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In modern breeding practices, genomic prediction (GP) uses high-density single
nucleotide polymorphisms (SNPs) markers to predict genomic estimated
breeding values (GEBVs) for crucial phenotypes, thereby speeding up selection
breeding process and shortening generation intervals. However, due to the
characteristic of genotype data typically having far fewer sample numbers
than SNPs markers, overfitting commonly arise during model training. To
address this, the present study builds upon the Least Squares Twin Support
Vector Regression (LSTSVR) model by incorporating a Lasso regularization term
named ILSTSVR. Because of the complexity of parameter tuning for different
datasets, subtraction average based optimizer (SABO) is further introduced to
optimize ILSTSVR, and then obtain the GP model named SABO-ILSTSVR.
Experiments conducted on four different crop datasets demonstrate that
SABO-ILSTSVR outperforms or is equivalent in efficiency to widely-used
genomic prediction methods. Source codes and data are available at: https://
github.com/MLBreeding/SABO-ILSTSVR.
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1 Introduction

With the decreasing cost of high-throughput sequencing data, genomic prediction (GP)
emerges as a novel breeding approach, using high-density single nucleotide polymorphisms
(SNPs) to capture associations between markers and phenotypes, thereby enabling
prediction of genomic estimated breeding values (GEBVs) at an early stage of breeding
(Meuwissen et al., 2001). Compared with conventional breeding methods, such as
phenotype and marker-assisted selection, GP greatly shortens generation intervals,
reduces costs, and enhances the efficiency and accuracy of new variety selection
(Heffner et al., 2010).

From the proposal of the concept of genomic prediction to the present, a multitude of
models have emerged. Early models primarily focused on improving best linear unbiased
prediction (BLUP), such as ridge regression-based best linear unbiased prediction (rrBLUP)
(Henderson, 1975) and genomic best linear unbiased prediction (GBLUP) (VanRaden,
2008), etc. In addition, researchers have proposed various Bayesian methods, including
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BayesA and BayesB (Meuwissen et al., 2001), BayesC (Habier et al.,
2011) and BayesLasso (Park and Casella, 2008), Bayesian ridge
regression (BayesRR) (da Silva et al., 2021), BSLMM(Zhou et al.,
2013). Moreover, bayesian methods generally exhibit higher
prediction accuracy than GBLUP in the majority of cases (Rolf
et al., 2015). However, the Markov Chain Monte Carlo (MCMC)
steps involved in parameter estimation for Bayesian methods can
significantly increase computational costs. With advancements in
high-throughput sequencing technologies, the increasing
dimensionality of genotype data poses new challenges for GP
models. To address this problem, some researchers have begun
employing regularization term to mitigate the overfitting problem,
such as ridge regression (Ogutu et al., 2012), Lasso (Usai et al., 2009),
elastic net (Wang et al., 2019). Meanwhile, machine learning (ML)
methods such as support vector regression (SVR) (Maenhout et al.,
2007; Ogutu et al., 2011), random forest (RF) (Svetnik et al., 2003),
gradient boosting decision tree (GBDT), extreme gradient boosting
(XGBoost) (Chen and Guestrin, 2016) and light gradient boosting
machine (LightGBM) (Ke et al., 2017), have made great performance
in genomic prediction methods. With the development of deep
learning (DL), researchers have also combined it with genomic
prediction models, such as DeepGS proposed by Ma et al. (Ma
et al., 2018), based on convolutional neural networks (CNN), and
DNNGP proposed by Wang et al. (Kelin et al., 2023) for application
in multi-omics, which have achieved better performance compared
with other classic models. However, genotype data for most species
exhibit high-dimensional small-sample characteristics, leading
models often to fail to learn effective features from the training
data. Moreover, most GP models contain a large number of
parameters and there are significant differences in genotype data
among different species, leading to a tedious parameter tuning
process for each species, significantly increasing breeding costs.
Therefore, enhancing the prediction performance of GP models
and reducing the complexity of parameters tuning is of crucial
importance for shortening generation intervals and reducing
breeding costs.

