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Metagenomic time-course studies provide valuable insights into the dynamics of
microbial systems and have become increasingly popular alongside the reduction
in costs of next-generation sequencing technologies. Normalization is a
common but critical preprocessing step before proceeding with downstream
analysis. To the best of our knowledge, currently there is no reported method to
appropriately normalize microbial time-series data. We propose TimeNorm, a
novel normalization method that considers the compositional property and time
dependency in time-course microbiome data. It is the first method designed for
normalizing time-series data within the same time point (intra-time
normalization) and across time points (bridge normalization), separately. Intra-
time normalization normalizes microbial samples under the same condition
based on common dominant features. Bridge normalization detects and
utilizes a group of most stable features across two adjacent time points for
normalization. Through comprehensive simulation studies and application to a
real study, we demonstrate that TimeNorm outperforms existing normalization
methods and boosts the power of downstream differential abundance analysis.

KEYWORDS

microbiome, metagenomics, normalization, time-course, dominant features,
longitudinal

1 Introduction

Microbial time-series studies offer insight into investigating microbial system dynamics.
The human microbiota is highly dynamic and closely associated with various health factors
(Gerber, 2014; David et al., 2014), including diet (Zmora et al., 2019; Kashtanova et al.,
2016), infectious diseases (Zhang et al., 2015), and palliative measures such as antibiotic
regimens (Becattini et al., 2016) and cancer treatments (Roy and Trinchieri, 2017).
Longitudinal studies are characterized by multiple observations from the same
individual over regular/irregular time intervals and are invaluable for understanding the
dynamics of host-microbe associations. These studies prompt several research questions
such as: Which microbes have differential longitudinal patterns between conditions? Does
the microbiome recover to its original state if it is altered through stimuli such as infections?
What are the starting and ending time points when the differences arise? How do microbes
associate with the host over time?
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Metagenomics relies on high-throughput sequencing
technologies to yield genomic and taxonomic information of
microbes in a sample. Two approaches are commonly used to
study microbial communities: 16S rRNA sequencing and whole-
genome shotgun (WGS) sequencing. 16S rRNA genes are highly
conserved regions in bacterial ribosomes and hence serve as a
useful phylogenetic marker. WGS sequences all given genomic
DNA from a sample. Time course microbiome studies usually
prefer 16S rRNA sequencing due to its low cost. Numerous
bioinformatics pipelines have been developed for processing
metagenomic sequencing data and subsequently quantifying
them through microbial count/abundance tables. Count data
from different samples are not directly comparable due to
differences in library sizes, which are highly variable and
constrained by sequencing depth and technology. This total
count constraint introduces strong dependencies between taxa
abundances, particularly magnifying the differences in relative
abundances between taxa when one taxon is highly expressed in a
sample (Calle, 2019). The sparse and high-dimensional nature of
microbial count data (Knight et al., 2018) requires the
development of appropriate statistical tools capable of
accommodating those data characteristics. Considering the
challenges in obtaining the same number of sequencing reads
for each sample, normalization is imperative to correct or
eliminate bias introduced by variable library sizes and make
samples comparable between conditions or time points.

Various normalization methods have been developed for
sequencing-based microbiome data. Two types of commonly
used normalization methods are rarefying and scaling.
Rarefying involves subsampling the original sample to even
depth without replacement, which impacts alpha and beta
diversities (McMurdie and Holmes, 2014). Scaling, on the
other hand, is based on dividing the observed abundance of
the feature by a scaling factor or normalization factor to eliminate
biases arising from unequal library size. Total Sum Scaling (TSS)
or total count (TC) normalization method scales counts into
proportions, e.g., the count for each taxon is divided by the
library size, which is not robust to outliers. Outliers can
overestimate the library size and not reflect the true
abundance. Furthermore, counts would be skewed by a few
relatively abundant features. An ideal normalization method
should be robust against outliers. Cumulative sum scaling
(CSS) is a normalization method developed for microbiome
sequencing data (Paulson et al., 2013), which calculates the
normalization factor as a sum over a subset of features. CSS
assumes that the count distribution is approximately equal to a
certain quantile. This normalization factor is implemented in the
metagenomeSeq Bioconductor package.

