon, 2016; Yang et al., 2014).

Considering the increased metabolic demand for iron and lipids
in cancer cells, they exhibit a high susceptibility to ferroptosis.
Furthermore, ferroptosis makes cancer cells more susceptible to
radiation therapy and improves the efficacy of certain
chemotherapeutic drugs (Xie et al., 2016; Li and Li, 2020).
Cancer cells with high SLC7A11 expression exhibit increased
sensitivity under limited glucose conditions, leading to an
increased dependence of cancer cells on glucose (Koppula et al.,

2017). By investigating the correlation between SLC7A11 expression
and immune cell infiltration in HNSCC, we aimed to uncover
potential mechanisms through which SLC7A11 may influence the
tumor microenvironment. Our findings suggest that
SLC7A11 expression is significantly correlated with the
infiltration levels of several immune cell types, such as T cells,
B cells, and macrophages. These results provide valuable insights
into the role of SLC7A11 in modulating immune responses within
the tumor microenvironment, highlighting its potential as a
therapeutic target for enhancing anti-tumor immunity in HNSCC
(Dai et al., 2020). This research direction holds promise for
developing more effective diagnostic and therapeutic approaches
for HNSCC, ultimately improving patient prognosis and quality of
life. We also noticed a positive correlation between SLC7A11
expression and eosinophil infiltration, which was inversely
correlated with CD8+ T-cell infiltration. CD8+ T cells are the
main producers of interferon-γ, which suppresses the expression
of SLC7A11, thereby promoting the ferroptosis and the peroxidation
of lipids in tumor cells (Wang et al., 2019). Furthermore, in the
current study, we observed that the high SLC7A11 expression group
was considerably enriched in signaling pathways, such as p53. This
conclusion is in accordance with that of a previous study which
showed that reducing SLC7A11 expression decreases the expression
of p53, which affects cystine absorption and makes cells more
susceptible to ferroptosis (Imai et al., 2017). Furthermore,
p53 participates in tumor suppression by mediating cell cycle
arrest, apoptosis, aging, and metabolic regulation (Jiang et al.,
2015; Bieging et al., 2014). Therefore, our study reflects the
molecular mechanisms of the tumor microenvironment from an
imaging perspective, providing new methods for evaluating tumor
heterogeneity.

Most patients with HNSCC are diagnosed during the advanced
disease stage without an obvious precancerous lesion. Given the high
heterogeneity of HNSCC, prognostic information is crucial for

FIGURE 3
Differentially expressed genes and immune cell infiltration linked to SLC7A11 expression in HNSCC. (A) Correlations between SLC7A11 expression
and immune cell infiltration in HNSCC. (B) KEGG enrichment analysis. (C) Hallmark enrichment analysis. HNSCC, head and neck squamous cell
carcinoma; SLC7A11, solute carrier family 7, member 11; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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clinical decision-making. SLC7A11 interacts with tumor stem cell
markers and has a negative impact on the prognosis in patients with
HNSCC. Importantly, our Kaplan–Meier curve analysis showed that
early high expression correlated with reduced patient survival, and
the multivariate analysis identified high SLC7A11 expression as a
risk factor for poor OS (p = 0.047). Therefore, we developed a
radiomics-based model to predict SLC7A11 expression to facilitate
clinical decision-making.

Radiomics is an application of artificial intelligence in the
medical field that enables the prediction of disease prognosis.
Radiomics possesses unique technical advantages for exploring
the molecular mechanisms underlying diseases and evaluating
treatment outcomes. Unlike naked-eye assessments or other
quantitative imaging methods, radiomics can digitize tissue
phenotypic features across different spatial scales (Chow, 2020).
For example, Schniering et al. used CT radiomics to systematically

TABLE 2 Data set division.

Variables Total (n = 139) Train (n = 98) Validation (n = 41) p

SLC7A11 n (%) 1

Low 67 (48) 47 (48) 20 (49)

High 72 (52) 51 (52) 21 (51)

Age n (%) 0.085

≤59 years 64 (46) 40 (41) 24 (59)

≥60 years 75 (54) 58 (59) 17 (41)

Sex n (%) 0.508

Female 34 (24) 26 (27) 8 (20)

Male 105 (76) 72 (73) 33 (80)

Chemotherapy n (%) 0.38

No 96 (69) 65 (66) 31 (76)

Yes 43 (31) 33 (34) 10 (24)

Radiotherapy n (%) 0.562

No 68 (49) 50 (51) 18 (44)

Yes 71 (51) 48 (49) 23 (56)

HPV status n (%) 0.23

Negative 15 (11) 13 (13) 2 (5)

Positive/unknown 124 (89) 85 (87) 39 (95)

Primary tumor site n (%) 0.912

Larynx 34 (24) 24 (24) 10 (24)

Oral cavity 84 (60) 60 (61) 24 (59)

Oropharynx/hypopharynx 21 (15) 14 (14) 7 (17)

Perineural invasion n (%) 0.6

No 48 (35) 32 (33) 16 (39)

Unknown 49 (35) 34 (35) 15 (37)

Yes 42 (30) 32 (33) 10 (24)

Grade n (%) 0.964

G1/G2 97 (70) 69 (70) 28 (68)

G3/G4/GX 42 (30) 29 (30) 13 (32)

T stage n (%) 0.653

T1/T2 42 (30) 28 (29) 14 (34)