This study explores a machine learning model, least squares
twin support vector regression (LSTSVR), to address above
problem. LSTSVR, proposed by Zhong et al. (2012), is a
regression model that integrates the ideas of least squares method
and twin support vector machine (TSVM) (Jayadeva et al., 2007).
LSTSVR contains a kernel function; when linearly inseparable
data exists in the original input space, it can become linearly
separable after being mapped into a higher-dimensional feature
space through an appropriate kernel function (Kung, 2014).
LSTSVR improves the computational efficiency during the
training process of traditional SVR models by introducing the
least squares paradigm to replace the ε-insensitive loss function
in SVR, thereby transforming the originally nonlinear optimization
problem into an easier-to-solve system of linear equations, offering
more stable performance. Simultaneously, adopting a two sets of
support vectors for regression enhances the model’s learning
capability and robustness (Huang et al., 2013). However, as a
general-purpose regression model, LSTSVR still has certain
limitations when dealing with various high-dimensional, small-
sample genotype datasets.

To better address model overfitting and complex parameter
tuning when the number of genotype samples is far less than the

number of SNPs markers (Crossa et al., 2017; Tong and Nikoloski,
2020) this study has made improvements and optimizations to
LSTSVR. Firstly, inspired by Lasso regularization, a penalty term
was introduced to constrain model complexity on LSTSVR.
Concurrently, in order to reduce the complexity stemming from
model parameter tuning, the subtraction average-based optimizer
(SABO) (Trojovský and Dehghani, 2023) was adopted to perform
parameter optimization on the LSTSVR model. By combining the
Lasso regularization-based ILSTSVR with the efficient optimization
of SABO, this study successfully developed a genomic prediction
model named SABO-ILSTSVR. To validate the effectiveness of
SABO-ILSTSVR, comparative experiments were conducted using
SABO-ILSTSVR on four different species datasets (maize, potato,
wheat, and brassica napus) against commonly used genomic
prediction models (LightGBM, rrBLUP, GBLUP, BSLMM,
BayesRR, Lasso, RF, SVR, DNNGP). The results demonstrate
that SABO-ILSTSVR exhibits equivalent or superior performance
compared with widely-used genomic prediction methods. Finally, in
order to reduce the difficulty of using the model, this study provides
an easy-to-use python-based tool for breeders to use conveniently.

2 Materials and methods

2.1 Dataset

Four different crops datasets are used in this study, including
potatoes, wheat, maize, and Brassica napus. The following provides
detailed descriptions of the genotype and phenotype data for
each dataset.

Potato dataset (Selga et al., 2021) is derived from a total of
256 cultivated varieties across three locations in northern and
southern Sweden. Over 2000 SNPs markers used for genome-
wide prediction were obtained from germplasm resources at both
the Centro Internacional de la Papa (CIP, Lima, Peru) and those in
the United States. According to Selga et al. (2021), this number of
SNPs is already sufficient for predict genomic estimated breeding
values (GEBVs) without loss of information. In this dataset, the total
weight of tubers serves as the phenotype data.

Wheat dataset (Crossa et al., 2014) originates from the Global
Wheat Program at CIMMYT, comprising information on 599 wheat
lines. The project carried out numerous experiments across various
environmental settings, with the dataset divided into four core
environments according to distinct environmental parameters.
Average grain yield (GY) serves as the phenotypic trait data
within this dataset. It contains 1,279 SNPs markers, which were
acquired following the removal of those with minor allele
frequencies below 0.05 and the estimation of missing genotypes
utilizing samples from the genotype edge distribution.

Maize dataset (Crossa et al., 2014) originates from CIMMYT’s
maize project, comprising 242 maize lines and 46,374 SNP markers.
The project encompasses multiple phenotypic data points, and we
use the most significant yield-related traits as our phenotype data for
this study.

Brassica napus dataset (Kole et al., 2002) is part of the MTGS
package. The dataset comprises 50 lines derived from two varieties,
100 SNP markers, and phenotype information on flowering days
across three distinct time periods (flower0, flower4, flower8).
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2.2 SABO-ILSTSVR model

The SABO-ILSTSVR model integrates the subtraction-based
average optimizer (SABO) and an improved LSTSVR method. Its
overall framework is depicted in Figure 1, followed by an elaboration
of the model.

