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Introduction: Observational studies have demonstrated strong correlations
between metabolic syndrome (MetS) and its related traits. To gain insight into
the genetic architecture and molecular mechanism of MetS, we investigated the
shared genetic basis of MetS and its related traits and further tested their causal
relationships.

Methods: Using summary statistics from genome-wide association analyses of
about 72,000 subjects from the Korean Genome and Epidemiological Study
(KoGES), we conducted genome-wide multi-trait analyses to quantify the overall
genetic correlation and Mendelian randomization analyses to infer the causal
relationships between traits of interest.

Results: Genetic correlation analyses revealed a significant correlation of MetS
with its related traits, such as obesity traits (body mass index and waist
circumference), lipid traits (triglyceride and high-density lipoprotein
cholesterol), glycemic traits (fasting plasma glucose and hemoglobin A1C), and
blood pressure (systolic and diastolic). Mendelian randomization analyses further
demonstrated that the MetS-related traits showing significant overall genetic
correlation with MetS could be genetically determined risk factors for MetS.

Discussion: Our study suggests a shared genetic basis of MetS and its related
traits and provides novel insights into the biologicalmechanisms underlying these
complex traits. Our findings further inform public health interventions by
supporting the important role of the management of metabolic risk factors
such as obesity, unhealthy lipid profiles, diabetes, and high blood pressure in
the prevention of MetS.
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Introduction

Metabolic syndrome (MetS) is a stopover for heart disease and many other chronic
illnesses. It increases the probability of diabetes by about five times and that of
cardiovascular disease by about two times, and individuals with MetS have a mortality
rate four times higher than that of the general population. The prevalence of MetS is about
31.4% in the United States and about 20% in Korea, where it is increasing (Lee and Choi,
2022). In addition, MetS is strongly associated with fatty liver, obstructive sleep apnea, and
various cancers. For example, MetS and its components are associated with the severity of
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acute pancreatitis (Niknam et al., 2020). Studies have also shown an
association between MetS and other diseases such as COVID-19
(Jeon et al., 2022), cardiovascular disease (Ju et al., 2017), and
pancreatic cancer (Zhong et al., 2023).

Both environmental and genetic factors are involved in MetS
development. Although several environmental factors, including
smoking, overeating, excessive drinking, abdominal obesity, and
stress, contribute to the development of MetS, its pathogenesis has
not been clarified. In this regard, numerous genetic association
studies have been conducted to identify the genetic basis of MetS
as a way to elucidate the molecular biological background of disease
(Lind, 2019; Oh et al., 2020). Because MetS is a combination of
metabolic risk factors, including obesity, dyslipidemia, insulin
resistance, and elevated blood pressure (Kong and Cho, 2019),
there have been efforts to identify the genetic factors for MetS-
related diseases and quantitative traits (QTs) in addition to genetic
studies of MetS (Wan et al., 2021). Furthermore, MetS-related traits
may share genetic etiologies with each other.

To explore the extent to which genetic bases are shared across
different traits, the method of linkage disequilibrium score
regression (LDSC) has recently being applied in statistical
genetics (Ni et al., 2018; van Rheenen et al., 2019). The genetic
correlation between traits computed by LDSC refers to the
correlation between the genetic effect on one trait and the
genetic effect on another trait and can be used to explore novel
trait associations. In this regard, it is possible to discover genes
showing pleiotropy by identifying genetic correlations between
clinically or physiologically related traits (van Rheenen et al., 2019).

Mendelian randomization (MR) is a method that uses genetic
variations to determine whether the observed association of one trait
as a risk factor with another trait as an outcome is consistent with a
causal relationship (Zheng et al., 2019). MR relies on a natural and
random classification of genetic variants during meiosis to produce a
random distribution of genetic variation in a population. Because
this approach takes advantage of the fact that the genotype precedes
the living environment (McArdle et al., 2012), MR has been used to
evaluate causal relationships between two traits.

In this study, we aimed to unravel the genetic correlation
between MetS and its related traits and ultimately elucidate the
genetic architecture underlying the development of MetS. In
addition, we used MR to examine the causal relationships
between MetS and its related traits. The outcomes of these
approaches are expected to be valuable for MetS management
and control in the human population.