T3/T4/TX/unknown 97 (70) 70 (71) 27 (66)

N stage n (%) 1

N0 54 (39) 38 (39) 16 (39)

N1/N2/N3/NX/unknown 85 (61) 60 (61) 25 (61)

M stage n (%) 0.139

M0 66 (47) 51 (52) 15 (37)

M1/MX/unknown 73 (53) 47 (48) 26 (63)

OS n (%) 0.574

0 88 (63) 64 (65) 24 (59)

1 51 (37) 34 (35) 17 (41)

Abbreviations: HPV, human papillomavirus; OS, overall survival.
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analyze risk factors for interstitial lung disease development in
humans and mice and successfully predicted progression-free
survival rates (Schniering et al., 2022). Sun et al. (2018)
successfully predicted biomarkers of CD8+ T-cell expression in
tumor-infiltrating lymphocytes using an enhanced CT radiomics
model for patients receiving PD-1 or PD-L1 monoclonal antibody
immunotherapy. The authors demonstrated the effectiveness of
machine learning in evaluating tumor prognoses (Sun et al.,
2018). Radiomics involves the use of machine learning

techniques including Bayesian models, random forests, decision
trees, SVM, logical regression and deep learning more and more
(Peng et al., 2021). In our study, both the SVM and LR models
demonstrated excellent predictive performance for HNSCC. We
identified optimal feature sets using a recursive feature elimination
algorithm and established SVM and LR models to predict SLC7A11
expression. These models consistently performed well in predicting
gene overexpression probabilities and true values. The decision
curve analysis displayed high clinical utility, and no discernible

FIGURE 4
Building and assessing radiomics models. (A) Radiomic features with variations in statistics. (B) Significance of the chosen characteristics in the
support vector machines (SVM)model. (C) Significance of the selected features in the logistic regression (LR) model. (D) Receiver operating characteristic
(ROC) curve analysis of the SVM model. (E) ROC curve analysis of the LR model. (F) Calibration curve analysis of the SVM model. (G) Calibration curve
analysis of the LR model. (H) Hosmer–Lemeshow goodness-of-fit testing of the SVMmodel. (I) Hosmer–Lemeshow goodness-of-fit testing of the
LR model.
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statistical variations were observed in the AUCs between the training
and validation sets, indicating good model fitness. The DeLong test
demonstrated that the SVM and LR models had strong prediction
performance and revealed a substantial difference in their AUC
values between the training and validation sets. When assessing the
extensive efficacy of the radiomics model for prediction by applying
the Brier score, a smaller value indicates better model prediction
consistency. The SVM model had a higher Brier score than the LR
model. Therefore, we selected the LR model to predict gene
expression probabilities and RAD scores. The Wilcoxon test
indicated statistically significant variations in RAD scores over
high- and low-gene-expression groups. The high
SLC7A11 expression group showed a low RAD score. Our

radionics-based predictive model for SLC7A11 expression showed
good efficacy and is valuable in guiding clinical prognosis.

Imaging changes are macroscopic manifestations of changes in
microscopic components (molecules, cells, etc.). The changes in
SLC7A11 molecules are highly likely to be the molecular
pathological basis behind radiomics, and may show great
potential in tumor treatment. Overexpression of SLC7A11 has
been reported in various cancers, including lung, breast, and
ovarian cancers, where it contributes to tumor growth,
chemoresistance, and poor prognosis (Liu et al., 2020). In
addition, the SLC7A11 inhibitor targeted therapy drug Agilvax is
also in the development process. However, currently
SLC7A11 detection is usually invasive, expensive, and based on
local tumor tissue, which not only cannot represent the overall
situation of the tumor, but also makes it difficult to achieve dynamic
observation. Therefore, based on the overall tumor, this study
constructed a non-invasive radiomics prediction model for
SLC7A11, which can achieve prediction of patient prognosis.
Non invasive prediction provides the possibility for dynamic
monitoring of SLC7A11, lays the foundation for predicting
SLC7A11 related treatments, and in the future, can also screen
potential beneficiaries for SLC7A11 targeted therapy.

5 Conclusion

In patients with HNSCC, SLC7A11 expression substantially
correlated with prognosis. Furthermore, our study demonstrated
that an enhanced CT radiomics model, based on selected radiomics

TABLE 3 Radiomics features.

Item Importance

original_glcm_MCC 0.977443127

original_glcm_Imc2 0.975515534

original_glcm_Imc1 0.995165417

original_glszm_SizeZoneNonUniformityNormalized 0.972323605

original_ngtdm_Busyness 0.846606774

original_glcm_Correlation 0.969246820

original_glszm_SmallAreaEmphasis 0.896954731

original_glszm_LargeAreaEmphasis 0.947796442

FIGURE 5
Association between the RAD score and clinical characteristics. (A) Association between the RAD score of the support vectormachines (SVM)model
and solute carrier family 7, member 11 (SLC7A11) expression. (B) Association between the RAD score of the logistic regression model and SLC7A11
expression. (C) Correlation analysis of the RAD score, SLC7A11 expression, and ferroptosis-related genes.

Frontiers in Genetics frontiersin.org10

Lv et al. 10.3389/fgene.2024.1418578

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1418578


features, accurately predicted SLC7A11 expression with high
stability and diagnostic efficiency. As big data and precision
medicine evolve, integrating radiomics with other omics is
expected to emerge as a promising new Frontier for future research.
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