2.2.1 LSTSVR
Least squares twin support vector regression (LSTSVR) is an

improved twin support vector regression (TSVR) (Peng, 2010; Shao
et al., 2013) model by Yang et al. (Lu Zhenxing, 2014). TSVR is an
extension of the regression model derived from twin support vector
machine (TSVM) (Jayadeva et al., 2007), suitable for addressing
continuous value prediction problems, which accomplishes this by
determining two regression functions, shown as follows,

f 1 X( ) � wT
1X + b1, f 2 X( ) � wT

2X + b2 (1)
where Eq. (1) determines ε-insensitive down-bound function f1 and
ε-insensitive up-bound function f2, w1, w2 are weight vectors, b1, b2
are bias term. These can be obtained by solving the following
quadratic programming problems (QPPs),

min
w1 ,b1

1
2
Y − eε1 − Xw1 + eb1( )‖ ‖22 + C1e

Tξ1

s.t. Y − Xw1 + eb1( )≥ − eε1 − ξ1, ξ1 ≥ 0,

(2)

min
w2 ,b2

1
2
Y + eε2 − Xw2 + eb2( )‖ ‖22 + C2e

Tξ2

s.t. − Y + Xw2 + eb2( )≥ − eε2 − ξ2, ξ2 ≥ 0,

(3)

where C1, C2 are the positive penalty parameters, ε1, ε2 are up- and
down-bound parameters, ξ1, ξ2 are slack vectors, e is a vector of ones
with appropriate dimensions. The result of the final regression
function is decided by the mean of upper and lower bound
functions, as Eq. (4),

f X( ) � 1
2

f 1 X( ) + f 2 X( )( ) � 1
2

wT
1 + wT

2( )X + 1
2

bl + b2( ) (4)

In the spirit of LSTSVM, Yang et al. apply least squares method
to TSVR. TSVR finds the optimal weight vector and bias terms by
solving two QPPs, whereas LSTSVR transforms the original TSVR
problem into two systems of linear equations for solution, which is
typically faster and more stable than directly solving q QPPs, with
the loss in accuracy being within an acceptable range. For LSTSVR
model, the inequality constraints of (2) and (3) are replaced with
equality constraints as follows,

min
w1 ,b1

1
2
Y − eε1 − Xw1 + eb1( )‖ ‖22 + C1ξ1

Tξ1

s.t. Y − Xw1 + eb1( ) � −eε1 − ξ1,

(5)

min
w2 ,b2

1
2
Y + eε2 − Xw2 + eb2( )‖ ‖22 + C2ξ2

Tξ2

s.t. − Y + Xw2 + eb2( ) � −eε2 − ξ2,

(6)

In formula (5) and (6), the square of L2-norm of slack variable
ξ1, ξ2 is used, instead of L1-norm in (2) and (3), which makes
constraint ξ1 ≥ 0, ξ2 ≥ 0 redundant, so the following formulas
is obtained,

min
w1 ,b1

1
2
Y − Xw1 + eb1( )‖ ‖22 +

C1

2
Xw1 + eb1( ) − Y − eε1‖ ‖22, (7)

min
w2 ,b2

1
2
Y − Xw2 + eb2( )‖ ‖22 +

C2

2
− Xw2 + eb2( ) + Y − eε2‖ ‖22, (8)

(7) and (8) are two unconstrained QPPs, hence the solutions for
w and b can be directly obtained by setting the derivatives to zero, as
Eq. (9),

−HT Y − ε1e( ) −Hu( ) + c1H
T Hu − Y − ε1e( )( ) � 0, (9)

where u � w
b

[ ], H � [X e], then, we have Eq. (10) and Eq. (11),

FIGURE 1
Illustration of SABO-ILSTSVR model frameworks.
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u1 � w1

b1
[ ] � 1 + C1( )2 HTH( )−1HTY + 1 + C1( )C1 HTH( )−1HTε1e,

(10)
u2 � w2

b2
[ ] � 1 + C2( )2 HTH( )−1HTY − 1 + C2( )C2 HTH( )−1HTε2e,

(11)
thus, the final regression function is f(X) � 1

2 X(wT
1 + wT

2 ) +
1
2 (bl + b2).