Materials and methods

Study subjects

Subjects for genome-wide association (GWA) analyses of MetS
and its related traits were recruited from the Korean Genome and
Epidemiological Study (KoGES) that was established to investigate
the genetic and environmental factors as determinants of the
incidence of chronic diseases [such as type 2 diabetes (T2D),
hypertension, obesity, metabolic syndrome, osteoporosis,
cardiovascular disease, and cancer] by the Korean government
(National Research Institute of Health, Korea Disease Control

and Prevention Agency) since 2001 (Kim et al., 2016). In the
present study, we used epidemiological data from about
72,000 individuals from three population-based cohorts of the
KoGES, namely, the Korea Association Resource Study (KARE)
cohort (Cho et al., 2009), the Health EXAminee shared control study
(HEXA) cohort (Kim et al., 2011; Kim and Cho, 2023), and the
CArdioVascular disease Association Study (CAVAS) cohort
(formerly Health2 or RURAL cohort) (Cho et al., 2009). In brief,
KARE cohort consists of two population-based studies, the rural
Ansung and urban Ansan cohort studies, which were designed to
allow longitudinal prospective study. Since the baseline study
(including 10,038 participants aged 40–69) in 2001, the 11th
follow-up study was scheduled for completion in late 2024.
HEXA cohort was initiated in 2004 to identify environmental
and genetic risk factors for major chronic diseases in Koreans,
targeting men and women over 40 years of age who visited
medical examination centers in urban areas. Initiated in 2005,
CAVAS cohort was designed to investigate the effects of lifestyle
habits, diet, and environmental factors on chronic disease
development for rural residents. Signed informed consent was
voluntarily received from all KoGES participants before the
study. The study protocol was approved by the Institutional
Review Boards of the institutions participating in KoGES.

Genotyping, quality control, and imputation

This study used genotype data publicly available from the
National Biobank of Korea (NBK), Korea National Institute of
Health (https://biobank.nih.go.kr/cmm/main/mainPage.do).
Genotyping of about 72,000 subjects from the three population-
based cohorts of the KoGES was conducted using the Korea Biobank
Array (KBA) chip (Moon et al., 2019). As genotype data quality
control, samples with call rates <97%, excessive heterozygosity
(HET) based on all variants on the array (HET <0.15 or
HET >0.19), high singletons, gender mismatch, and second-
degree relatives were removed. KING v2 was used to inferring
2nd-degree relatives (Manichaikul et al., 2010). Genetic variants
[mostly single nucleotide polymorphisms (SNPs)] with a call
rate <95%, minor allele frequency (MAF) <0.01, and Hardy-
Weinberg equilibrium (HWE) p < 1 × 10−6 were excluded from
subsequent association analyses (Kim and Cho, 2023). To extend
SNP coverage, SNP imputation was performed using the
IMPUTE4 program for phased genotype data with Eagle v2.
3 software. The 1,000 Genomes Project Phase 3 and the Korean
reference genome were used as a reference panel for SNP
imputation. After imputation, SNPs with an INFO score <0.
8 and MAF <0.01 were removed.

Phenotyping

MetS cases were diagnosed according to International Diabetes
Foundation (IDF) criteria (Yoon et al., 2007; Huang, 2009). MetS
criteria include any three of the following factors: 1) systolic blood
pressure (SBP) ≥130 mmHg, diastolic blood pressure
(DBP) ≥85 mmHg, or taking blood pressure medication, 2)
fasting plasma glucose (FPG) ≥100 mg/dL or taking diabetes
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medication, 3) triglycerides (TG) ≥150 mg/dL or taking lipid-
lowering medication, 4) high-density lipoprotein cholesterol
(HDLC) ≤40 mg/dL in men or <50 mg/dL in women or taking
lipid-lowering medication, and 5) a waist circumference
(WC) ≥90 cm in men or ≥85 cm in women. The MetS controls
comprised individuals with traits not falling into any of the MetS
factors (Table 1).

MetS component diseases such as obesity, dyslipidemia, T2D,
and hypertension were assessed based on the diagnostic criteria of
each disease (Inzucchi, 2012; Jordan et al., 2018; Halawani et al.,
2019; Ahn et al., 2020) (Supplementary Table S1). In detail, the
obesity cases were grouped for subjects with body mass index
(BMI) >25.0 kg/m2, while controls were grouped for those with
BMI between 18.5 and 22.9 kg/m2.

The T2D cases were diagnosed according to the following
criteria: 1) treatment of T2D, 2) fasting plasma
glucose ≥7 mmol/L or plasma glucose 2-h after ingestion of
75 gm oral glucose load ≥11.1 mmol/L. The inclusion criteria of
nondiabetic control subjects were as follows: 1) no history of
diabetes and 2) fasting plasma glucose <5.6 mmol/L and plasma
glucose 2-h after ingestion of 75 gm oral glucose load <7.8 mmol/L.