Several normalization methods developed for RNA-seq data
(Dillies et al., 2013; Evans et al., 2018) are also applicable to
microbiome data. Trimmed mean of M-values (TMM) (Robinson
and Oshlack, 2010), is a method implemented in the edgeR
Bioconductor package. TMM assumes that most features are not
differentially expressed. The TMM scaling factor is calculated as the
weighted mean of log-fold changes between each pair of samples,
excluding the extreme log-fold changes and the most extreme
counts. Normalized counts are calculated by dividing raw counts
by scaling factors. Another well-known normalization method

developed for RNA-seq data is Relative Log Expression (RLE)
(Anders and Huber, 2010). RLE calculates the geometric means
of all features and the median ratio of each sample to the median
library. The median ratio is the scaling factor, which is specified
in edgeR.

Geometric mean of pair ratios (GMPR) is a recently proposed
normalization method that considers zero-inflation (Chen L. et al.,
2018) in microbiome data and is built upon RLE normalization. It
reverses the order of scaling factor calculation steps in RLE to deal
with excess zeros, which commonly occur in microbiome
sequencing data. It first calculates the median count ratio of non-
zero counts between samples, and then calculates the size factor of a
given sample. RioNorm2, another recently developed normalization
technique for microbiome data (Ma et al., 2020), assumes that there
exists a subset of features which are relatively invariant across
samples and conditions. RioNorm2 calculates the pairwise
dissimilarity among the top abundant features and then finds a
subset of relatively invariant features using network analysis. The
normalization size factor is the total count of this identified subset
of features.

These existing normalization methods are for non-time series
data. In this paper, we develop a novel normalization method,
TimeNorm, for microbiome time-course data taking into account
of the data characteristics such as compositional property and
correlated measurements over time. This new method uses
different strategies when normalizing samples under the same
condition and across time points. Simulation studies and real
data analysis are used to demonstrate the good performance
of TimeNorm.

2 Methods

2.1 An overview of TimeNorm

Time-series microbiome studies, characterized by multiple
time-points and multiple samples at each time point, are
additionally limited to under-sampling and possible batch
effects between time-points. Figure 1 provides a roadmap for
the proposed normalization method –TimeNorm which
includes intra-time normalization and Bridge normalization,
for time series microbiome data under two conditions such as
two different treatments. First, at each time point, Intra-time
normalization is performed for the microbial samples under the
same condition using the common dominant features
(i.e., features which appear in all samples). Next, Bridge
normalization is then conducted for the comparison of (1)
two conditions at the initial time point and (2) two adjacent
time points under the same condition, sequentially. Specifically,
we make two assumptions. The first assumption is that the
majority of features are not differentially abundant at the
initial timepoint between the two conditions. This simplified
assumption seems strong but is valid for many microbiome
studies including multi-arm clinical experiments. For the real
data used in this paper, the mice were under the same condition
at the beginning of the experiment, where all mice were fed using
the microbial community from a freshly voided fecal sample
from a healthy adult human. Later on, half of the mice were
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maintained on a low-fat diet and half of the mice were switched
to Western diet. The second assumption is that the majority of
features are not differentially abundant between two adjacent
time points under the same condition. Thus, the samples can be
normalized from comparison of the first time point to the second
point, and then the third, till the last one. Using this approach,
samples at a later time point are normalized using the
information from the previous time point.

2.2 Intra-time normalization

Experiencing the same situation, like at a given time point
and under a certain condition, biological samples are assumed
similar or homogeneous. Thus, the Intra-time normalization is
conducted for count data from the microbial samples collected at
the same time point and under the same condition (e.g., healthy
or diseased). 16S rRNA sequencing is widely used in longitudinal
microbiome studies, with applications in health and disease,
environmental studies, and dietary studies. It enables the
study of microbial diversity and dynamics over time. However,
it suffers from under-sampling (Kaul et al., 2017; Kodikara et al.,
2022). Due to limited sequencing depths, some features,
especially relatively low abundant features, only appear in a
small number of samples. These rare features should be
excluded from normalization. At a given time point, dominant
features (i.e., the features with abundant reads) need to be
comparable across the samples under the same condition.
Hence, these common dominant features can be used for
normalizing the microbial samples under the same condition.