2.2.2 Improved LSTSVR (ILSTSVR)
When applying LSTSVR to handle high-dimensional genotype

datasets with small samples, the model is prone to a high risk of
overfitting. This is due to the fact that the model may overly fit noise
and feature details in the training set, leading to decrease
generalization performance on new samples and thereby affecting
the effectiveness and reliability of the predictive results. Therefore,
this study adds a Lasso regularization term for the weight parameter
w in the LSTSVR framework. For linear problems, the function of
ILSTSVR is as follows,

min
w1 ,b1

1
2
Y − ε1e − Xw1 + b1e( )‖ ‖22 +

C1

2
ξ1

Tξ1 + C3

2
w1‖ ‖1 + b21( )

s.t. Y − Xw1 + b1e( ) � −ε1e − ξ1

,

(12)
min
w2 ,b2

1
2
Y + ε2e − Xw2 + b2e( )‖ ‖22 +

C2

2
ξ2

Tξ2 + C4

2
w2‖ ‖1 + b22( )

s.t. − Y + Xw2 + b2e( ) � −ε2e − ξ2

,

(13)
where C1, C2, C3, C4, ε1, ε2 are positive penalty parameters, ξ1, ξ2 are
slack variables, e is a vector of ones of appropriate dimensions. For
the non-differentiability with L1 regularization and the convenience
of calculations, we assume ‖w‖1 � ‖α*w‖22, then (12) and (13) can be
converted into as follow,

min
w1 ,b1

1
2
Y − ε1e − Xw1 + b1e( )‖ ‖22 +

C1

2
Xw1 + b1e( ) − Y − ε1e‖ ‖22

+C3

2
α1 pw1‖ ‖22 + b21( ),

(14)
min
w2 ,b2

1
2
Y + ε2e − Xw2 + b2e( )‖ ‖22 +

C2

2
− Xw2 + b2e( ) + Y − ε2e‖ ‖22

+C4

2
α2 pw2‖ ‖22 + b22( ),

(15)
where α1, α2 are vectors of appropriate dimensions, * represents
element-wise multiplication. Expand (14) yields,

L � min
1
2

Y − ε1e − Xw1 + b1e( )( )T Y − ε1e − Xw1 + b1e( )( )

+C1

2
Xw1 + b1e( ) − Y − ε1e( )T Xw1 + b1e( ) − Y − ε1e( )

+C3

2
diag α1( )w1( )T diag α1( )w1( ) + C3

2
b21,

(16)
let the derivatives of (16) with respect to w1 and b1 respectively be
zero, we obtain Eq. (17) and Eq. (18),

∂L
∂w1

� − XT Y − Xw1 − b1e − ε1e( ) + C1X
T Xw1 + b1e − ε1e − Y( )

+ C3diag α1( )Tdiag α1( )w1 � 0,

(17)
∂L
∂b1

� − eT Y − Xw1 − b1e − ε1e( ) + C1e
T Xw1 + b1e − ε1e − Y( )

+ C3b1 � 0,

(18)
composed in matrix form as Eq. (19),

1 + C1( )XTX + C3D1 1 + C1( )XTe
1 + C1( )eTX 1 + C1( )eTe + C3

[ ] w1

b1
[ ]

� 1 + C1( )XT C1 − 1( )XTe
1 + C1( )eT C1 − 1( )eTe[ ] Y

ε1
[ ] (19)

where D1 � diag(α1)Tdiag(α1). Similarly, the following result Eq.
(20) can be obtained through (15),

1 + C2( )XTX + C4D2 1 + C2( )XTe
1 + C2( )eTX 1 + C2( )eTe + C4

[ ] w2

b2
[ ]

� 1 + C2( )XT 1 − C2( )XTe
1 + C2( )eT 1 − C2( )eTe[ ] Y

ε2
[ ] (20)

where D2 � diag(α2)Tdiag(α2). Because of the assumption
‖w‖1 � ‖α pw‖22, we set an initial α0, and calculate the final w and
b through the iterative formula that updates alternately, as Eq. (21)

αi
k+1 �

����
1
wi

k| |

√
(21)

To make the process clear, the computational process is
summarized as Table 1.

Then we obtain Eq. (22),

f X( ) � 1
2
X wT

1 + wT
2( ) + 1

2
bl + b2( ) (22)

For nonlinear problems, kernel functions typically provide a
good solution, and here we have chosen RBF as the kernel function
for our model. The formula of RBF as Eq. (23),

K x, x′( ) � exp − x − x′
���� ����2

2σ2
⎛⎝ ⎞⎠, (23)

where σ is kernel parameter, the value has a significant impact on
prediction performance, easily leading to overfitting or underfitting.