The dyslipidemia cases were diagnosed if subjects had total
cholesterol (TCHL) ≥240 mg/dL, low-density lipoprotein cholesterol
(LDLC) ≥160 mg/dL, HDLC <40 mg/dL, TG ≥200 mg/dL, recent
records of lipid-lowering medication, or dyslipidemia history. Subjects
who did not meet all of these conditions were grouped as controls.

The hypertension cases were diagnosed for subjects with
SBP ≥140 mmHg or DBP ≥90 mmHg. On the other hand, the
controls for hypertension were grouped if subjects had
SBP ≥120 mmHg and DBP ≥80 mmHg.

The demographic and clinical data of MetS-related traits such as
obesity traits [body mass index (BMI) and WC], lipid traits [TG,
HDLC, low-density lipoprotein cholesterol (LDLC), and total
cholesterol (TCHL)], glycemic traits [FPG and hemoglobin A1C
(HbA1C)], and blood pressure (SBP and DBP) were obtained from
the KARE, HEXA, and CAVAS cohorts (Table 1;
Supplementary Table S1).

Statistical analyses

GWA analyses were conducted using the KBA dataset of KoGES
subjects to identify genetic variants influencing MetS and its related
traits. For MetS, logistic regression analysis was performed with
adjustment for age, sex, and recruitment area. For MetS-related
traits, linear regression analysis was performed with the above-
mentioned adjustments. All association analyses were carried out via
an additive model using PLINK v1.07 (https://zzz.bwh.harvard.edu/
plink/) (Purcell et al., 2007).

A genetic correlation score (rg) was calculated using LDSC
software (https://github.com/bulik/ldsc) to detect genetic
correlations between MetS and its related traits (Bulik-Sullivan
et al., 2015). Summary statistics from GWA analyses were used
in the rg calculation for the pairwise traits of interest.

MR analyses were carried out to test causal relationships
between MetS and its related traits. Lead SNPs from GWA
analyses of traits considered risk factors were selected as
instrumental variables (IVs) to detect a causal relationship with
the other trait considered an outcome. In the examples of this study,
the odds of MetS risk were divided by the β coefficients of the levels

TABLE 1 Clinical statistics of subjects with MetS in the KBA dataset.

Trait Variable Case Control

MetS N 11,139 45,020

Age (year) 54.85 52.29

BMI (kg/m2) 25.87 23.18

WC (cm) 87.25 78.50

TG (mg/dL) 204.91 105.79

HDLC (mg/dL) 42.91 55.21

LDLC (mg/dL) 117.10 120.01

TCHL (mg/dL) 204.96 196.92

FPG (mg/dL) 99.35 88.21

HbA1C (%) 2.97 2.98

SBP (mmHg) 131.06 118.10

DBP (mmHg) 82.02 74.01

Obesity N 17,023 39,429

T2D N 3,778 33,416

Dyslipidemia N 19,951 37,582

Hypertension N 17,429 48,372

Abbreviations are as follows: N, number of subjects; BMI, body mass index; WC, waist circumference; TG, triglyceride; HDLC, high-density lipoprotein cholesterol; LDLC, low-density

lipoprotein cholesterol; TCHL, total cholesterol; FPG, fast plasma glucose; HbA1C, hemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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of MetS-related traits to determine ratio estimates for each IV. The
effects of the individual IVs were combined using inverse-variance
weighted (IVW) analysis (Mounier and Kutalik, 2023), resulting in a
weighted mean estimate of the risk of MetS per 1-standard deviation
increase in the levels of MetS-related traits (diseases or QTs). In this
study, MR analyses were conducted using the
MendelianRandomization package in R software (version 4.3.0).

Results

Identification of genetic variants associated
with MetS and related traits

Prior to genetic correlation and MR analyses, we conducted GWA
analyses of MetS and its related traits. Subjects taking lipid-lowering,
hypertension, or diabetes medication were excluded from the GWA
analyses to minimize the confounding effects of the medication on the
traits of interest in association analyses. The number of subjects in the
analyses is summarized in Table 1; Supplementary Table S1.