Assume that n features are contained across m samples. Some
features are dominant in abundance, while quite a few are rare. For a
given condition, let cijk represent the number of reads in sample j
assigned to feature i at time k. Intra-time normalization involves the
following steps:

(a) Consider the sub dataset containing the dominant features
only (assume n0 features out of n features are dominant), and
estimate the proportion of each feature using the ratio of the
sum of counts for the feature to the grand total of counts:

p̂ik � ∑m

j�1cijk/∑n0

i�1∑m

j�1cijk

(b) Estimate the sample scale for sample j by the average:

sjk � ∑n0

i�1
cijk
p̂ik

( )/n0

(c) Calculate the scale factor of sample j as
DSSjk � sjk

median(s1k,..., smk ). A normalized count is thus given
by cijk* � cijk

DSSjk
, i � 1, . . . , n; j � 1, . . . , m; k � 1, . . . , K.

2.3 Bridge normalization

Bridge normalization contains two stages: i) normalization of
samples at the initial time point, and ii) normalization of samples at
two adjacent time points within the same condition. For the first
stage, a group of stable features between two conditions at the initial
time point is used for normalization. For the second stage,

FIGURE 1
Illustration of the normalizationmethod, TimeNorm, for time series data under two conditions with four subjects per condition as an example. Intra-
time normalization normalizes the microbial samples under the same condition and at the same time point according to the common dominant features
(red curved arrows); Bridge normalization normalizes the microbial samples at the initial time point under condition 1 and condition 2. Then within each
condition, it normalizes the samples at two adjacent time points (blue arrows). To better view the sample details in each square/time point, we
display the samples at the initial time point as an example. S1 – S4 are four samples; small colorful bubbles represent different microbiome species/
features. The dominant features in this example are red, green, yellow, and blue features (see the details in Sections 2.2, 2.3 for normalization).

TABLE 1 Summary of parameter settings for the simulation studies, where μ
denotes the means of features. Four scenarios A~D are examined for each
of these four combinations of the zero proportion and the dispersion level.

Zero proportion

0.3 0.7

Dispersion 500/μ Test 1 Test 2

150/μ Test 3 Test 4
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FIGURE 2
Heatmap of simulated data from ground truth, raw count (with noise), and normalized data using CSS, TS, TMM, TimeNorm, and GMPR for the
setting Test 2D. Each row represents a feature and the 100 non-differentially abundant features are at the top. In each plot the left half is the time series
profiles for features under condition one (treatment group) and right half for features under condition two (control group).

FIGURE 3
Boxplots of Relative Root Mean Square Error for comparison of different normalizationmethods based on ten replicated simulations for (A) Test 1D,
(B) Test 2D, (C) Test 3D and (D) Test 4D. The short error bars represent the standard deviation from ten replications.
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subsequently within each condition, a group of stable features across
two adjacent time points is used for normalization. To identify the
stable features, the RAIDA method (Sohn et al., 2015) is applied.
RAIDA is developed for identifying differentially abundant features
between two conditions/groups. Note, the term “conditions” in the
RAIDA method is more general. In our current setting it could be
either the two (treatment) conditions for the comparison at the
initial time point or two adjacent time points within the
same condition.

The RAIDA method computes the ratio between features,
identifies the stable features between two conditions as a
common divisor, and detects the differentially abundant features.
We consider a zero-inflated log-normal distribution for the ratios:

rijk � 0, with probablity ρik
log − normal μik, σ

2
ik( ),with probablity 1 − ρik

{
where rijk represents the ratio of cijk* to cdjk* , and d represents a
feature or a set of features used as a divisor, i.e., scaling factor and
cijk* denotes the Intra-time normalized count for feature i and
sample j at time k. Details of normalization for the sample at two
adjacent time points k, k + 1 are given below (note: the
normalization of samples for the two conditions at the initial
time point can be treated as a special case of time series, e.g.,
treating the control condition as the previous time point and
treatment condition as the later time point respectively, as the
assumptions are essentially equivalent):

(a) Randomly choose a feature with non-zero counts in all
samples and calculate the ratios using this feature as a divisor.