We map the training data through K(X,XT) into a high-
dimensional reproducing kernel Hilbert space (RKHS)
(Aronszajn, 1950), obtaining matrix H. Thus, we obtain the
function for the nonlinear problem as Eq. (24) and Eq. (25),

min
w1 ,b1

1
2
Y − ε1e − Hw1 + b1e( )‖ ‖22 +

C1

2
ξ1

Tξ1 + C3

2
w1‖ ‖1 + b21( )

s.t. Y − Xw1 + b1e( ) � −ε1e − ξ1,

(24)
min
w2 ,b2

1
2
Y + ε2e − Hw2 + b2e( )‖ ‖22 +

C2

2
ξ2

Tξ2 + C4

2
w2‖ ‖1 + b22( )

s.t. − Y + Xw2 + b2e( ) � −ε2e − ξ2,

(25)
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Similarly, we can obtain Eq. (26) and Eq. (27),

1 + C1( )HTH + C3D1 1 + C1( )HTe
1 + C1( )eTH 1 + C1( )eTe + C3

[ ] w1

b1
[ ]

� 1 + C1( )HT C1 − 1( )HTe
1 + C1( )eT C1 − 1( )eTe[ ] Y

ε1
[ ], (26)

1 + C2( )HTH + C4D2 1 + C2( )HTe
1 + C2( )eTH 1 + C2( )eTe + C4

[ ] w2

b2
[ ]

� 1 + C2( )HT 1 − C2( )HTe
1 + C2( )eT 1 − C2( )eTe[ ] Y

ε2
[ ], (27)

the final nonlinear model as Eq. (28),

f H( ) � 1
2
H wT

1 + wT
2( ) + 1

2
bl + b2( ) (28)

2.2.3 Optimizing ILSTSVR using SABO
For the non-linear ILSTSVR model, the choice of kernel

parameter σ for RBF has a significant impact on prediction
performance. Moreover, in this study, we set C1 � C2 and C3 �
C4 for the ILSTSVR parameters C1, C2, C3, C4 as given in (12) and
(13). Parameter optimization plays an important role in machine
learning, as selecting appropriate parameters can significantly
enhance a model’s predictive capability and accuracy. Different
combinations of parameters may lead to vastly different
performances of the model on both training and testing data.
Furthermore, parameters affect the model complexity and
learning capacity. By adjusting them, we can better strike a
balance between overfitting and underfitting (Young et al., 2015).
Although grid search can find the global optimal solution, it will
result in enormous computational resource consumption and
neglect the correlations among parameters (Vincent and Jidesh,
2023). Instead, we use the recently proposed SABO for parameter
optimization, which updates the positions of population members in
the search space using subtraction averages of individuals,
characterized by strong optimization capability and fast
convergence rates (Moustafa et al., 2023).

The basic inspiration for the design of the SABO is mathematical
concepts such as averages, the differences in the positions of the
search agents, and the sign of difference of the two values of the
objective function. The idea of using the arithmetic mean location of

all the search agents (i.e., the population members of the tth
iteration), instead of just using, e.g., the location of the best or
worst search agent to update the position of all the search agents
(i.e., the construction of all the population members of the (t + 1)th
iteration), is not new, but the SABO’s concept of the computation of
the arithmetic mean is wholly unique, as it is based on a special
operation " −v", called the v-subtraction of the search agents B from
the search agent A, which is defined as Eq. (29):

A−v B � sign F A( ) − F B( )( ) A − �v pB( ), (29)
where �v is a vector of the dimension m, the operation "p" represents
the Hadamard product of the two vectors, F(A) and F(B) are the
values of the objective function of the search agents A and B,
respectively, and sign is the signum function (Trojovský and
Dehghani, 2023).

In the proposed SABO, the displacement of any search agent Xi

in the search space is calculated by the arithmetic mean of the
v-subtraction of each search agent Xj, j = 1,2, . . . , N, from the search
agent Xi. Thus, the new position for each search agent is calculated
using (30).

Xnew
i � Xi + �ri p

1
N
∑N
j�1

Xi −v Xj( ), i � 1, 2, . . . ,N , (30)

where Xnew
i is the new proposed position for the ith search agent Xi,

N is the total number of the search agents, and �ri is a vector of the
dimension m. Then, if this proposed new position leads to an
improvement in the value of the objective function, it is
acceptable as the new position of the corresponding agent,
according to (31)

Xi � Xnew
i , Fnew

i < Fi;
Xi, else,

{ (31)

where Fi and Fnewi are the fitness function values of the search agents
Xi and Xnew

i , respectively.
Similar to other optimization algorithms, the primary positions

of the search agents in the search space are randomly initialized
using (32).

xi,d � lbd + ri,d · ubd − lbd( ), i � 1, . . . ,N , d � 1, . . . ,m, (32)
where xi,d is the dth dimension of Xi, N is the number of search
agents, m is the number of decision variables, ri,d is a random
number in the interval [0, 1], and lbd and ubd are the lower and
upper bounds of the dth decision variables, respectively (Trojovský
and Dehghani, 2023).