Our GWA analyses revealed significant associations for MetS
(Figure 1) and its related traits (Supplementary Tables S2–S12;
Supplementary Figures S1, S2). Because observational studies have
reported strong correlations between MetS and its related traits, we
inspected whether MetS loci also show an association with the related
traits. In this study, four genome-wide significant (association
P-value <5 × 10−8) MetS loci in APOA5 (rs651821), CETP
(rs56156922), LPL (rs4244457), and APOE (rs429358) also showed
strong evidence of an association with lipid traits, implying a genome-
wide genetic correlation between MetS and lipid traits (Table 2).

Quantification of the genome-wide genetic
correlation between MetS and related traits

Based on the evidence from the cross-trait associations of single
markers (Table 2), we attempted LD score regression analysis to

estimate the correlation of phenotypic effects of genetic variants
across the genome on two traits (in this case, MetS and one of the
related traits). We estimated the genome-wide genetic correlation
between MetS and its related traits (e.g., BMI, WC, TG, HDLC,
LDLC, TCHL, HbA1C, SBP, and DBP). We observed a significant
genetic correlation between MetS and most of the related traits,
except LDLC and TCHL (Table 3; Figure 2). Of these, TG showed
the strongest positive genetic correlation with MetS (rg = 0.79,
P-value = 1.19 × 10−46). On the other hand, HDLC showed a
negative genetic correlation with MetS (rg = −0.59, P-value =
2.74 × 10−10). These results are in good agreement with
observations from physiological, clinical, and
epidemiological studies.

Inference of a causal relationship between
MetS and related traits

One-sample MR analysis applying an IVW approach was
performed to assess the causal relationship between MetS and its
related traits (Figure 3). We detected a significant causal
relationship between MetS and its related traits, such as BMI,
WC, TG, HDLC, FPG, HbA1C, SBP, and DBP (Figure 4). The
genetically determined risk factors of HDLC showed a protective
effect on MetS risk [odds ratio (OR): 0.96, P < 0.001], whereas
BMI (OR: 1.08, P = 2.11 × 10−8), WC (OR: 1.09, P = 2.22 × 10−2),
TG (OR: 1.01, P = 5.71 × 10−6), FPG (OR: 1.02, P = 1.40 × 10−85),
HbA1C (OR: 1.67, P = 2.34 × 10−40), SBP (OR: 1.01, P = 1.18 ×
10−4), and DBP (OR: 1.03, P = 4.91 × 10−9) were significantly
associated with an increased risk of MetS.

Discussion

Based on observational studies showing strong correlation
between MetS and its related traits, we investigated shared
genetic basis underlying these traits to gain insight into the

FIGURE 1
Manhattan plot (A) and quantile–quantile plot (B) of GWA analyses of MetS. In the Manhattan plot, the negative logarithm of the association P-value
for each SNP across the whole genome is represented by a dot. The red line indicates the genome-wide significant P-value (5.0 × 10−8). In the
quantile–quantile plot, the x- and y-axes represent the expected and observed P-values, respectively.

Frontiers in Genetics frontiersin.org04

Kim and Cho 10.3389/fgene.2024.1417262

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1417262


genetic architecture and molecular mechanism of MetS. Our LDSC
analyses demonstrated a significant genetic correlation of MetS with
obesity traits (BMI and WC), lipid traits (TG and HDLC), glycemic
traits (FPG and HbA1C), and blood pressure (SBP and DBP). MR
analyses further demonstrated that the MetS-related traits showing
significant overall genetic correlation with MetS could be genetically
determined risk factors for MetS.

Numerous genetic association studies have been conducted to
understand the genetic basis of MetS as a primary way to elucidate
the molecular biological background of disease. More than
100 independent loci for MetS were thus far identified from
GWASs in diverse ethnic populations (Lind, 2019; Oh et al.,
2020). In our GWA analysis of MetS, we identified several
genome-wide significant loci located in or near genes such as
APOA5, CETP, LPL, and APOE, which are mostly involved in

lipid metabolism. In addition, our study also detected several loci
showing a suggestive association with MetS; these loci are involved
in diabetes, obesity, and hypertension.

The protein encoded by APOA5, apolipoprotein A5 (APOA5),
plays an important role in regulating plasma TG levels and as a
major risk factor for coronary artery disease (Pennacchio et al.,
2002). As a component of high-density lipoprotein, APOA5 is also
associated with lipid-related diseases such as hypertriglyceridemia
1 and hyperlipoproteinemia type V (Johansen et al., 2010; Mendoza-
Barbera et al., 2013). The CETP-encoded protein cholesteryl ester
transfer protein (CETP) is involved in the transfer of cholesteryl
ester from high-density lipoprotein to other lipoproteins (Inazu
et al., 1990). Diseases such as hyperalphalipoproteinemia 1 and lipid
metabolism disorder are associated with CETP (Nagano et al., 2002).
The protein encoded by LPL is lipoprotein lipase (LPL), which, as a

TABLE 2 Association of MetS SNPs with its related traits.