(b) At the time point k, for each of the features (i = 1, . . . , n)
estimate the parameters (μik, σ2ik, ρik) using the Expectation-
Maximization algorithm (Hastie et al., 2009).

(c) Within a time point, use mean μik and variance σ
2
ik to measure

the similarity in abundance between features using the
Bhattacharyya distance (Coleman and Andrews, 1979), and
then apply hierarchical clustering based on the Bhattacharyya

distance. Create a set of clustered features common in both
time k and k +1 and use it as possible common divisors.

(d) For each of the new clusters obtained after step (c), sum up the
counts for the involved features and get a “combined” feature
which is used as a new divisor to calculate new ratios. Then
estimate the parameter using step (b) for the new ratios for time
k and k + 1. Construct a likelihood ratio (LR) test for the log
ratio of each feature and obtain the p-value (Chen J. et al.,
2018). We fit the model using MLE under both the null and
alternative models. The LR statistic can be easily obtained by
fitting the zero-inflated log-normal (ZILN) model to all
samples and the samples from each group separately. The
new cluster giving the minimum number of differentially
abundant features (whose p-value is less than a certain
significance level) is a set of stable features, i.e., Ω, and the
scale factor between time k and k + 1 is calculated as:

Δk,k+1 �
∑i∈Ω∑j cij k+1( )*∑i∈Ω∑j cijk

′

where cijk′ represents the Bridge normalized counts for the samples
at time k, calculated as: cijk′ � cijk* /Δk−1,k. In such way, samples are
normalized sequentially. The algorithm of Bridge normalization can
be found in the Supplementary Figure S1.

3 Results

3.1 Simulation settings to evaluate the
performance of TimeNorm

A series of simulation studies were conducted to evaluate the
performance of the proposed normalization method and
compare it with existing methods, namely TMM, CSS, TC
and GMPR. The data were simulated under zero-inflated
Negative Binomial (ZINB) distributions using the copula
package in R. A simulated dataset consists of two conditions

FIGURE 4
Boxplots of Type I error (A) and power of DA analysis (B) using metaDprof on the normalized data using various methods based on ten replicated
simulations for Test 2D. The short error bars represent the standard deviation from ten replications.
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(conditions one and two or treatment and control), 500 features
over six time points, and ten samples (individuals) from each
condition; 100 out of 500 features were assumed to be
differentially abundant features (DAFs) between the two
conditions. We considered two levels of zero proportions: 0.3
(low) and 0.7 (high), and two levels of dispersion: 500/ μ (low)
and 150/ μ (high), where μ is the average count for the features in
the control samples simulated from the ZINB model. The
autoregressive AR1/exchangeable correlation ρ � 0.6 was used
to simulate the within-subject correlation due to repeated
measures over the timepoints. We named these four
combinations of zero proportion and dispersion levels Test
1 ~ 4 (Table 1). In addition, four scenarios for each simulated
dataset were considered: (A) Differentially abundant (DAF)
features exhibit an increasing pattern over time for the
treatment group with no dynamic changes observed in the
control group. Meanwhile, non-DAF features demonstrate a

consistent absence of change over time, with no discernible
differences between the two groups; (B) Based on scenario A,
the total count across all features in each sample in the treatment
group (condition 1) at the last time point is double that of its
original count as setting A, including DAFs; (C) Based on
scenario A, at each time point two randomly selected samples
(out of 10 samples) are half of their original count value; (D)
Based on scenario A, for any sample under the treatment
condition, the total count across all features at each time
point exhibits similar magnitudes. In total, we examined the
performance of the methods on datasets simulated with
16 settings. Out of the four tests, both Test 2 and 4 accurately
mimics the characteristics of real microbiome data, being zero-
inflated and dispersed. Among four distinct settings, setting D,
in which the total count across samples under the treatment
condition have similar size, closely replicates the DAFs observed
in real microbiome data.