Here, we define the fitness function for SABO as MSE function
shown in (34), C1 ∈ [C1min,C1max ], C3 ∈ [C3min,C3max ] and
σ ∈ [σmin, σmax]. The parameter corresponding to the smallest
fitness function value obtained through iteration is the optimal
combination of parameters for ILSTSVR. Finally, train the model
according to the obtained parameters combination.

2.2.4 Performance evaluation
To evaluate the prediction performance of GEBVs by the model,

while avoiding the problem that Pearson correlation coefficient fails
to measure the distance between true and predicted values, we adopt
both Pearson correlation coefficient and MSE as evaluation metrics
for the relationship between predicted and true values. Furthermore,

TABLE 1 Iterative algorithm to solve the L1 regularization problem.

Algorithm 1: An iterative algorithm to solve the
L1 regularization problem in (14) and (15)

Input: ε1 > 0, ε2 > 0, C1 > 0, C2 > 0, C3 > 0, C4 > 0, X ∈ Rn×m, Y ∈ Rn×1

Output: w1, b1 and w2, b2

1: Random initialization α01, α
0
2 , set the number of iterations t = 0

2: repeat

Calculate and update w1, b1 using (19)

Calculate and update w2, b2 using (20)

Accordingto the formula αik+1 �
���
1

|wi
k |

√
,item-by-item update of α1, α2 t � t + 1

until α1, α2 convergence
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we use ten-fold cross-validation to assess the model’s performance.
The original dataset is divided into ten equally-sized (or nearly
equal) folds; for each fold, it serves as the validation set, while the
remaining nine folds constitute the training set. Training a model
using the training set, and its performance is evaluated using the
validation set. After completing all ten iterations, the average of the
performance measures obtained from each validation set is taken,
thereby yielding an overall assessment of the model’s performance.

The Pearson correlation coefficient (PCC) is used to measure the
strength and direction of the linear relationship between two
continuous variables, and is defined as follows,

ρy,y′ �
cov y, y′( )
σyσy′

(33)

where y and y′ represent the true values and predicted values
respectively, cov(y, y′) denotes the covariance of vectors y and
y′, σy and σy′ are the standard deviations of vector y and y′
respectively.

Mean squared error (MSE) measures the degree of difference
between predicted values and actual values, and is defined as follows,

MSE y, y′( ) � 1
n
∑n
i�1

yi − y′i( )2 (34)

3 Result

3.1 Comparison of SABO-ILSTSVR with the
base model

To validate the effectiveness of ILSTSVR, this section compares
SABO-ILSTSVR with some methods prior to its improvement on
four datasets (potato, wheat, maize and brassica napus). The results
on the potato dataset (Figure 2) show that the SABO-ILSTSVR
exhibits a 4% increase in Pearson correlation coefficient and a 2%
decrease in MSE compared with SABO-LSTSVR. Furthermore,

when contrasted with SABO-SVR, the SABO-ILSTSVR
demonstrates a 9% improvement in the Pearson correlation
coefficient and a 6% decrease in MSE.

The results on other datasets are shown in Table 2. On the wheat
dataset, SABO-ILSTSVR improves the Pearson correlation
coefficient in four environments by an average of 2%, 2%, 8%,
and 2% and reduces the MSE in four environments by an average of
1%, 3%, 1% and 1%, respectively, compared with SABO-SVR and
SABO-LSTSVR. On the maize dataset, SABO-ILSTSVR improves
the Pearson correlation coefficient by an average of 6% and reduces
theMSE by 1%, respectively, compared with SABO-SVR and SABO-
LSTSVR. On the brassica napus dataset, SABO-ILSTSVR improves
the Pearson correlation coefficient in three traits by an average of
11%, 6%, and 24% and reduces the MSE in three traits by an average
of 17%, 1% and 12%, respectively, compared with SABO-SVR and
SABO-LSTSVR.