SNP rs651821 rs56156922 rs4244457 rs429358

BP 11:116662579 16:56993886 8:19852156 19:45411941

Candidate gene APOA5 CETP LPL APOE

Mi/Ma C/T G/A T/G C/T

MAF 0.29 0.18 0.34 0.09

MetS OR 1.40 0.83 0.87 1.15

P-value 4.27 × 10−96 2.20 × 10−19 5.81 × 10−18 1.09 × 10−9

BMI β −0.02 0.02 0.00 −0.03

P-value 3.57 × 10−1 2.16 × 10−1 9.74 × 10−1 3.22 × 10−1

WC β −0.01 0.01 −0.02 −0.15

P-value 9.01 × 10−1 8.68 × 10−1 7.50 × 10−1 3.68 × 10−2

TG β 25.88 −3.02 −13.43 11.61

P-value <0.01 7.33 × 10−7 4.02 × 10−84 3.88 × 10−50

HDLC β −2.51 3.81 2.18 −1.72

P-value 2.04 × 10−271 <0.01 6.06 × 10−108 9.09 × 10−54

LDLC β −0.39 0.23 1.32 4.56

P-value 3.68 × 10−2 3.02 × 10−1 1.96 × 10−7 2.86 × 10−56

TCHL β 1.24 3.62 1.17 4.45

P-value 9.82 × 10−10 1.30 × 10−48 3.24 × 10−5 6.07 × 10−45

FPG β 0.20 0.00 −0.32 0.05

P-value 7.28 × 10−2 9.97 × 10−1 4.38 × 10−2 7.71 × 10−1

HbA1C β 0.00 −0.01 −0.01 −0.01

P-value 4.21 × 10−1 6.16 × 10−2 1.54 × 10−1 5.28 × 10−1

SBP β 0.13 0.02 0.01 −0.43

P-value 1.14 × 10−1 8.60 × 10−1 9.42 × 10−1 1.36 × 10−3

DBP β 0.11 0.03 −0.02 −0.29

P-value 4.19 × 10−2 6.58 × 10−1 7.97 × 10−1 8.55 × 10−4

Information for the SNP ID and chromosomal position is based on NCBI genome build 37/hg19. Abbreviations are as follows: BP, base-pair (Physical position); Mi/Ma, minor allele/major

allele; MAF, minor allele frequency; MetS, metabolic syndrome; BMI, body mass index; WC, waist circumference; TG, triglyceride; HDLC, high-density lipoprotein cholesterol; LDLC, low-

density lipoprotein cholesterol; TCHL, total cholesterol; FPG, fast plasma glucose; HbA1C, hemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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homodimer, catalyzes the hydrolysis of triglycerides from
circulating chylomicrons and very-low-density lipoproteins (Emi
et al., 1990). Thus, LPL plays an important role in lipid clearance

from the blood stream and in lipid utilization and storage. Mutations
in LPL are involved in type I hyperlipoproteinemia and many
disorders related to lipoprotein metabolism (Wilson et al., 1993).

TABLE 3 Genome-wide genetic correlations between MetS and its related traits.

Trait 1 Trait 2 rg rg SE P-value

MetS BMI 0.56 0.063 3.12 × 10−19

WC 0.66 0.063 4.25 × 10−26

TG 0.79 0.055 1.19 × 10−46

HDLC −0.59 0.093 2.74 × 10−10

LDLC −0.01 0.098 9.40 × 10−1

TCHL 0.17 0.100 8.69 × 10−2

FPG 0.59 0.085 4.18 × 10−12

HbA1C 0.46 0.097 2.34 × 10−6

SBP 0.45 0.074 1.26 × 10−9

DBP 0.40 0.074 7.73 × 10−8

Abbreviations are as follows: QT, quantitative trait; rg, genetic correlation; SE, standard error; MetS, metabolic syndrome; BMI, body mass index; WC, waist circumference; TG, triglyceride;

HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; TCHL, total cholesterol; FPG, fast plasma glucose; HbA1C, hemoglobin A1c; SBP, systolic blood

pressure; DBP, diastolic blood pressure.