FIGURE 5
Partial area of mean Receiver Operating Characteristic (ROC) for various settings based on ten replicated simulations with 500 features. (A) Test 1D;
(B) Test 2D; (C) Test 3D; and (D) Test 4D.
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The five scaling normalization methods (TMM, CSS, GMPR,
TC, and TimeNorm) were compared for each scenario under each
setting, with ten replications per combination. The performance was
measured by Root of Relative Mean Square Error (RRMSE):

RRMSE �

��������������������������
1

2mnK
∑2
l�1
∑K
k�1

∑m
j�1
∑n
i�1

μ̂ijlk − μijlk
μijlk

⎛⎝ ⎞⎠2
√√

where μijlk is the true abundance and μ̂ijlk is the estimated
abundance for feature i in sample j under condition l at time
k; n is the number of features, m is the number of samples, and K
is the number of time points. We also evaluated the performance
by carrying out differential abundance analysis using metaDprof
(Luo et al., 2017) and SplinectomeR (Shields-Cutler et al., 2018).
metaDprof is a spline-based method to detect differentially
abundant features for time series metagenomic data. This
method comes with its default normalization method TMM
and uses the Benjamin-Hochberg procedure to control the
false discovery rate (FDR). SplinectomeR uses smoothing
splines for hypothesis testing in longitudinal studies. To study
the performance of various normalization methods and
differential analyses, type I error, power and receiver
operating characteristic (ROC) curves for each method are
also compared.

3.2 Results of simulation studies

As we considered 16 simulation settings, only results for Test
2 scenario D (Test 2D) which mimic the real microbiome studies
in each test, are shown here (scenario A-C results are given in the

Supplementary Figures S2–S16). The expression profiles for the
ground truth, raw counts, and five normalized data were shown
and compared using heatmaps (Figure 2). It can be seen that
results from TimeNorm exhibit a closer pattern to the ground
truth. In the simulation studies, the abundance of non-DAFs in
condition one is the same as the features in condition two across
all time points. There is an identifiable vertical pattern on each of
the heatmaps by CSS, TC, GMPR, and TMM, indicating a
separation between the two conditions for the non-DAF. For
the raw count data, the color for condition one is generally darker
than condition two. Only TimeNorm indicates no difference
between the two conditions for the non-DAFs which is
demonstrated through the color scale in heatmaps. Figure 3
shows the results of RRMSE for various settings. RRMSE is a
relative error measure, where errors are scaled based on true
settings. Lower RRMSE values are expected for normalization
methods that are closer to the ground truth. TimeNorm
outperforms other normalization methods with lower RRMSE.
Rarefying is a conventional method for microbiome
normalization. In our simulation study for Test 2, settings
A–D (Supplementary Figure S20), we also applied rarefying
normalization. This approach often results in higher RRMSE
values compared to TimeNorm. McMurdie and Holmes (2014)
found that rarefied counts could lead to an unacceptable high rate
of false positive OTUs and fail to address over-dispersion, thus
inducing a systematic bias that increases the Type-I error rate,
even after corrections for multiple hypotheses are made
(McMurdie and Holmes, 2014). Consequently, we did not use
rarefying in the differential abundance (DA) analysis.

The comparative performance metrics from the DA analysis
using metaDprof on the normalized data for Test 2D are shown
in Figures 3, 4. All normalization methods controlled the Type I
error under 0.05 for different settings. TimeNorm has the
highest power to detect DAFs. Figure 5 displays the results of
mean ROC for Test 1D~4D. TimeNorm outperforms other
methods when the zero proportion is high. For settings A-C
across tests 1 – 4 (Supplementary Figures S17–S19, S21–S35, S52,
S53), similar conclusions to those in Test 2D can be drawn.
Overall, TimeNorm surpasses other existing normalization
methods for time-series data. The results from splinectomeR
DA method (Supplementary Figures S36–S51) are consistent
with those frommetaDprof. splinectomeR has the same power to
detect DAFs in different normalization methods. However,
TimeNorm has higher precision, specificity, F1 score, and
lower Type-I error.