3.2 Comparison of SABO-ILSTSVR with
other methods

Considering the complexity of the genetic architecture, this
study employs real data to evaluate the prediction performance
of models, including datasets from public available sources for
maize, wheat, potato, and Brassica napus. And we performed
standardization on the phenotype data of all datasets. Due to the
small sample sizes in the adopted datasets, random sampling errors
may be relatively substantial, leading to decreased model prediction
accuracy, reduced statistical power of tests, and difficulty in
obtaining stable and reliable statistical inferences (Bengio and
Grandvalet, 2004). Consequently, a ten-fold cross-validation is
applied to each dataset in this study, with the average of the
results over ten iterations used to represent the ultimate
prediction performance of the models.

This section compares the prediction performance of
LightGBM, rrBLUP, GBLUP, BSLMM, BayesRR, Lasso, RF, SVR,
DNNGP, and SABO-ILSTSVR across four datasets (potato, wheat,

FIGURE 2
Performance of Pearson correlation coefficient and MSE prediction for SABO-SVR, SABO-LSTSVR, and SABO-ILSTSVR on the potato dataset.
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maize and brassica napus). The LightGBM model originates from a
LightGBM Python package developed by Microsoft. The BayesRR,
Lasso, RF, and SVR models are included in the Scikit-learn python
library. The GBLUP, BSLMM and rrBLUP models utilize the
sommer R package (Covarrubias-Pazaran, 2016), hibayes R
package (Yin et al., 2022) and the rrBLUP R package (Endelman,
2011), respectively. The DNNGP model is mentioned in the paper
by (Kelin et al., 2023).

3.2.1 Potato dataset
This paper first compares the prediction performance of SABO-

ILSTSVR with LightGBM, rrBLUP, GBLUP, BSLMM, BayesRR,
Lasso, RF, SVR, DNNGP on the potato dataset. Detailed
information about SNPs and phenotypes in the potato dataset
has been described in the Materials and Methods section. As
shown in Figure 3, SABO-ILSTSVR outperforms comparative
models across key performance metrics. Specifically, SABO-
ILSTSVR improves the Pearson correlation coefficient by 18%,
11%, 50%, 9%, 18%, 18%, 9%, 23% and 30% and reduces the

MSE by an average of 19%, 11%, 32%, 73%, 26%, 20%, 11%, 23%
and 33%, respectively, compared with LightGBM, rrBLUP, GBLUP,
BSLMM, BayesRR, Lasso, RF, SVR, DNNGP.

3.2.2 Wheat dataset
Similarly, prediction performance comparisons were conducted for

SABO-ILSTSVR, LightGBM, rrBLUP, GBLUP, BSLMM, BayesRR,
Lasso, RF, SVR, DNNGP on the wheat dataset. As shown in
Figure 4, the DNNGP model exhibits the highest Pearson
correlation coefficients in predicting yield under environments
env1 and env2 of the wheat dataset, whereas its performance in
env3 and env4 is inferior to that of other models. In contrast, our
proposed SABO-ILSTSVR model demonstrates higher Pearson
correlation coefficients and lower mean squared errors for yield data
across all four environments compared with the other models.
Specifically, SABO-ILSTSVR achieves the best performance in
env3 and env4 and is second only to DNNGP in env1 and env2.
The reason for the differing performancemay be due to their prediction
performance varying across different agroclimatic regions.

TABLE 2 Prediction performance in ten-fold cross-validation for each trait in wheat, maize and brassica napus datasets.

SABO-SVR SABO-LSTSVR SABO-ILSTSVR

Trait PCC MSE PCC MSE PCC MSE

env1 0.58 0.66 0.58 0.67 0.59 0.65

env2 0.5 0.76 0.49 0.75 0.51 0.73

env3 0.43 0.82 0.42 0.82 0.45 0.81

env4 0.52 0.71 0.5 0.76 0.52 0.73

yield 0.37 0.73 0.38 0.73 0.4 0.72

flower0 0.64 0.045 0.61 0.047 0.7 0.038

flower4 0.68 0.045 0.66 0.04 0.71 0.042

flower8 0.36 0.017 0.38 0.02 0.46 0.016

FIGURE 3
Performance of prediction for various models on the potato dataset in terms of Pearson correlation coefficients and MSE.
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3.2.3 Maize dataset
The detailed information on SNPs and phenotypes in the maize