FIGURE 2
Heat map of the genetic correlation between MetS and its related traits. Red-colored boxes represent positive genetic correlations while blue-
colored boxes represent negative correlations. Numbers in the boxes indicate the genetic correlation coefficients between the traits being compared.
*Genetic correlations with P-values less than 0.05; **genetic correlations with P-values less than 0.01.
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FIGURE 3
Diagram displaying the components of the Mendelian randomization. Genetic variants as the instrumental variables are associated with risk factor
(or exposure), but not with confounding factors or outcome disease. Biomarker is a modifiable risk factor for outcome disease.

FIGURE 4
Forest plots demonstrating results of MR analyses between MetS and its related traits. MR analyses were conducted to detect causal relationships
between MetS as an outcome disease and its related traits as risk factors.
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The coding product of APOE, apolipoprotein E (APOE), associates
with lipid particles, which mainly function in lipoprotein-mediated
lipid transport between organs via the plasma and interstitial fluids.
APOE, as a core component of plasma lipoproteins, is involved in
their production, conversion, and clearance (Verghese et al., 2013)
and is associated with lipoprotein glomerulopathy and
hyperlipoproteinemia type III (Evans et al., 2005; Rovin et al., 2007).

In addition to our study, previous GWASs showed that a
considerable number of MetS loci overlapped those discovered
for two or more MetS-related traits (Kristiansson et al., 2012; Lee
et al., 2018; Lind, 2020). Although these findings may mirror the
results of observational clinical and epidemiological studies showing
significant correlations betweenMetS and its related traits, including
diseases and QTs, their genetic overlap is less well elucidated
(Cherny et al., 2022).

Genetic correlations have been estimated between MetS traits in
Europeans (Vattikuti et al., 2012; vanWalree et al., 2022). In this study,
we used LDSC analysis to examine the cross-trait genetic correlations in
Korean populations to gain insight into the shared genetic basis ofMetS
and its related traits in East Asians. To the best of our knowledge, our
study is the largest genome-wide cross-trait genetic correlation analysis
of MetS and its related traits in East Asians. Another advantage of our
study is that we ruled out confounding effects as much as possible by
eliminating subjects who took lipid-lowering, hypertension, or diabetes
medication from the GWA analyses of MetS and its related traits.
Finally, our results demonstrated a positive overall genetic correlation of
MetS with obesity, glycemic, and blood pressure traits but a negative
correlation with HDLC. These findings are largely consistent with those
of conventional epidemiological studies.

In addition to comparingMetS and its related traits, we investigated
genetic correlations among MetS-related traits. In our analyses, most
MetS-related traits, including obesity traits (BMI and WC), glycemic
traits (FPG and HbA1C), lipid traits (TG, HDLC, LDLC, and TCHL),
and blood pressure (SBP and DBP), showed significant genetic
correlations when analyzed in pairs, except LDLC and TCHL. These
results are largely consistent with those observed in Europeans where
pairwise analyses were performed for WC, FPG, TG, HDLC, and SBP
(van Walree et al., 2022).

Findings on the overall genetic correlation between MetS and its
related traits suggest a shared genetic basis for pairs of traits, which is
either directly through variants affecting both traits (pleiotropy) or
through the causal effect of one trait on the other. In this regard, we
further exploited the causal relationships between MetS and its
related traits by applying MR. In our one-sample MR analysis,
the outcome was MetS and the risk factor was one of the MetS-
related traits. According to the key assumptions of MR, the genetic
variant, as the instrumental variable (IV) that is causally related to
the risk factor, should only affect the outcome through its effect on
the risk factor. In addition, confounding factors for the association
between risk factor and outcome should not be related to the IV.

Tomeet the above-stated assumptions ofMR, we performedMR
analysis using variants associated with risk factors after excluding
variants showing an association with confounding factors. Our MR
analyses demonstrated the causal relationships of MetS-related traits
(e.g., BMI, WC, TG, HDLC, FPG, HbA1C, SBP, and DBP) with
MetS. To the best of our knowledge, our MR results are the first to
show a causal relationship between MetS and its related traits,
building on the results of genetic correlation analyses. In

conclusion, the results of our MR analyses highlighted the causal
role of MetS-related traits in MetS development. These findings
suggest that treatment of each of the MetS-related traits individually
may be a valuable strategy in the clinical management of MetS.
However, this study was mainly limited to the Korean population.
Therefore, our findings should be further validated in different
ancestral populations to gain extensive insight of the biological
mechanisms underlying MetS and its related traits in the future.
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