The proposed normalization method relies on the choice of
stable features detected by RAIDA. A sensitivity analysis was
conducted in a simulation study to test the robustness by
choosing a set with second least number of different features
as stable features. The comparison result is shown in
Supplementary Figure S54 where TimeNorm1 represents the
result using the minimum number of different features as
stable features while TimeNorm2 uses the second least
number of different features. It is noticed that two options
lead to very close results, which implies that the selection of
the set is robust while the one with the least number of different
features results in the optimal value.

FIGURE 6
Venn diagram of detected differentially abundant feature lists for
different normalization methods: CSS, TMM, TC, GMPR,
and TimeNorm.
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3.3 Real data analysis

In addition to simulation studies, we applied TimeNorm to real
data. We used a publicly available dataset from a longitudinal study
(Turnbaugh et al., 2009). Fecal samples were collected from 12 adult
mice (6 underwent a plant polysaccharide-rich diet (Low Fat) and
6 underwent a high-fat and high-sugar diet (Western diet) during
8 weeks. To characterize the microbial taxa present within the
samples, polymerase chain reaction (PCR) from variable region

2 of the 16s rRNA gene was used to perform 16s rRNA sequencing.
The microbiome count data were obtained through metagenomeSeq
R package (Paulson et al., 2013). Low-Fat mice were compared with
Western diet mice, over 910 operational taxonomical units (OTUs).
First, we applied different normalization methods (CSS, TMM, TC,
GMPR, and TimeNorm) to these data and then carried out
differential abundance analysis using metaDprof. OTUs were
detected as statistically significant at 0.05 level, post Benjamin-
Hochberg adjustment. We plotted the Venn diagram to

TABLE 2 31 OTUs uniquely identified by TimeNorm using metaDprof (+ indicates the OTU is abundant in Western diet or Low-Fat group).

Class OTU Western diet Low fat pvalue padj

Clostridia LachnospiraceaeIncertaeSedis:877 + 0.000 0.000

Clostridia LachnospiraceaeIncertaeSedis:964 + 0.000 0.000

Bacteroidetes Bacteroides:905 + 0.002 0.015

Erysipelotrichi Coprobacillus:126 + 0.002 0.015

Bacteroidetes Parabacteroides:592 + 0.002 0.015

Bacteroidetes Parabacteroides:703 + 0.002 0.015

Bacteroidetes Bacteroides:719 + 0.004 0.020

Bacteroidetes Parabacteroides:743 + 0.004 0.020

Clostridia Lachnospiraceae:2499 + 0.006 0.025

Betaproteobacteria Betaproteobacteria:13 + 0.014 0.031

Clostridia Clostridia:64 + 0.018 0.031

Erysipelotrichi ErysipelotrichaceaeIncertaeSedis:237 + 0.020 0.031

NA Firmicutes:540 + 0.014 0.031

Clostridia IncertaeSedisXIII:13 + 0.018 0.031

Clostridia Lachnospiraceae:2528 + 0.018 0.031

Clostridia Lachnospiraceae:4103 + 0.014 0.031

Clostridia Lachnospiraceae:4196 + 0.020 0.031

Clostridia LachnospiraceaeIncertaeSedis:957 + 0.016 0.031

Clostridia LachnospiraceaeIncertaeSedis:716 + 0.028 0.035

Clostridia Clostridiales:451 + 0.030 0.036

Bacteroidetes Bacteroides:284 + 0.032 0.037

Clostridia Lachnospiraceae:3398 + 0.034 0.038

Clostridia Ruminococcaceae:97 + 0.036 0.039

Clostridia LachnospiraceaeIncertaeSedis:714 + 0.038 0.041

Clostridia Clostridiales:203 + 0.040 0.042

Clostridia Lachnospiraceae:3316 + 0.040 0.042

Clostridia LachnospiraceaeIncertaeSedis:889 + 0.044 0.046

Clostridia Anaerotruncus:47 + 0.046 0.046

Clostridia Lachnospiraceae:289 + 0.046 0.046

Clostridia Clostridiales:550 + 0.048 0.048

Clostridia Lachnospiraceae:3796 + 0.048 0.048
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summarize the results using different normalization
methods (Figure 6).