dataset has been described in the Materials and Methods section.
Unlike the potato and wheat datasets, this section performs ten
replicates ten-fold cross-validation separately for SABO-ILSTSVR,
LightGBM, rrBLUP, GBLUP, BayesRR, Lasso, RF, SVR, DNNGP on
the maize dataset. Comparison was not conducted with BSLMM due
to its unstable results. The Pearson correlation coefficients of the ten
results are represented (A) in Figure 5, while the mean squared errors
(MSEs) of the ten results are averaged and depicted as (B). As shown
in Figure 5, Lasso exhibits the lowest prediction performance, whereas
DNNGP, despite having the highest Pearson correlation coefficient
prediction performance, displays significantly large variations across
the ten runs, resulting in elongated bars in the boxplot. In contrast,
SABO-ILSTSVR has a stable Pearson correlation coefficient
prediction performance and exhibits the lowest MSE.

3.2.4 Brassica napus dataset
Similarly, on the brassica napus dataset, ten replicates ten-fold

cross-validation was performed for SABO-ILSTSVR, LightGBM,
rrBLUP, GBLUP, BSLMM, BayesRR, Lasso, RF, SVR, DNNGP,
respectively. The Pearson correlation coefficients of the ten
results are represented by (A) in Figure 6, while the mean
squared errors (MSEs) after averaging are depicted by (B). As
shown in (A) of Figure 6, SABO-ILSTSVR exhibits the highest
Pearson correlation coefficient and lowest MSE prediction
performance on flower0 and flower8, whereas BSLMM achieves
the highest Pearson correlation coefficient prediction performance

on flower4. The prediction performance of the SABO-ILSTSVR
model is slightly lower than that of the GBLUP and BSLMM model
but higher than that of the other comparative models on flower4.

4 Discussion

In this study, we integrate Least Squares Twin Support Vector
Regression (LSTSVR) with Lasso regularization, constructing a GP
model named ILSTSVR. We use the SABO optimization algorithm to
effectively optimize the parameters of the model. To address the
number of genotype samples is far less than the number of SNPs
markers, we introduce a Lasso regularization term into LSTSVR. By
the unique feature selection property of Lasso, it can effectively shrink
the coefficients of non-key features to zero, achieving parameter
sparsity and effectively preventing overfitting. Meanwhile, to cope
with the potential nonlinear relationships in genotype data, we adopt
the radial basis function (RBF) kernel, mapping the raw data into a
high-dimensional space to attain linear separability.

Considering the differences in genotype data among various
species may lead to distinct optimal parameters, we used the SABO
optimization algorithm to automatically tune the parameters of the
ILSTSVR model. To validate the effectiveness of this model, we
conducted evaluations on multiple datasets spanning potato, maize,
wheat, and Brassica napus, and compared its prediction
performance against a series of widely-used models such as
LightGBM, rrBLUP, GBLUP, BSLMM, BayesRR, Lasso, RF,
SVR, DNNGP.

FIGURE 4
Performance of prediction for various models on the wheat dataset. Pearson correlation coefficient (A) and MSE (B) metrics of four phenotypes
(env1, env2, env3 and env4), as evaluated through ten-fold cross-validation.
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FIGURE 5
Performance of prediction for various models on the maize dataset. (A) Pearson correlation coefficients of maize yield traits, represented by box
plots, after ten replicates ten-fold cross-validation. (B) Average MSE of maize yield traits after ten replicates ten-fold cross-validation.

FIGURE 6
Performance of prediction for various models on the brassica napus dataset. (A) Pearson correlation coefficients of three phenotypes (flower0,
flower4 and flower8), represented by box plots, after ten replicates ten-fold cross-validation. (B) Average MSE of three phenotypes after ten replicates
ten-fold cross-validation.
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The results showed that the SABO-ILSTSVR model
demonstrated outstanding prediction performance on the potato
dataset, outperforming other benchmark models. In the wheat and
brassica napus datasets containing multiple phenotypic traits, our
model consistently exhibited higher prediction accuracy for most
traits compared with other models. The box plot analysis of the
maize and brassica napus dataset further revealed the robustness of
the SABO-ILSTSVR model’s predictions.

In our further exploration of the future, confronted with the
high-dimensional challenges of genomic data, we will delve deeper
into how to efficiently perform feature extraction (Burges, 2009).
With the continuous decline in sequencing costs, large-scale
genomic sequencing of samples is poised to become a reality, the
increased sample size may offer more favorable application for DL
models (Khan et al., 2020; Yang et al., 2024). We will investigate
innovative DL models within the field of breeding.
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