CSS, TMM, TC, GMPR and TimeNorm identified 456, 486,
475, 485, and 475 significant OTUs respectively. Among the
significant OTUs detected by different normalization and DA
methods, 328 OTUs were commonly identified by all
normalization methods. 31 unique OTUs were detected in the
data normalized by TimeNorm (Table 2) and the detected time
intervals are plotted in Figure 7. Among the unique OTUs,
2 OTUs were more abundant in the low-fat group from week
2 to week 4. The majority of these belong to the class of Clostridia
(phylum Firmicutes), Bacteroidia (phylum Bacteroidota) and
Erysipelotrichia (phyla Firmicutes). One of these OTUs
belonging to Betaproteobacteria (phylum Proteobacteria) was
significantly more abundant in the Western diet group. A
recent study reported similar findings; Betaprotebobacteria
was significantly enriched only in the High-Fat sugar group
(Shon et al., 2019). The proposed method could discover
relevant features for this study that might be missed using
other normalization methods.

4 Discussion

Normalizing sequencing-based microbiome data is a commonly
used but critical preprocessing step before performing downstream
analysis, which serves to eliminate sequence depth bias and make

samples comparable. The characteristic zero-inflation and over-
dispersion in microbiome sequencing data makes it vital to
choose an appropriate normalization method that effectively
lowers false-positive rates in the DA analysis.

This study proposes the first normalization method tailored for
time-series microbiome count data, which considers the latter’s
compositional property and time dependency by performing both
the within and across time point normalizations. The simulation
studies show that the proposed method surpasses existing
normalization methods by exhibiting a closer pattern to the
ground truth manifested with lower error rate. We also
demonstrate that TimeNorm outperforms other normalization
methods in DA analysis. We apply different normalization
techniques on the simulated datasets and perform DA analysis
using two different approaches; TimeNorm yields good Type I
error control and performance in detecting DA features, especially
in mimicking the real microbiome study. Furthermore, in the study
examining the effect of diet on microbial community composition, we
demonstrate that DA analysis using metaDprof on TimeNorm
normalized data is able to detect significantly differentially
abundant features missed by other normalization methods. These
findings are consistent with those reported in the previous literature,
providing insight into studying microbial communities. Overall,
TimeNorm outperforms TMM, TC, CSS and GMPR in various
settings, particularly when the zero proportion is high.

In the illustration of Figure 1 and simulation studies, we assume
the two conditions are comparable at the initial time point. It is not

FIGURE 7
Detected time intervals for the 31 uniqueOTUs. The segment for eachOTU indicates the start and endweek during which the abundance difference
arises between the two types of diet. The solid segment represents that the abundance in the low-fat group is higher than that in the Western diet group,
while the dotted segment indicates a higher abundance in Western diet group.
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necessary. We can assume two conditions are quite different at the
initial point, but comparable or similar at the last time point (e.g.,
some antibiotic medicine is applied to the disease samples and
eventually the samples under two conditions become similar). In
such way we need to start our normalization procedure from the last
point and then go back to the first point step by step.

Since the TimeNorm method is distribution-based, estimating
the parameter through the EM algorithm is computationally time-
intensive. TimeNorm calculates the size factors for a typical
microbiome dataset in minutes. When sample size is larger, it
will take more time. Currently, TimeNorm calculates the size
factors for Bridge normalization for every two adjacent time
points. When there are more time points (Gusareva et al., 2020),
normalizing the samples across three adjacent points might be more
accurate, resulting in a set of more stable features. However, the
challenge could be finding the stable features for multiple
timepoints, as for longer time series, there are fewer stable
features. Hence, our future research will focus on Bridge
normalization for multiple time points.

In conclusion, we demonstrate that applying TimeNorm on
both simulated and real datasets could normalize time-course
microbiome data appropriately with lower RRMSE. Additionally,
it empowers the DA analysis. We believe that TimeNorm can serve
as a useful approach for time-course microbiome data
normalization.
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